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Abstract

The rapidly growing availability of genome information has created considerable demand for both fast and accurate
phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic
dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple
model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the
inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that
are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood
methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to
generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an
approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published
analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate
phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will
provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the
DendroBLAST method is freely available for use at http://www.dendroblast.com/.
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Background

Inferring phylogenetic relationships between biological sequenc-

es is fundamental to nearly all aspects of contemporary biological

research. In addition to the pivotal role these inferences play in

progressing our understanding of the evolution and diversity of

life, they also provide a platform on which algorithms that predict

sequence structure and function can be developed. The majority

of methods for inferring relationships between biological sequences

are dependent on the construction of a multiple sequence

alignment. The improvement of multiple sequence alignment

methods over more than 20 years has resulted in the production of

many different multiple sequence alignment methods whose

performances on diverse data types can vary considerably

[1,2,3]. Accurate multiple sequence alignment is of particular

importance to phylogenetic analysis as in all alignment-based

inference methods the alignment, once constructed is taken as

given. Specifically, data which inhabit the same column in a

multiple sequence alignment are assumed to be homologous.

Therefore, errors in the multiple sequence alignment directly

contribute to errors in phylogenetic trees [4,5,6,7].

Given a multiple sequence alignment there are several methods

for inferring phylogenies which vary in speed, accuracy and

complexity. These methods range from those with fewer

parameters ones such as neighbour-joining (for example Quick-

Tree [8]), and minimum evolution (for example FastMe [9]) to

those with more parameters such as maximum likelihood (for

example RAxML [10]) and Bayesian (for example MrBayes [11])

methods. Several approaches have also been developed to

simultaneously infer both multiple sequence alignment and

phylogenetic trees such as SATe and STATalign [12,13,14].

Similarly other methods have been developed that use multiple

rounds of multiple-sequence alignment, tree inference, data-

partitioning and re-alignment to infer phylogenetic trees such as

SATCHMO [15].

In addition to the multiple sequence alignment based methods

above, other methods have also been developed to try and

circumnavigate the multiple sequence alignment completely.

Some of these methods utilise pairwise similarity scores between

sequences for distance based hierarchical clustering. Popular

amongst these algorithms are those that use BLAST scores or e-

values such as ProtoMap [16], ProtoNet [16], CluSTr [17],

CLUSS [18] and TribeMCL [19]. Programs have also been

developed which adopt a hybrid approach. An example of this is

COCO-CL [20] a method which infers hierarchical clusters from

correlation between BLAST e-values by resampling sequences

from a multiple sequence alignment, so this method is not multiple

sequence alignment free. In addition to these methods word-

frequency based methods have been developed to evaluate

similarity between sequences [21,22,23] in the absence of pairwise

alignments.

Here, we provide a novel BLAST-based hierarchical clustering

algorithm called DendroBLAST which constructs phylogenetic
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dendrograms/trees from protein sequences using a combination of

BLAST and minimum evolution clustering. The method uses the

BLOSUM62 matrix of amino acid substitution to make small

numbers of changes to the sequences to identify and discard

weekly supported bipartitions in the tree. We propose that this

method, which uses widely-used existing tools for sequence

analysis, will provide a platform for improving and informing

multiple aspects of downstream bioinformatic analysis including

multiple sequence alignment generation and phylogenetic tree

inference. A web implementation of the DendroBLAST method is

freely available for use at http://www.dendroblast.com/.

Methods

Constructing DendroBLAST trees
To begin a BLAST database of a set of protein sequences is

created and a matrix of all possible pairwise BLAST bit scores is

computed using the blastp algorithm [24]. We define s(A,B) as the

BLAST bit score for sequence B produced using sequence A as a

query. In the case where no BLAST score was observed between

two sequences the following rule was used to replace s(A,B) so that

all sequences have non zero score values

s(A,B)~
s(A,B), s(A,B)w0

smin(A), s(A,B)~undef

�
ð1Þ

where smin(A) is the minimum non-zero BLAST bit score value

observed for sequence A when searching the entire dataset.

