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Understanding how the brain learns throughout a lifetime remains a long-standing chal-
lenge. In artificial neural networks (ANNs), incorporating novel information too rapidly
results in catastrophic interference, i.e., abrupt loss of previously acquired knowledge.
Complementary Learning Systems Theory (CLST) suggests that new memories can be
gradually integrated into the neocortex by interleaving new memories with existing
knowledge. This approach, however, has been assumed to require interleaving all existing
knowledge every time something new is learned, which is implausible because it is time-
consuming and requires a large amount of data. We show that deep, nonlinear ANNs
can learn new information by interleaving only a subset of old items that share substan-
tial representational similarity with the new information. By using such similarity-
weighted interleaved learning (SWIL), ANNs can learn new information rapidly with a
similar accuracy level and minimal interference, while using a much smaller number of
old items presented per epoch (fast and data-efficient). SWIL is shown to work with vari-
ous standard classification datasets (Fashion-MNIST, CIFAR10, and CIFAR100), deep
neural network architectures, and in sequential learning frameworks. We show that data
efficiency and speedup in learning new items are increased roughly proportionally to the
number of nonoverlapping classes stored in the network, which implies an enormous
possible speedup in human brains, which encode a high number of separate categories.
Finally, we propose a theoretical model of how SWIL might be implemented in the
brain.
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Artificial neural networks (ANNs) tend to lose previously acquired knowledge abruptly
when new information is incorporated too quickly (“catastrophic interference”) (1, 2).
Successful lifelong learners (e.g., humans) do not suffer from this problem, potentially by
using mechanisms suggested in the Complementary Learning Systems Theory (CLST) (3)
(see also ref. 4). CLST states that the brain relies on complementary learning systems: the
hippocampus (HC) for rapid acquisition of new memories and the neocortex (NC) for
the gradual incorporation of the new data into context-independent structured knowl-
edge. During “offline periods,” such as sleep and quiet awake rest, the HC triggers replay
of recent experiences in the NC, while the NC spontaneously retrieves and interleaves
representations of existing classes (5–7). The interleaved replay allows gradual adjustment
of NC synaptic weights, in a gradient-descent manner, to create context-independent cat-
egory representations, thereby gracefully integrating new memories and overcoming cata-
strophic interference. Numerous studies have since successfully used interleaved replay to
achieve lifelong learning in neural networks (8, 9).
In practice, however, the CLST raises two significant issues. First, how can the brain

possibly perform a comprehensive interleaving when it does not have access to all the old
data? One potential solution is “Pseudorehearsal” (10), where random inputs can elicit
generative replay of internal representations without requiring explicit access to previously
learned examples. Attractor-like dynamics may allow the brain to accomplish pseudore-
hearsal, but it is unclear what to pseudorehearse. Thus, the second problem is that there is
not enough time to interleave all of the previously learned information after each new
learning event. “Similarity Weighted Interleaved Learning” (SWIL) was proposed as a
solution to this second problem, suggesting that it may be sufficient to interleave only old
items with substantial representational similarity to new items (11). Empirical behavioral
studies showed that highly consistent new items could be rapidly integrated into NC
structured knowledge with little or no interference (12, 13). This indicates that the speed
of integrating new information depends on its consistency with the prior knowledge (14).
Inspired by this behavioral result, and by a reexamination of the distribution of cata-
strophic interference among previously acquired classes, which is described below,
McClelland et al. (11) demonstrated that SWIL allowed learning new information using
2.5x fewer item presentations per epoch in a simple dataset with two superordinate
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categories and achieved the same performance as training the net-
work on the entire data. However, the authors did not find a
similar effect when using more complex datasets, raising concerns
about the algorithm’s scalability.
The current study has overcome these limitations by modifying

the SWIL algorithm to work with Convolutional Neural Networks
(CNNs) on traditional classification datasets (Fashion-MNIST,
CIFAR10, and CIFAR100). We exploit the hierarchical structure
of existing knowledge to selectively interleave only the old items
that have higher representational similarity to new items. With this
strategy, we can reach performance levels comparable to that
achieved by using the entire training dataset, thereby substantially
reducing the amount of data required (data-efficient) and learning
time (speedup). We then show that SWIL can also be used in a
sequential learning framework. Additionally, we show that learning
a new class can be extremely data-efficient—i.e., a much smaller
number of old items being presented—if it shares similarities with
far fewer previously learned classes, which is likely the case in
human learning. Finally, we present a theoretical model of how
SWIL might be implemented in the brain using previously stored
attractors with an excitability bias proportional to their overlap
with new items.

Learning Dynamics in Deep Neural Networks
for Image-Classification Dataset

McClelland et al. showed that, in a deep linear network with one
hidden layer, SWIL allows learning a new class similarly to fully
interleaved learning (FIL)—i.e., interleaving the entire old classes
with the new class—but using 40% fewer items (11). However,
the network was trained on a very simple dataset, with only two
superordinate categories, raising questions regarding the algo-
rithm’s scalability. We started by exploring how learning on
different classes evolves in a deep linear neural network with one
hidden layer (SI Appendix, Fig. 1A) on a more complex dataset:
Fashion-MNIST (15). The model was first trained to 87%
total test accuracy on 8 of the 10 classes, omitting the “boot”
and “bag” classes (SI Appendix, Fig. 1B). We then retrained
the model to learn the (new) “boot” class under two different
conditions, with 10 repetitions per condition: 1) focused learning
(FoL)—only new “boot” class presented—and 2) FIL—all
the classes (new + previously learned) presented with equal prob-
ability. A total of 180 images were presented per epoch for both

conditions (same images in each epoch). The network was tested
on a total of 9,000 previously unseen images (test dataset; 1,000
images per class), excluding the bag class. The training was
stopped when the network’s performance reached asymptote. As
expected, FoL caused interference with old classes, which was
overcome with FIL (Fig. 1, second column). As alluded to above,
interference with the old data in FoL varied across classes, which
was part of the original inspiration for SWIL, and suggests a
graded similarity relationship between the new “boot” class and
the old classes. For example, recall on the “sneaker” and “sandals”
falls off faster than the “trouser,” perhaps because integrating
the new “boot” class would selectively change synaptic weights
representing the “sneaker” and “sandals” class, causing more
interference.