BLAST bit scores will have different scales depending on the

sequence and length of the query sequence. To account for this we

compute a normalised bit score

s � (A,B)~
s(A,B)

smax(A)
ð2Þ

where smax(A) is the maximum BLAST bit score observed for

sequence A when searching the entire dataset. To take into

account the dis-similarity in the pattern of BLAST hits produced

using any two sequences we weight the normalised BLAST bit

scores by the overlap in the number of sequences producing non-

zero BLAST bit scores using each sequence as a query

sw(A,B)~s � (A,B)
nA,B

nA

ð3Þ

where nA is the number of sequences producing non-zero BLAST

bit scores identified in the dataset using sequence A as a query. nA,B

is the number of sequences producing non-zero BLAST bit scores

that are identified using both sequence A and B as queries, i.e. the

overlap between the search results. Here sequences which produce

more similar patterns of BLAST hits have higher weights so that

two sequences which produce the highest BLAST bit score and

have perfect overlap in the distribution of their BLAST hits will

have a similarity score of 1. However, if there is no overlap

between sequences producing BLAST hits then the inference

procedure cannot be completed. As BLAST bit scores between

any two sequences can be non-symmetric due to the properties of

the query sequence we evaluate the similarity score between any

two sequences as the mean of the weighted normalised BLAST bit

scores

S(A,B)~
sw(A,B)zsw(B,A)

2
ð4Þ

such that S(A,B) = S(B,A) and S(A,B) is in the range (0,1]. Finally

we convert this similarity score to a distance measure by taking the

negation of the log of S(A,B).

d(A,B)~{ln S(A,B) ð5Þ

where d(A,B) is the symmetric BLAST distance score (i.e.

d(A,B) = d(B,A)) between sequence A and B. This similarity-to-

distance score transform is similar to the BLAST bit score

transform used by Lake et al. [25] except that in our method we

provide additional steps to ensure the measure is symmetric and to

take into account the similarity in the pattern of BLAST hits

between sequences. Here, a BLAST distance score of 0 indicates

that the pair of sequences is the highest scoring pair of sequences

(including self-self pairs) and that there is perfect overlap between

the sets of sequences identified by both query sequences. When all

pairwise BLAST distance scores are computed a hierarchical

cluster is inferred from this BLAST distance score matrix using the

minimum evolution principle implemented in the FastMe

algorithm [9]. In the case of the simulated sequence alignments

BLAST similarity scores satisfy triangular inequality [26], howev-

er, in real sequence datasets non-metric constraints are imposed

due to the modular nature of proteins and domains [27]. For

example sequence A may contain two different domains, one of

which it shares with sequence B and the other with sequence C. In

this case sequence A will produce a non-zero BLAST score with

sequence B and sequence C, but sequence B and C may fail to

produce BLAST scores with each other.

Testing the effect of sequence change on tree topology
To identify and remove poorly supported bipartitions, the tree

inference procedure is repeated several times, each time introduc-

ing a small set of amino acid changes based on a probability

distribution and the BLOSUM62 amino acid substitution rates

(described below). A majority-rule consensus tree is then

constructed from these replicate trees to eliminate the weakly

supported bipartitions. To introduce these sequence changes the

entire set of sequences is modified according to the following rule.

The probability of replacement of each amino acid in each

sequence is specified by a Gamma distribution distributed over an

amino acid substitution matrix:

P(Ai ? A,DAi)~f (Ai ? A,; 1,h) ð6Þ

where P(AiRAj | Ai) is the probability of substituting amino acid Aj

for amino acid Ai given amino acid Ai, f(AiRAj; 1, h) is the

probability density function of the Gamma distribution with shape

1 and scale h. i.e.

f (x; 1,h)~
e{x=h

h
ð7Þ

The BLOSUM62 matrix was selected for use in the Dendro-

BLAST procedure as this is the matrix used by the BLAST

algorithm for evaluation of the BLAST bit scores. To facilitate the

use of the BLOSUM62 matrix in the above schema, the integer

values in the BLOSUM62 matrix were subject to the following

transform. Each amino acid substitution value in the BLOSUM62

matrix was transformed so that the highest scoring substitution was

set to 0 with all other substitutions having integer values greater

than 0

Alignment Free Phylogenetic Trees
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Tij~Bmax(i){B(i,j) ð8Þ

Here, B(i,j) is the BLOSUM62 substitution value for replacing

amino acid i with amino acid j and Bmax(i) is the maximum

observed substitution value for amino acid i. For example, the

BLOSUM62 score for substituting A with R is 21. The best

scoring substitution for A is A itself which has a score of 4. When

transformed so that the highest scoring substitution for A is

assigned a value of 0 (and hence the most likely to be selected from

the Gamma distribution) the value for substituting A with R

becomes 5. However, in total 8 amino acids (R, Q, E, I, L, K, M,

P) have the same score for replacing A. In these cases where a

group of substitutions have the same score according to this

normalised matrix the amino acid to be substituted was selected at

random from this group. Therefore, the probability of replacing

amino acid A with R in any given sequence can be evaluated as:

P(A ? RDA)~
1

8
f (5; 1,h)~

e{5=h

8h
ð9Þ

where P(ARR | A) is the probability of substituting amino acid A

with amino acid R given amino acid A. A Perl implementation of

the DendroBLAST method is provided as File S1. The

distribution of amino acid replacements is shown in Figure S1.

Optimising the scale of the Gamma distribution
The optimal value for the scale of the Gamma distribution was

determined using a randomly selected subset of 50 simulated

protein sequence alignments from a previous analysis comprising

308 simulated multiple sequence alignments [28,29]. These

alignments were simulated on realistic tree topologies inferred

from real sequence data derived from the COG database

[28,29,30]. The alignments have realistic distributions of gaps

and include rate variation across sites. For more detailed

information on how these protein simulations were carried out

see [28]. For each of the 50 randomly selected simulated sequence

families, 100 replicates of the DendroBLAST amino acid

replacement and tree inference procedure were performed. As

DendroBLAST is a multiple sequence alignment free method

these simulated alignments were parsed to remove all gap

characters before being used for tree inference by DendroBLAST.

In each case a majority-rule consensus tree was calculated from

the 100 replicates using the python module dendropy [31]. The

performance of DendroBLAST was evaluated as the mean

Robinson-Foulds distance between the 50 inferred DendroBLAST

trees and the 50 reference trees which were used to simulate the

multiple sequence alignment. The Robinson-Foulds distance is the

sum of the number of false positive and false negative bipartitions,

where the false-positives (FP) are the set of bipartitions in the

inferred tree not found in the reference tree and the false-negatives

(FN) are the set of bipartitions present in the reference tree that are

absent from the inferred tree.

To determine the optimal value for the scale of the Gamma

distribution the inference procedure was repeated for a range of

Gamma scale values between 0.2 and 5. 100 replicates were run

without the amino acid replacement strategy and this value is

shown at 0 and can be considered equivalent to BLAST clustering

previously used [25]. For the range of Gamma scale values, the

mean Robinson-Foulds distance of the test set was fit to a

polynomial model using the polynomial curve fitting function

(polyfit) in MATLAB (R2010b). The optimal value for the scale of

the Gamma distribution was found as the minimum value of the

fitted function over the interval interrogated (Figure S1). The

Robinson-Foulds distance score was chosen to optimise the

method as it assigns equal weighting to both FP and FN errors.

Comparison of DendroBLAST against other inference
methods

In order to compare DendroBLAST to existing tree inference

methods the performance was evaluated on the entire set of 308

simulated protein sequence alignments obtained from [28]

excluding the 50 randomly sampled alignments used in the

training set above. This final dataset containing 258 simulated

protein sequence alignments was specifically chosen so that a

direct comparison to multiple other inference methods on an

identical dataset could be provided. The resulting trees from other

inference methods were also obtained from [28]. To provide a

bootstrapped distance method for comparison an additional set of

bootstrapped-neighbour-joining tree inferences was performed

using QuickTree [8]. All tree inference methods were evaluated on

5 different measures: the Robinson-Foulds distance [32], the

number of false positive bipartitions recovered, the number of false

negative bipartitions recovered, the precision and the recall. These

measures are defined for use in phylogenetic analyses here as:

precision~
TP

TPzFP
ð10Þ

recall~
TP

TPzFN
ð11Þ

where the true-positives (TP) are the set of bipartitions present in

both the reference tree and the inferred tree. The results of each

score metric for each inference method were compared to those

produced by DendroBLAST using a paired t-test.

Introduction of alignment error
As the simulated multiple sequence alignments do not contain

alignment induced error, an additional test was performed to

introduce realistic alignment errors encountered in real multiple

sequence alignments. Each of the 308 simulated alignments were

parsed to remove all gap characters and realigned using two

different methods. 1) MAFFT FFT-NS-1 [33] a fast, accurate and

commonly used method for aligning large numbers of sequences.

2) MAFFT L-INS-i, [33] one of the most accurate methods for

multiple sequence alignment currently available [3]. To maintain

consistency across experiments these realigned sequences were

subject to tree inference using a selection of the methods (with

identical parameters) described in [28].