Computing Similarity between
Different Classes

The reduction in performance was higher for similar old classes
on learning new items for FoL. This relation between learning
and similarity between multiple class attributes was explored
previously (11), and it was shown that a deep linear network
could acquire already-known consistent attributes rapidly. In
contrast, the inconsistent attributes that needed the addition of
a new branch in the existing class hierarchy required slow, grad-
ual, interleaved learning. In the current work, we computed
similarity at the feature level using published methods (16, 17).
Briefly, we computed cosine similarity between the average per-
class activation vectors for existing- and new-class items for a
target hidden layer (typically, the penultimate layer in these
simulations; Materials and Methods). Fig. 2A shows the similar-
ity matrix calculated from the penultimate-layer activations for
the pretrained network on new “boot” and old classes of the
Fashion-MNIST dataset. The similarity between classes is con-
sistent with our visual perception of objects. For example, a
higher similarity between the “boot” class and the “sneaker”
and “sandal” classes and between “shirt” and “t-shirt” classes,
etc., can be observed in the hierarchical clustering plots (Fig.
2B). The similarity matrix corresponds strongly to the confu-
sion matrix generated at the end of FIL from the previous
section (Fig. 2C). Higher similarity leads to more confusion;
for example, “shirt” class images get confused with “t-shirt,”
“pullover,” and “coat” classes, suggesting that our similarity

Fig. 1. Pretrained network’s performance on learning new “boot” class in two conditions: FoL (Upper) and FIL (Lower). Recall on new “boot” class (olive
green), recall on the existing classes (plotted in different colors), total accuracy (a high score means low error), and cross-entropy loss (a measure of total
error), respectively, are shown as a function of the number of epochs on the held-out test dataset. Each plot shows the mean over 10 repetitions; shaded
areas are ±1 SEM.
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measure predicts the learning dynamics of the neural network.
A similar class-similarity profile is present in the recall curve of
old classes in the FoL results described in the previous section
(Fig. 1; recall similar old classes). FoL of the “boot” class leads
to rapid forgetting of similar old classes (“sneaker” and
“sandal”) compared to different old classes (“trouser,” etc.).

Rapid and Data-Efficient Learning of New
Items in Deep Linear Neural Networks

Next, we examined novel class learning dynamics in three new
conditions, along with the two previous ones, with 10 repetitions
per condition: 1) FoL (total n = 6,000 images per epoch); 2) FIL
(total n = 54,000 images per epoch, 6,000 images/class); 3) par-
tial interleaved learning (PIL)—a much smaller subset of images
(total n = 350 images per epoch, ∼39 images/class) with images
from each class (new + existing) presented with equal probability;
4) SWIL—retrain with the same total number of images per
epoch as PIL, but the existing class images were weighted accord-
ing to similarity with the (new) “boot” class; and 5) Equally
Weighted Interleaved Learning (EqWIL)—retrain with the same
number of “boot” class images as SWIL, but the existing class

images were weighted equally (Fig. 3A). The same held-out test
dataset (total n = 9,000 images) described above was used. The
training was stopped when the network’s performance reached
asymptote for each condition. New “boot” class accuracy takes
longer to asymptote and reaches a lower value using PIL than
FIL (H = 7.27, P < 0.05) (Fig. 3B, first column; Table 1, “New
Class” column), although fewer items (1/150x) were presented at
each epoch. For SWIL, the similarity calculation was used to
determine the proportion of existing old-class items to be inter-
leaved. Based on this, we randomly sampled input images with
weighted probabilities from each old class. This led to a higher
number of “sneaker” and “sandal” class images (most similar)
being interleaved compared to other classes (Fig. 3A). We will
refer to the “sneaker” and “sandal” classes as similar old classes
and the rest of the old classes as different old classes, based on the
dendrogram (Fig. 2B). With SWIL, the model learned the new
“boot” class faster and with similar interference with the existing
classes compared to PIL (H = 5.44; P < 0.05). Moreover, the
recall on the new class, total accuracy, and loss for SWIL were
comparable to FIL (Fig. 3B, first column; H = 0.056, P > 0.05;
Table 1, “New Class” column). The learning on the new “boot”
class in EqWIL was the same as SWIL, but there was a greater

A B C

Fig. 2. (A) Similarity matrix for existing classes and new “boot” class of the pretrained network using the penultimate-layer activations. Diagonal values
(same-class similarity plotted as white) were removed. (B) Agglomerative hierarchical clustering applied on the similarity matrix in A. (C) Confusion matrix for
FIL after training to learn the “boot” class. Diagonal values were removed for scaling clarity.