Introduction of alignment trimming
Due negative effects which can be incurred by the inclusion of

gap characters and mis-aligned data on phylogenetic inference a

common approach is to discarded ‘‘gappy’’ information. Popular

methods such as GBLOCKS [34] have been developed to

automate this process and thereby reduce the amount of possibly

mis-aligned data from multiple sequence alignments. To provide a

further test of DendroBLAST against other phylogenetic inference

methods we used GBLOCKS to remove columns from the

realigned alignments above. Each of the 308 simulated alignments

was subject to realignment as above (both L-INS-I and FFT-NS-1)

and then parsed using GBLOCKS with options configured for

conservative data selection (less data removed than default

GBLOCKS settings). The minimum length of an aligned block

Alignment Free Phylogenetic Trees
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was set to 5 amino acids, with the number of allowed gap positions

set to 50% of the number of sequences and the minimum number

of flank positions also set to 50% of the number of sequences.

Inference of supertrees
To demonstrate the utility of DendroBLAST for tackling real-

world datasets, we took an existing dataset of 3537 discrete

orthologue groups found in the Archaea [35]. We inferred a

DendroBLAST tree for each of the orthologue groups containing

4 or more sequences (n = 1688) and used all of the resulting trees to

construct a supertree using two independent quartet supertree

methods [36,37]. The resultant supertree was compared to the

phylogenetic tree inferred from the concatenated protein sequenc-

es alignments using multiple inference methods [35].

Results

A novel method for robust clustering of protein
sequences based on BLAST score

We developed a novel method for constructing consensus

phylogenetic trees from protein sequences in the absence of

multiple sequence alignments. In brief, the method uses minimum

evolution clustering of transformed BLAST similarity scores to

infer a hierarchical tree of un-aligned protein sequences. A simple

model of sequence evolution is then employed to improve the

accuracy of the inferred trees by identifying and removing weakly

supported bipartitions from the tree. The work flow of the tree

inference method is described in Figure 1.

Accuracy of topological inference in the absence of
multiple sequence alignment error

To determine the accuracy of DendroBLAST phylogenetic

trees were inferred for each of the 308 simulated protein sequence

families present in [28,29]. Phylogenetic trees have already been

produced using several different inference methods for this dataset

[28]. These methods comprise RAxML [10], PhyML [38],

FastTree [29], FastMe [9], Parsimony (as executed by RAxML

[10]) and Neighbour-Joining [8]. Hence, this represents an ideal

set on which the performance of DendroBLAST can be directly

compared to existing maximum likelihood and distance based

methods. All of the above trees were then compared to the

reference trees using the dendropy python module [31]. All

inference methods were evaluated on the results of 5 score metrics.

1) The number of bipartitions present in the inferred tree but not

the reference tree (false positive bipartitions); 2) The number of

bipartitions present in the reference tree but not the inferred tree

(false negative bipartitions). 3) The Robinson Foulds distance (the

sum of false positive and false negative bipartitions). 4) The

precision (see methods) and 5) the recall (see methods).

In the above test DendroBLAST generally compares well to

other commonly used methods of tree inference (Table 1).

DendroBLAST achieves good precision and Robinson-Foulds

distance scores (Table 1). However, DendroBLAST fails to recover

many bipartitions which are recovered by maximum likelihood

methods leading to a poor recall rate (Table 1). Taken together the

performance of DendroBLAST is thus better than any of the

tested distance methods but is generally out-performed by all of

the maximum likelihood methods. In the above test, on average

each tree inference using DendroBLAST took 2163 mins, this

includes the time taken to infer 100 trees from DendroBLAST

distance matrices and compute the consensus tree. This speed

compares well to inferring a single maximum likelihood tree using

MAFFT and RAxML where alignment and tree inference took

73630 mins.

Comparison of DendroBLAST distance matrices to
distance matrices generated by other means

As DendroBLAST produces a distance matrix which is

converted to a phylogenetic tree using the minimum evolution

principle implemented by FastMe [9] we sought to compare the

performance of the DendroBLAST distance measures against

established distance measures using the same tree inference

method. Here we took the test set of simulated sequence

alignments above and computed distance measures using three

commonly used methods 1) Uncorrected distance measures 2) Log

corrected distance measures computed using FastTree [28] and 3)

maximum likelihood distance measures computed using RAxML

[10]. These distance matrices were used to infer trees and the

accuracy of these trees was interrogated as before. Here all

methods except DendroBLAST compute distances using the

perfect simulated sequence alignment in this scenario both

uncorrected and maximum likelihood distance measures are not

significantly different to DendroBLAST distance measures

(Table 1).