A

B

Fig. 3. (A) The pretrained neural network was trained to learn a new “boot” class (olive green) in five different learning conditions until the performance
asymptoted: 1) FoL (total n = 6,000 images/epoch), 2) FIL (total n = 54,000 images/epoch), 3) PIL (total n = 350 images/epoch), 4) SWIL (total n = 350 images/
epoch), and 5) EqWIL (total n = 350 images/epoch). (B) Recall on the new class, recall on similar old classes (“sneaker” and “sandals”), recall on different old
classes, total accuracy on all classes, and cross-entropy loss for the held-out test dataset as a function of the number of epochs for FoL (black), FIL (blue),
PIL (brown), SWIL (magenta), and EqWIL (gold). Each plot shows the mean over 10 repetitions; shaded areas are ±1 SEM.
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degree of interference with the similar old classes (H = 10.99,
P < 0.05) (Fig. 3B, second column; Table 1, “Similar Old Class”
column). The following two measures were used to compare
SWIL and FIL: 1) MemRed = ratio of the number of images
stored in FIL and SWIL, signifying the reduction in the amount
of data stored; and 2) Speedup = ratio of the total number of
items presented in FIL and SWIL required to reach saturation
accuracy for new-class recall, indicating the reduction in item pre-
sentations (time) needed to learn a new class. SWIL allowed
learning the new item with reduced data demand, MemRed =
154.3x (54,000/350), and much faster, Speedup = 77.1x
(54,000/350 × 2). Even with a smaller number of items, the
model achieved the same performance by exploiting the hierarchi-
cal structure of the prior knowledge of the model using SWIL.
SWIL provides a middle ground between PIL and EqWIL, allow-
ing for the integration of a new class and minimal interference
with the existing classes (both similar and different).

Learning a New Class in CNNs Using SWIL
on CIFAR10

Next, to test whether SWIL would work in a more complex
setting, we trained a six-layer nonlinear CNN with a fully-
connected output layer (Fig. 4A) to recognize images from 8 dif-
ferent classes (except “cat” and “car”) out of 10 classes in
CIFAR10 (18). We retrained the model to learn the “cat” class
in the five different training conditions—FoL, FIL, PIL, SWIL,
and EqWIL—defined previously. Fig. 4C shows the distribu-
tion of images per class for the five conditions. n = 2,400 total
images per epoch were presented for SWIL, PIL, and EqWIL
conditions, compared to n = 45,000 and n = 5,000 images per
epoch for FIL and FoL, respectively. The network was trained
for each condition until the performance asymptoted. The
model was tested on a total of 9,000 (held-out test dataset;
1,000 images/class, excluding the “car” class) previously unseen
images. Fig. 4B shows the similarity matrix calculated for the
CIFAR10 classes. The “cat” class is more similar to the “dog”
and other animal classes falling under the same branch (Fig. 4 B,
Left). We will refer to the “truck,” “ship,” and “plane” classes as
different old classes and the rest of the old animal classes as
similar old classes, based on the dendrogram (Fig. 4B). In FoL,
the model learned the new “cat” class, but forgot the old clas-
ses. Similar to the Fashion-MNIST results, there was a gradient
of interference with the “dog” class (maximum similarity with
the “cat” class) and the “truck” class (minimum similarity),
exhibiting maximum and minimum forgetting, respectively. As
expected, FIL overcame catastrophic interference during the
new “cat” class learning (Fig. 4D). In PIL, the model learned
the new “cat” class using 18.75x fewer item presentations at
each epoch, but recall for “cat” class asymptoted at a lower
value than FIL (H = 5.72, P < 0.05). The recall on the new

class and similar and different old classes, total accuracy, and
loss for SWIL were comparable to FIL (H = 0.42, P > 0.05;
Table 2; Fig. 4D). The recall on the new “cat” class using
SWIL was higher than PIL (H = 7.89, P < 0.05). In EqWIL,
learning on the new “cat” class was similar to SWIL and FIL,
but there was higher interference with the similar old classes
(H = 24.77, P < 0.05; Table 2). The performance on the dif-
ferent old classes was comparable for the FIL, PIL, SWIL, and
EqWIL conditions (H = 0.6, P > 0.05). SWIL resulted in
better integration of the new “cat” class than PIL and helped
overcome the interference observed in EqWIL. Learning
of a new-class item was much faster using SWIL than FIL;
Speedup = 31.25x (45,000 × 10/2,400 × 6), while using
significantly less data (MemRed = 18.75x). These results con-
firmed that SWIL could learn new-class items, even in nonlin-
ear CNNs and on a more realistic dataset.

Effect of Consistency of New Items with Old
Classes on Learning Time and Data Required

A new item is called consistent if it could be added to the previ-
ously learned classes without requiring large changes to the net-
work (11). Based on this framework, learning a new class that
interferes with fewer existing classes (higher consistency) can be
integrated more easily into the network than a new class that
interferes with multiple existing classes (lower consistency). To
test this, we used the pretrained CNN from the previous sec-
tion to learn a new “car” class in all five learning conditions
described earlier. Fig. 5A shows the similarity matrix for the
“car” class, which is more similar to the “truck,” “ship,” and
“plane” classes (under the same hierarchical node) compared to
the other existing classes. To further confirm, we performed
t-distributed stochastic neighbor embedding (t-SNE) (19) on
the penultimate-layer activations used for similarity calculation
(Fig. 5B). The “car” class overlaps significantly with the other
vehicle classes (“truck,” “plane,” and “ship”), whereas the “cat”
class (from the previous section) overlaps with the other animal
classes (“dog,” “frog,” “horse,” “bird,” and “deer”). As expected,
FoL on the “car” class causes catastrophic interference, with the
similar old classes exhibiting higher interference, which was
overcome using FIL (Fig. 5D). A total of n = 2,000 images
were presented per epoch for PIL, SWIL, and EqWIL (Fig.
5C). As in the previous sections, the maximal new-class recall
reached is lower in PIL than FIL (H = 12.37, P < 0.05,
Table 3). In SWIL, the model learned the new “car” class at
similar accuracy with minimal interference with the existing
classes (on both similar and different) compared to FIL (H =
0.79, P > 0.05, Table 3). Using EqWIL, the model learned the
new “car” class the same as SWIL, but there was a higher
degree of interference with the other similar classes, such as the
“truck” (H = 53.81, P < 0.05; Table 3; Fig. 5D, second

Table 1. Performance on test-set at asymptote for Fashion-MNIST dataset

Learning condition N

Recall

Total accuracy LossNew class Similar old class Different old class

FoL 6,000 1 ± 1e-5 0.013 ± 0.056 0.03 ± 0.189 0.13 ± 0.002 15.28 ± 0.7
FIL 54,000 0.933 ± 0.006 0.882 ± 1e-4 0.837 ± 0.038 0.852 ± 0.001 0.763 ± 0.025
PIL 350 0.822 ± 0.009 0.905 ± 0.005 0.838 ± 0.04 0.828 ± 0.002 0.782 ± 0.013
SWIL 350 0.936 ± 0.006 0.906 ± 0.004 0.835 ± 0.041 0.864 ± 0.001 0.731 ± 0.011
EqWIL 350 0.932 ± 0.008 0.785 ± 0.007 0.804 ± 0.042 0.805 ± 0.002 0.794 ± 0.011

Displayed are the means ±1 SEM over 10 repetitions for each condition.
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column). SWIL allowed learning new items faster, Speedup =
48.75x (45,000 × 12/2,000 × 6), with reduced memory
demand than FIL, MemRed = 22.5x. The “car” class could be
learned faster and by interleaving fewer classes (“truck,” “ship,”
and “plane”) than the “cat” class (48.75x vs. 31.25x), which
overlaps with a higher number of classes (“dog,” “frog,”
“horse,” “frog,” and “deer”). These simulations indicate that
the amount of old-class data required to interleave and speedup
for learning a new class depends on the consistency of the new
information with prior knowledge.

Sequential Learning Using SWIL

Next, we tested whether SWIL can be used to learn new items
presented in a sequence (sequential learning framework). To do
this, we took the trained CNN models from Fig. 4, the
CIFAR10 “cat” class (task 1) section for both the FIL and
SWIL conditions (trained on 9 out of 10 classes), and then
trained the model from each condition to learn a new “car”
class (task 2). Fig. 6, first column shows the distribution of
individual class items used in SWIL to learn the “car” classes

Table 2. Performance on test-set at asymptote for the CIFAR10 cat dataset

Learning condition N

Recall

Total accuracy LossNew class Similar old class Different old class

FoL 5,000 0.93 ± 0.3e-3 0.59 ± 0.038 0.907 ± 0.026 0.75 ± 3.5e-3 1.1 ± 1.1–3
FIL 45,000 0.789 ± 3.3e-3 0.872 ± 0.046 0.935 ± 0.021 0.880 ± 2.5e-3 0.469 ± 1.4e-3
PIL 2,400 0.64 ± 6.9e-3 0.873 ± 0.046 0.934 ± 0.021 0.847 ± 4.3e-3 0.52 ± 1.8e-3
SWIL 2,400 0.792 ± 6e-3 0.873 ± 0.054 0.936 ± 0.024 0.883 ± 2.9e-3 0.467 ± 1.6e-3
EqWIL 2,400 0.795 ± 2.7e-3 0.756 ± 0.072 0.933 ± 0.022 0.846 ± 5.6e-3 0.51 ± 1.3e-3

Displayed are the means ±1 SEM over 10 repetitions for each condition.

A

C

D

B

Fig. 4. (A) A six-layer nonlinear CNN with a fully connected output layer was used for learning eight classes of the CIFAR10 dataset. (B) The similarity matrix
(Right) was calculated from the last convolution layer’s activation after presenting the new “cat” class. Agglomerative hierarchical clustering (B, Left) applied
to the similarity matrix showing the grouping of animal (olive green) and vehicle (blue) superclasses in the dendrogram. (C) The pretrained CNN was then
trained to learn the “cat” class (olive green) under five different conditions, until the performance asymptoted: 1) FoL (total n = 5,000 images/epoch), 2) FIL
(total n = 45,000 images/epoch), 3) PIL (total n = 2,400 images/epoch), 4) SWIL (total n = 2,400 images/epoch), and 5) EqWIL (total n = 2,400 images/epoch).
The simulation for each condition was repeated 10 times. (D) Recall on the new class, recall on similar old classes (other animal classes in the CIFAR10 data-
set), recall on different old classes (“plane,” “ship,” and “truck”), total accuracy on all classes, and cross-entropy loss for the held-out test dataset as a function
of the number of epochs for FoL (black), FIL (blue), PIL (brown), SWIL (magenta), and EqWIL (gold). Each plot shows the mean over 10 repetitions; shaded
areas are ±1 SEM.
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(total n = 2,500 images per epoch compared to n = 50,000
images per epoch). Note that the “cat” class was also interleaved
to learn the new “car” class. The SWIL results were compared
only to FIL, since that provides the best performance. SWIL
achieved the same performance on new and old classes as FIL