Accuracy of topological inference in the presence of
multiple sequence alignment error

In the case of the above tests, DendroBLAST was compared to

other inference methods each of which used the simulated multiple

sequence alignments. The simulated multiple sequence alignments

on which these methods were tested do not contain any alignment

induced error. In real world situations, the true multiple sequence

alignment is not known and hence an additional test of the above

inference methods was performed on re-aligned data to introduce

realistic errors which occur by the production of a multiple

sequence alignment. This presents a more realistic comparison of

the performance of DendroBLAST to that of other inference

methods. To do this each of the 308 simulated alignments were

parsed to remove all gap characters and realigned using two

different methods. 1) MAFFT FFT-NS-1 [33] a fast method for

aligning large numbers of sequences. 2) MAFFT L-INS-i, [33] one

of the most accurate methods for multiple sequence alignment

currently available [3]. To evaluate the performance of the

selected alignment methods the resulting alignments were com-

pared to the simulated alignments using the Q-score program

[39]. For each multiple sequence alignment, the proportion of

correctly aligned letter pairs was evaluated. The mean proportion

of correctly aligned letter pairs was 0.952 (Standard devia-

tion = 0.039) and 0.976 (Standard deviation = 0.019) for the

FFT-NS-1 and L-INS-i methods respectively (Figure 2).

As expected, the introduction of alignment error increased the

number of false positive and false negative errors of all alignment-

based inference methods (Table 2). As before, DendroBLAST was

the most accurate distance based inference method, significantly

outperforming both neighbour-joining and minimum evolution

(Table 2). However, even considering alignment error, Dendro-

BLAST trees are not as accurate as those inferred using maximum

likelihood. For the alignment method which produced least errors

(L-INS-i), DendroBLAST achieves a level of precision equivalent

to a FastTree or (PhyML with 4 gamma categories) inference. For

the alignment method that produced higher error rate (FFT-NS-

1), DendroBLAST achieves a precision that is significantly better

than FastTree, PhyML (1 or 4 gamma categories) and not

significantly different to that of RAxML. This means that in

realistic scenarios where moderate levels of multiple sequence

alignment error are present, the bipartitions recovered by

DendroBLAST are as likely to be correct as those recovered by

many maximum likelihood methods. However, as before all

Alignment Free Phylogenetic Trees
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Figure 1. A flow diagram describing the DendroBLAST tree inference procedure. The procedure takes a set of protein sequences and
creates 100 copies of this set each with a unique set or randomly introduced sequence changes. Each set of sequences is subject to tree inference
and a consensus tree is inferred from these sets. The red bars in the sequences indicate the randomly introduced sequence changes.
doi:10.1371/journal.pone.0058537.g001
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maximum likelihood methods achieve a recall score which is better

than DendroBLAST. Thus overall DendroBLAST trees are less

accurate than maximum likelihood trees.

Introduction of alignment trimming
In the case of the above experiment, DendroBLAST was

compared to other inference methods using simulated multiple

sequence alignments with addition of alignment induced error. It

is common in phylogenetic analysis for alignments to be subject to

trimming before use. Trimming removes positions which are

suspected to contain mis-aligned sequence and hence could lead to

phylogenetic error. However, trimming also reduces the amount of

data available to make the inference and hence can negatively

affect phylogenetic inference through data reduction. Here a

commonly used package for alignment trimming GBLOCKS [34]

was used to trim the re-aligned multiple sequence alignments using

a conservative (less data removed) setting. In all cases trimming the

re-aligned multiple sequence alignments resulted in reduction of

inference performance (Table 3) using alignment based methods.

This effect was more pronounced on the alignments which

contained higher error rates (Table 3). This result agrees with

similar findings which suggest that removing data using methods

like GBLOCKS does not always improve the accuracy of

phylogenetic inference [40,41].

Application to real-world data
To provide an independent test of the DendroBLAST method

and demonstrate its utility for analysis of real-world sequence data,

we selected a large dataset which has been shown by multiple

inference methods (comprising Bayesian and Maximum likelihood

analyses of concatenated gene trees as well as quartet supertrees

from individual maximum likelihood gene trees) to support the

same tree topology [35]. This dataset comprises 3537 orthologous

groups differentially distributed across the Archaea. For each of

the orthologous groups containing 4 or more sequences (n = 1688),

a DendroBLAST tree and used the inferred trees to construct a

supertree using two independent quartet supertree methods

[36,37]. The two resulting DendroBLAST derived supertrees

were identical and showed at total of 5 missing bipartitions

(Figure 3A, recall = 0.89) and 5 additional bipartitions (Figure 3B,

precision = 0.89) when compared to the previously published tree

(Figure 3A). Interestingly, none of the bipartitions missed by

DendroBLAST obtain 100% support by Bayesian and maximum

likelihood methods (Figure 3A).