(Fig. 6; H = 14.3, P > 0.05). The new “car” class was learned
much faster by using SWIL; Speedup = 45x (50,000 × 20/
2,500 × 8), while a total of 20x fewer items (MemRed) were
presented per epoch than FIL. For both “cat” and “car” class
results, we presented a smaller number of images per epoch in

A

C

D

B

Fig. 5. (A) Similarity matrix (Left) calculated from the penultimate-layer activations and the result of agglomerative hierarchical clustering (Right) on the simi-
larity matrix after the presentation of the new “car” class. (B) t-SNE applied on the last convolution layer activations for the “car” class (Left; from simulation
in Fig. 4) and the “cat” class (Right) learning. (C) The pretrained CNN was trained to learn the new “car” class (olive green) in five different learning conditions
until the performance asymptoted: 1) FoL (total n = 5,000 images/epoch), 2) FIL (total n = 45,000 images/epoch), 3) PIL (total n = 2,000 images/epoch),
4) SWIL (total n = 2,000 images/epoch), and 5) EqWIL (total n = 2,000 images/epoch). (D) Recall on the new class, recall on similar old classes (“plane,” “ship,”
and “truck”), recall on different old classes (other animal classes), total accuracy, and cross-entropy loss for the held-out test dataset as a function of the
number of epochs for FoL (black), FIL (blue), PIL (brown), SWIL (magenta), and EqWIL (gold) conditions. Each plot shows the mean over 10 repetitions;
shaded areas are ±1 SEM.

Planes Bird DeerDog Frog Horse Ship Truck Cat Car
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Fig. 6. The six-layer CNN was trained to learn the new “cat” class (task 1) followed by learning the “car” (task 2) class until the performance asymptoted in
both conditions: 1) FIL: all old classes (plotted in different colors) + new class (“cat”/”car”) image presented with equal probability; and 2) SWIL: old-class
examples weighted and presented in proportion to their similarity with a new class (“cat”/”car”). Notice that we included the “cat” class learned in task 1
weighted according to the similarity for learning the “car” class in task 2. Columns represent the distribution of images presented per class per epoch, recall
on the new class, recall on similar old classes, recall on different old classes, total accuracy, and cross-entropy loss for the held-out test dataset as a function
of the number of epochs for FIL (blue) and SWIL (magenta) conditions for learning “cat” and “car” classes. Each plot shows the mean over 10 repetitions;
shaded areas are ±1 SEM.
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SWIL (18.75x and 20x) than the entire dataset presented per
epoch in FIL, and the network still rapidly learned the new-
class items (31.25x and 45x). Extending this idea, one can
expect a multiple-fold reduction in learning time and data stor-
age to learn new-class items with an increasing number of
learned classes, which might be the case in human brains. The
results demonstrate that SWIL can be used to integrate multi-
ple new classes in a sequential learning framework, allowing a
neural network to learn continually without interference.

Reduced Learning Time and Data Required
with Increasing Distance across Classes
Using SWIL

We wanted to test the general applicability of the SWIL algo-
rithm and test whether it can be used for a dataset with many
more classes and more complex network architecture. We
trained a complex CNN: VGG19 (20) (19 layers) on 90 out of
100 classes of the CIFAR100 dataset (500 training images/class
and 100 test images/class). The network was then trained to

learn a (new) “train” class. Fig. 7A shows the similarity matrix
computed from the activations of the penultimate layers on
the CIFAR100 dataset. The new “train” class was similar to
many existing “vehicle” superclasses (Fig. 7B; VGG19, “bus,”
“streetcar,” “tractor,” etc.). SWIL allowed learning new items
much faster (Speedup = 95.45x [45,500 × 6/1,430 × 2]) and
with significantly smaller data (MemRed = 31.8x) than FIL
with no difference in the performance (H = 8.21, P > 0.05).
As expected, SWIL overcame the lower recall on the new
class using PIL (H = 10.34, P < 0.05) and the higher level of
interference with EqWIL (H = 24.77, P < 0.05) (Fig. 7C and
Table 4). Next, we wondered whether a large distance between
different class representations underlies the faster speedup
observed here. To check this, we trained two more neural net-
work architectures: 1) six-layer CNN (same as Figs. 4 and 5
from CIFAR10); and 2) VGG11 (11 layers) on 90 classes of
the CIFAR100 dataset, followed by training on a new “train”
class in only two conditions: FIL and SWIL. There was a
higher overlap between the new “train” class and the “vehicle”
superclass for both new network architectures, but individual

A

C

D

B

Fig. 7. (A) Similarity matrix from the penultimate layer’s activation after presenting the new “train” class for VGG19. Five classes—“truck,” “streetcar,” “bus,”
“house,” and “tractor”—sharing the maximum similarity with the “train” class are indicated. The diagonal elements (similarity = 1) are excluded from the
similarity matrix. (B, Left) Top two dimensions of the t-SNE applied to the penultimate-layer activations of the six-layer CNN, VGG11, and VGG19 networks.
(B, Right) Ratio of speedup FIL

SWIL

� �
observed (y axis) vs. ratio of the number of layers for the three different networks with respect to six-layer CNN. Black

dashed line, red dashed line, and solid blue line represent slope = 1 line, best-fit line, and simulation results, respectively. (C) Learning dynamics using
VGG19 (20): Recall on new “train” class, recall on similar old classes (“vehicles” superclass), recall on different old classes (everything except “vehicles” super-
class), total accuracy, and cross-entropy loss for the held-out test dataset as a function of the number of epochs for FoL (black), FIL (blue), PIL (brown), SWIL
(magenta), and EqWIL (gold) conditions. Each plot shows the mean over 10 repetitions; shaded areas are ±1 SEM. (D) Columns represent Recall for the
Fashion-MNIST “boot” class (Fig. 3), CIFAR10 “cat” class (Fig. 4), CIFAR10 “car” class (Fig. 5), and CIFAR100 VGG19 “train” class as a function of the total number
of images presented (log-scale) for SWIL (magenta) and FIL (blue). “N” represents the total number of images presented per epoch (old + new class) for each
learning condition. Note that the x axis in D starts from epoch #1, showing recall after the network has been trained on one epoch.
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classes were less separated compared to VGG19 simulations
(Fig. 7 B, Left). The Speedup in learning new items with SWIL
with respect to FIL scaled roughly linearly with the increase in
the number of layers (slope = 0.84; Fig. 7 B, Right, SI Appendix,
Fig. 3 and Table 1). This result shows that increased representa-
tional distance across classes (penultimate layer) can lead to faster
learning (Speedup) and reduced memory load (MemRed).
Next, we wanted to check whether speedup would increase

even further if the network is trained on many more nonoverlap-
ping classes, with a larger distance between their representations.
To do this, we took a deep linear network (used in the Fashion-
MNIST examples in Figs. 1–3) and trained it to learn a com-
bined dataset consisting of 8 Fashion-MNIST classes (excluding
“bags” and “boot”) and 10 Digit-MNIST classes. The network
was then trained to learn a new “boot” class. As expected, the
“boot” class was more similar to “sandals” and “sneaker” (similar
old classes), followed by the remaining Fashion-MNIST classes,
and, finally, Digit-MNIST classes (SI Appendix, Fig. 4 A and B).
Based on this, we interleaved more similar old-class exemplars fol-
lowed by Fashion-MNIST and Digit-MNIST class exemplars for
the SWIL (total n = 350 images per epoch; SI Appendix, Fig.
4C). The simulations showed that SWIL allows rapid learning of
new-class items without interference, similarly to FIL, but using a
much smaller subset of data, MemRed = 325.7x (114,000/350)
and Speedup = 162.85x (228,000/1,400) (SI Appendix, Fig. 4D).
The speedup observed in the current result is 2.1x (162.85/77.1),
with a 2.25x (18/8) increase in the number of classes compared
to Fashion-MNIST results. The results from this section helps to
establish that SWIL works even for a more complex dataset
(CIFAR100) and neural network architecture (VGG19), proving
the general applicability of the algorithm. Additionally, we dem-
onstrated that increased internal distance across classes or increas-
ing the number of nonoverlapping classes could lead to faster
learning (Speedup) and reduced memory load (MemRed).

Discussion

Summary. ANNs face a major challenge in continual learning,
often exhibiting catastrophic interference (1, 2). To overcome

this problem, numerous studies have used an FIL, i.e., joint
training the network on new and previously learned items (8, 9).
FIL requires interleaving all the existing information every
time there is new information, making it a biologically implau-
sible and time-consuming process. Recently, it was shown that
FIL might not be required, and interleaving only old items with
substantial representational similarity to new items (SWIL)
could enable the same performance (11). However, there
were concerns raised regarding the scalability of SWIL. We
extended the SWIL algorithm and tested it on different
datasets—Fashion-MNIST, CIFAR10, and CIFAR100—and
neural network architectures—deep linear networks and CNNs.
Across all conditions, SWIL and EqWIL perform better in
learning new classes compared to PIL. This is expected, as we
have increased the relative frequency of the new class compared
to old classes. We also demonstrated that carefully selecting and
interleaving similar items (SWIL) reduced catastrophic interfer-
ence with the similar old classes compared to equally subsam-
pling existing classes (EqWIL). SWIL was sufficient to perform
similarly to FIL on both new and existing classes, thus providing
significant speedup in learning new items (Fig. 7D), while sub-
stantially reducing the required training data. SWIL allowed
learning new classes in a sequential learning framework, further
proving its general applicability. Finally, we showed that a new
class with lower overlap with previously learned classes (larger
distance) could be integrated much more quickly (reduced
time) and with even fewer items stored (more data-efficient)
than a new class that shares similarities with many old classes.
Overall, our results provide a possible insight into how the brain
actually may solve one of the main failings of the original CLST
model—unrealistic training time.

Comparison with Other Approaches and Potential Issues.
Recent brain-inspired approaches to alleviate catastrophic inter-
ference can be categorized into 1) regularization-based and 2)
generative-replay–based methods. Regularization-based methods,
such as Elastic Weight Consolidation (EWC) (21), Learning
without Forgetting (22), and Synaptic Intelligence (23), typically
involve measuring the importance of each parameter and adding

Table 4. Performance on test-set at asymptote for CIFAR100 dataset using VGG19

Learning condition N

Recall

Total accuracy LossNew class Similar old class Different old class

FoL 500 0.997 ± 1.5e-3 0.076 ± 0.05 0.543 ± 0.023 0.501 ± 0.7e-3 2.48 ± 3.6e-3
FIL 45,500 0.696 ± 0.010 0.755 ± 0.05 0.631 ± 0.018 0.642 ± 0.4e-3 1.926 ± 1.4e-3
PIL 1,430 0.558 ± 0.018 0.751 ± 0.046 0.625 ± 0.018 0.609 ± 0.6e-3 1.982 ± 4.5e-3
SWIL 1,430 0.704 ± 0.016 0.753 ± 0.05 0.628 ± 0.022 0.641 ± 0.5e-3 1.923 ± 1.8e-3
EqWIL 1,430 0.723 ± 0.012 0.583 ± 0.054 0.622 ± 0.018 0.603 ± 0.1e-3 1.973 ± 2.7e-3

Displayed are the means ±1 SEM over 10 repetitions for each condition.