Discussion

We present a novel BLAST-based tree inference algorithm that

achieves good levels of precision in the absence of multiple

sequence alignments. In all tests performed on realistic simulated

sequence data, DendroBLAST outperformed all of the commonly

Figure 2. Comparison of different multiple sequence alignment methods on simulated sequence data. Black bars depict results from
realignment with L-INS-i method (mean = 0.976). Grey bars depict results from realignment FFT-NS-1 method (mean = 0.952). N = 308.
doi:10.1371/journal.pone.0058537.g002
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used distance based methods achieving levels of precision

comparable to that of maximum likelihood methods. However,

DendroBLAST recall rate is comparatively poor rendering it less

accurate in comparison to tree inference using maximum

likelihood methods from good quality multiple sequence align-

ments. We therefore do not propose DendroBLAST as a

replacement for high quality phylogenetic inference methods but

rather as a platform for improving and informing multiple aspects

of bioinformatic analysis.

One such application of this method may be in constructing

guide trees for informing multiple sequence alignment. As

DendroBLAST bypasses a multiple sequence alignment step and

produces good quality approximate phylogenetic trees, use of

DendroBLAST may prevent propagation of multiple sequence

alignment error incurred from poor quality guide trees. This

would be particularly suitable for difficult to align sequence

families and in situations where the accuracy of the multiple

sequence alignment is in question. Improvement in the accuracy of

the guide tree in these scenarios is likely to lead to improvements

in the accuracy of the subsequent alignment and tree inference. A

strictly bifurcating guide tree is also produced by DendroBLAST

and available using the online implementation at http://www.

dendroblast.com/.

While the bipartitions that are recovered by DendroBLAST are

likely to be correct, DendroBLAST does have a low recall rate in

comparison to other maximum likelihood methods meaning than

many bipartitions are missed. One use for high-precision low-

recall phylogenetic trees is in construction of supertrees. We

demonstrate the utility of DendroBLAST for this task by

reconstructing a supertree of the Archaea. This supertree

reconstruction closely matched previous Bayesian and maximum

likelihood analyses with a precision and recall of 0.89 (taking these

previous analyses as reference). Hence, we propose that this

method may be useful for production of phylogenetic trees for use

in supertree reconstruction or in providing approximate start trees

for subsequent optimisation.

Table 2. A comparison of the performance of different tree inference methods following realignment of simulated sequences.