Table 3. Performance on test-set at asymptote for the CIFAR10 car dataset

Learning condition N

Recall

Total accuracy LossNew class Similar old class Different old class

FoL 5,000 0.994 ± 0.5e-2 0.516 ± 0.213 0.875 ± 0.025 0.78 ± 0.5e-3 0.816 ± 1.6e-3
FIL 45,000 0.917 ± 3.5e-3 0.885 ± 0.013 0.902 ± 0.024 0.900 ± 0.2e-3 0.389 ± 0.9e-3
PIL 2,000 0.858 ± 6.1e-3 0.887 ± 0.012 0.902 ± 0.025 0.88 ± 0.3e-3 0.461 ± 1.2e-3
SWIL 2,000 0.918 ± 2.5e-3 0.89 ± 0.013 0.902 ± 0.025 0.901 ± 0.4e-3 0.388 ± 1.1e-3
EqWIL 2,000 0.923 ± 3.3e-3 0.821 ± 0.024 0.89 ± 0.025 0.876 ± 0.6e-3 0.487 ± 1.5e-3

Displayed are the means ±1 SEM over 10 repetitions for each condition.
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a regularization term that penalizes changes in the most relevant
parameters or mapping function of the network. These appro-
aches usually suffer when there is a need to learn many new
classes incrementally (24, 25). The replay-based approaches
(25, 26), motivated by the HC-replay literature, consist of
deep generative and task-solver networks. During relearning,
new-class exemplars are interleaved with generated pseudodata
(captures representational statistics of previously learned informa-
tion). The generative-replay approaches overcome the first issue
of CLST, i.e., not having access to the old data. However, the
problem is shifted toward implementing an improved generator
(an important and hard problem), limiting the performance to
the generator’s effectiveness. These approaches typically inter-
leave the existing data equally while learning new items, similar
to EqWIL, which might not be required and might even be det-
rimental, given the current study results. SWIL addresses one of
the issues with the CLST, i.e., not enough time to interleave all
the existing data. After determining the similarity in SWIL using
each class’s average activation, we sampled the old classes from
the training data. This still requires the storage of a large amount
of data in memory. This problem might be resolved by combin-
ing SWIL with generative replay (10, 25, 26) and testing perfor-
mance after interleaving generated old items with new items in
proportion to similarity. After combining SWIL with generative
replay, we should have to store only average activation maps for
each class, thus significantly reducing the memory footprint.
Indeed, using the pseudorehearsal approach, it might not be nec-
essary to store any old data (10) (Biological Implementation of
SWIL). We understand that SWIL is not a perfect solution to
the lifelong-learning problem, but, rather, is complementary to
most past approaches. Future studies should combine SWIL
with generative replay or EWC. These combinations might give
a better overall solution to a range of task settings, overcoming
the shortcomings of each approach.
There are a couple of points to be noted before using SWIL

for a learning scenario. The number of new-class images (for
example, 720 images for the “cat” class) used for interleaving in

SWIL were about ∼1.25 times the images used for the most
similar existing class (575 images for the “dog” class). The
number of new-class images to interleave can be treated as a
hyperparameter to tune in future work. In the current study,
we used 1.25 to 1.5 times the most similar old-class images as
the value of the number of new-class-images hyperparameter,
which worked well across all the presented conditions. Typical
transfer-learning approaches freeze initial layers of the networks
during new-class learning. We wanted to study the effect of
freezing earlier layers in our simulations. To do this, we ran
CIFAR10-cat, CIFAR10-car, and CIFAR100 with earlier layers
frozen and saw that SWIL still performs comparably to FIL.
But, the speedup observed with SWIL was reduced for each
dataset (SI Appendix, Figs. 5–7), perhaps because of the reduced
dimensionality of the frozen network relative to the unfrozen
network. We also performed stress testing on the SWIL algo-
rithm for the CIFAR10 dataset (for both the “cat” and “car”
classes) by varying the total number of images presented from
n = 15,000 to n = 500 (SI Appendix, Fig. 8) and found that
new-class recall and overall accuracy reach the same value as
FIL with similar performance on existing classes. SWIL still did
better in learning new classes than PIL and showed less cata-
strophic interference than EqWIL at all values of total training
data size.

We calculated the similarity between a target-layer average
activation for a new-class item with the previously learned clas-
ses. Since we focused on the learning dynamics at a class level,
rather than individual attributes across classes, it would be inter-
esting to look at the learning dynamics of individual feature
maps. Similarity can also be computed at different levels: pixel-
wide or functional; our approach of looking at the activation-
map similarity resembles the ventral visual-stream similarity
(27). We computed the similarity typically in the last layers
because forgetting first happens at the top layers to output
layers. So, the initial layers’ features might remain preserved,
whereas mapping might change with training. It is possible that
the brain may implement a different similarity-calculation
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Fig. 8. (A) Attractor landscape of already-existing NC schemas with individual cortical attractors shown as a teal-colored basin. (B) A novel input (blue dot
and contour) experienced during behavior overlaps to various degrees with a few already-existing attractors and leaves an excitability trace (yellow) (C) on
the overlapping neurons. Thus, previously formed attractors are biased in proportion to their overlap with the new event. (D) During sleep, the reactivation
of new events is triggered by the HC (blue). HC-driven reactivations are interleaved with spontaneous NC reactivations of the preexisting attractors, which
occur in proportion to their overlap with a new event (29). The intensity of orange represents the degree of similarity with the novel input attractor. (E) Com-
petitive synaptic plasticity (e.g., BCM or triplet Spike-timing dependent plasticity) results in local synaptic adjustments, creating an attractor for the novel
event, with minimal interference with the overlapping preexisting attractors and virtually no change in the attractors representing unrelated events.
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function, and determining the most optimal function for com-
puting similarity is out of the scope of current work. We want
to emphasize how the brain and an ANN may learn new infor-
mation by exploiting the hierarchical distribution of existing
knowledge. Learning a new item might be faster with a network
pretrained on a dataset with many classes, since there is a high
probability of new information being consistent across many
more dimensions with the existing classes and features. This is
similar to how adults generally learn new information faster
than a child, perhaps because they have an extensive repertoire
of features developed over their lifetime (28).