Realignmnet FFT-NS-1 RFd FP FN Precision Recall

PhyML 4G SPR (SH 50) (3) 58.3 a 19.3 a 39.0 a 0.912 a 0.843 a

RAxML (3) 61.2 a 30.6 b 30.6 a 0.877 b 0.877 a

PhyML 4G SPR (3) 63.5 a 31.8 b 31.8 a 0.872 b 0.872 a

PhyML 4G (SH50) (3) 75.4 a 26.7 b 48.7 a 0.877 b 0.804 a

FastTree (SH50) (3) 77.8 a 31.6 b 46.2 a 0.861 b 0.814 a

PhyML 1G (SH50) (3) 82.2 a 30.8 b 51.5 a 0.861 b 0.792 a

FastTree (3) 82.6 a 41.3 c 41.4 a 0.833 c 0.833 a

PhyML 4G (3) 83.4 a 41.7 c 41.7 a 0.832 c 0.832 a

PhyML 1G (3) 89.2 a 44.6 c 44.6 a 0.820 c 0.820 a

DendroBLAST (1) 95.1 27.6 67.5 0.867 0.732

FastME SPR (2) 112.4 c 56.2 c 56.2 a 0.773 c 0.773 a

FastME (2) 116.1 c 58.1 c 58.1 a 0.766 c 0.766 a

QuickTree log cor. (2) 119.4 c 59.7 c 59.7 a 0.759 c 0.759 a

QuickTree (con50) (2) 149.3 c 70.5 c 78.8 c 0.702 c 0.682 c

QuickTree (2) 157.5 c 78.8 c 78.8 c 0.682 c 0.682 c

Realignment L-INS-i RFd FP FN Precision Recall

PhyML 4G SPR (SH 50) (3) 49.6 a 15.1 a 34.5 a 0.931 a 0.861 a

RAxML (3) 51.8 a 25.9 b 25.9 a 0.895 a 0.895 a

PhyML 4G SPR (3) 54.0 a 27.0 b 27.0 a 0.891 a 0.891 a

PhyML 4G (SH50) (3) 57.7 a 17.5 a 40.2 a 0.918 a 0.838 a

PhyML 4G (3) 63.4 a 31.7 b 31.7 a 0.872 b 0.872 a

FastTree (SH50) (3) 66.2 a 26.0 b 40.2 a 0.886 a 0.838 a

FastTree (3) 70.4 a 35.1 c 35.2 a 0.858 b 0.858 a

PhyML 1G (SH50) (3) 74.1 a 26.9 b 47.2 a 0.878 a 0.810 a

PhyML 1G (3) 80.0 a 40.0 c 40.0 a 0.839 a 0.839 a

DendroBLAST (1) 95.1 27.6 67.5 0.867 0.732

FastME SPR (2) 102.9 c 51.5 c 51.5 a 0.792 c 0.792 c

FastME (2) 106.9 c 53.4 c 53.4 a 0.785 c 0.785 c

QuickTree log cor. (2) 119.4 c 59.7 c 59.7 a 0.759 c 0.759 a

QuickTree (con50) (2) 145.0 c 68.5 c 76.4 c 0.712 c 0.692 c

QuickTree (2) 152.6 c 76.3 c 76.3 c 0.692 c 0.692 c

Please refer to the legend for table 1 for explanations of abbreviations.
doi:10.1371/journal.pone.0058537.t002

Alignment Free Phylogenetic Trees

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e58537



T
a

b
le

3
.

A
co

m
p

ar
is

o
n

o
f

th
e

p
e

rf
o

rm
an

ce
o

f
d

if
fe

re
n

t
tr

e
e

in
fe

re
n

ce
m

e
th

o
d

s
fo

llo
w

in
g

tr
im

m
in

g
o

f
re

al
ig

n
e

d
si

m
u

la
te

d
se

q
u

e
n

ce
s.

G
B

L
O

C
K

S
tr

im
m

e
d

F
F

T
-N

S
-1

R
F

d
F

P
F

N
P

re
ci

si
o

n
R

e
ca

ll

P
h

yM
L

4
G

SP
R

(S
H

5
0

)
(3

)
6

8
.4

a
2

1
.8

a
4

6
.5

a
0

.8
9

6
a

0
.8

1
3

a

R
A

xM
L

(3
)

7
4

.1
a

3
7

.0
c

3
7

.0
a

0
.8

5
1

b
0

.8
5

1
a

P
h

yM
L

4
G

SP
R

(3
)

7
6

.3
a

3
8

.1
c

3
8

.1
a

0
.8

4
7

c
0

.8
4

7
a

P
h

yM
L

4
G

(S
H

5
0

)
(3

)
8

2
.1

a
2

7
.4

b
5

4
.7

a
0

.8
6

8
b

0
.7

8
0

a

Fa
st

T
re

e
(S

H
5

0
)

(3
)

8
6

.9
a

3
5

.4
c

5
1

.5
a

0
.8

4
3

b
0

.7
9

3
a

P
h

yM
L

4
G

(3
)

8
7

.1
a

3
0

.9
c

5
6

.2
a

0
.8

5
5

c
0

.7
7

5
a

Fa
st

T
re

e
(3

)
9

2
.2

a
4

6
.0

c
4

6
.2

a
0

.8
1

4
c

0
.8

1
4

a

P
h

yM
L

1
G

(S
H

5
0

)
(3

)
9

3
.1

a
4

6
.6

c
4

6
.5

a
0

.8
1

4
c

0
.8

1
1

a

D
e

n
d

ro
B

LA
ST

(1
)

9
5

.1
2

7
.6

6
7

.5
0

.8
6

7
0

.7
3

2

P
h

yM
L

1
G

(3
)

9
6

.5
b

4
8

.2
c

4
8

.2
a

0
.8

0
6

c
0

.8
0

6
a

Fa
st

M
E

SP
R

(2
)

1
1

9
.5

c
5

9
.8

c
5

9
.8

a
0

.7
5

9
c

0
.7

5
9

a

Fa
st

M
E

(2
)

1
2

3
.7

c
6

1
.9

c
6

1
.9

a
0

.7
5

1
c

0
.7

5
1

a

Q
u

ic
kT

re
e

lo
g

co
r.