Biological Implementation of SWIL. How might SWIL be
implemented in the brain? Let’s assume that the NC has multiple
preexisting attractors for different features (Fig. 8A) organized in
an energy landscape. The animal is presented with a novel input
that overlaps to varying degrees with some, but not all, of the
existing attractors (Fig. 8B). This overlap is itself a measure of
representational similarity. During the novel experience, NC cells
from overlapping existing attractors might have increased activa-
tion. We assume that there is some mechanism of tagging these
cells, such that they would have a persistently increased excitabil-
ity (30, 31) for some period (Fig. 8C). In the posttask sleep,
sharp-wave ripple events in the HC (32, 33) will trigger the
replay of novel input, and the NC will show bias by spontane-
ously reactivating and interleaving only those existing attractors
in which some cells express the excitability tag. In such an attrac-
tor scenario, the spontaneous reactivation of the existing attrac-
tors would be proportional (on average) to the overlap with the
novel stimuli (i.e., due to the proportion of neurons in the attrac-
tor having the excitability tag), making the reactivation probabil-
ity proportional to similarity, as shown previously in simulations
of hippocampal attractor dynamics (33) (Fig. 8D). After multiple
iterations of interleaved reactivation and local synaptic adjust-
ments, the novel input attractor could be gradually integrated
into the energy landscape with minimal disruption of existing
attractors (Fig. 8E). The learning-induced changes in gKCa

observed in the HC and NC (30, 31, 34) might provide the
hypothetical similarity bias in the reactivation probability of exist-
ing attractors via increased excitability. Another possibility is that,
once the NC has computed similarity between the novel input
and existing knowledge, different learning mechanisms might be
triggered based on uncertainty levels: mismatch vs. poor similarity
vs. surprise, etc., as described in the Adaptive Resonance Theory
(35). These learning mechanisms can be mediated by neuromo-
dulators such as acetylcholine, released in response to different
uncertainty levels, and triggering plasticity in multiple brain
regions (36). For example, lower levels of acetylcholine during
sleep might allow a larger spread of activity both from the HC to
the NC and within the NC, by releasing cholinergic suppression
on excitatory feedback synapses. Future work should explore the
in vivo manipulation of excitability during behavior and sleep to
understand replay dynamics and memory consolidation.

Conclusions. Overcoming catastrophic interference is of utmost
importance to achieve lifelong learning in neural networks.

Even though current lifelong-learning models are still far from
capturing the wide extent of dynamics exhibited by the mam-
malian brain, they provide a framework for designing future
studies targeting specific questions. SWIL provides insight into
this problem, by showing that similarity-weighted replay of old
memories can allow learning new items much faster. We hope
that the ideas presented here lead to improved understanding
of novel-class learning and memory consolidation.

Materials and Methods

Similarity Matrix Calculation. We computed similarity at the feature level by
computing the cosine similarity between the activations of existing- and new-
class items using the methods described below (16, 17):

1. For a trained neural network, calculate the target-layer (typically penultimate
layer) activations for all existing classes and new-class items in the first epoch
without updating weights or backpropagation. The output activations A0
will be A0 = f(A1,y1),… . (An,yn)g where Ai is the class activation, and yi is
the corresponding labels.

2. Perform linear discriminant analysis (LDA) on the output activations A0 to find
a basis set that maximizes the interclass variance. Project the activations
A0 into the transformed space AL0 calculated by using LDA.

3. Compute the average per-class activation vector (vi) from the projected sam-
ples AL0.

4. Calculate the similarity distribution matrix SM (n × n size for “n” input clas-
ses). The similarity between class i and j, SMi,j, is calculated in the following
way:

SMi,j ¼
sðvi, vjÞ

∑n
j s vi, vj
� � i ≠ j

0 i ¼ j

,

8><
>:

where,

s vi, vj
� � ¼ 1

1þ edðvi ,vjÞ
if i ≠ j

dðvi, vjÞ ¼ 1� hvijvji
jjvijj jjvjjj :

h: :ij represents the vector dot product, and s(., .) defines a similarity mea-
sure between the average class-activation vectors.

Hyperparameter: Learning Rate and Number of Steps per Epoch. At the
start of training, the learning rate was set to 0.001 (Fashion-MNIST, CIFAR10,
and CIFAR100) or 0.005 (CIFAR100) with exponential decay of 0.0001 for each
learning condition. The learning rate was not optimized for the five different
learning conditions to better compare learning dynamics across these conditions.
Each learning epoch for different conditions consisted of the same number of
steps per epoch, i.e., the number of batch iterations before a training epoch is
considered complete. The same number of steps per epoch allows us to directly
compare the number of items presented per epoch across learning conditions.

Data Availability. There are no data underlying this work.
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