(2
)

1
2

4
.0

c
6

2
.0

c
6

2
.0

a
0

.7
4

8
c

0
.7

4
8

c

Q
u

ic
kT

re
e

(c
o

n
5

0
)

(2
)

1
2

8
.3

c
2

8
.8

b
9

9
.5

c
0

.8
3

4
c

0
.5

9
9

c

Q
u

ic
kT

re
e

(2
)

1
6

1
.6

c
8

0
.9

c
8

0
.9

c
0

.6
7

4
c

0
.6

7
4

c

G
B

L
O

C
K

S
tr

im
m

e
d

L
-I

N
S

-i
R

F
d

F
P

F
N

P
re

ci
si

o
n

R
e

ca
ll

P
h

yM
L

4
G

SP
R

(S
H

5
0

)
(3

)
5

6
.4

a
1

7
.1

a
3

9
.3

a
0

.9
2

0
a

0
.8

4
2

a

R
A

xM
L

(3
)

6
1

.0
a

3
0

.5
b

3
0

.5
a

0
.8

7
6

b
0

.8
7

6
a

P
h

yM
L

4
G

(S
H

5
0

)
(3

)
6

1
.8

a
1

8
.1

a
4

3
.8

a
0

.9
1

2
c

0
.8

2
2

c

P
h

yM
L

4
G

SP
R

(3
)

6
2

.7
a

3
1

.4
c

3
1

.4
a

0
.8

7
3

b
0

.8
7

3
a

P
h

yM
L

4
G

(3
)

6
8

.8
a

3
4

.4
c

3
4

.4
a

0
.8

5
9

c
0

.8
5

9
b

Fa
st

T
re

e
(S

H
5

0
)

(3
)

7
4

.7
a

2
9

.7
a

4
5

.0
a

0
.8

6
9

b
0

.8
1

9
a

P
h

yM
L

1
G

(S
H

5
0

)
(3

)
7

7
.1

c
2

7
.0

c
5

0
.2

a
0

.8
7

5
c

0
.7

9
8

b

Fa
st

T
re

e
(3

)
7

9
.5

a
3

9
.6

c
3

9
.8

a
0

.8
4

0
b

0
.8

4
0

a

P
h

yM
L

1
G

(3
)

8
4

.7
a

4
2

.4
c

4
2

.4
a

0
.8

3
0

c
0

.8
2

9
a

D
e

n
d

ro
B

LA
ST

(1
)

9
5

.1
2

7
.6

6
7

.5
0

.8
6

7
0

.7
3

2

Fa
st

M
E

SP
R

(2
)

1
0

8
.0

c
5

4
.0

c
5

4
.0

a
0

.7
8

2
c

0
.7

8
2

a

Fa
st

M
E

(2
)

1
1

2
.1

c
5

5
.9

c
5

5
.9

a
0

.7
7

5
c

0
.7

7
5

a

Q
u

ic
kT

re
e

lo
g

co
r.

(2
)

1
2

2
.6

c
6

1
.3

c
6

1
.3

a
0

.7
5

2
c

0
.7

5
2

b

Q
u

ic
kT

re
e

(c
o

n
5

0
)

(2
)

1
2

4
.2

c
2

7
.9

b
9

6
.3

c
0

.8
4

3
c

0
.6

1
2

c

Q
u

ic
kT

re
e

(2
)

1
5

4
.8

c
7

7
.4

c
7

7
.4

c
0

.6
8

8
c

0
.6

8
8

c

P
le

as
e

re
fe

r
to

th
e

le
g

e
n

d
fo

r
ta

b
le

1
fo

r
e

xp
la

n
at

io
n

s
o

f
ab

b
re

vi
at

io
n

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

5
8

5
3

7
.t

0
0

3

Alignment Free Phylogenetic Trees

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e58537



Supporting Information

File S1 Perl implementation of DendroBLAST method.
(PL)

Figure S1 Optimising the scale of the Gamma distribu-
tion. A) Plot of the effect of varying the Gamma distribution scale

factor on the false positive partitions, false negative partitions and

Robinson-Foulds distance. Value at 0 is estimated from 100

replicates with no amino acid replacement. Black line indicates the

fitted polynomial model, the local optimum for Gamma scale

value is 1.9644. Error bars indicate 1 standard error of the mean

(n = 50). B) The frequency of the amino acid changes for a 100

replicate DendroBLAST inference using the optimal Gamma scale

parameter. For example, a value of 0 indicates that the amino acid

was not changed. A value of 1 indicates that the amino acid was

changed to an amino acid which has a score of 1 less than the

score for not changing in the BLOSUM62 substitution matrix. C)

The distribution of score values in the remapped BLOSUM62

substitution matrix. D) Comparison of pairwise distances comput-

ed by DendroBLAST and by PhyML using 4 gamma rate

categories.

(PDF)

Acknowledgments

SK would also like to thank Keith Gull, Chris Norbury and Robert

Scotland for their helpful comments on the manuscript. We also thank the

anonymous Reviewers whose advice improved the manuscript.

Author Contributions

Conceived and designed the experiments: SK. Performed the experiments:

SK. Analyzed the data: SK. Contributed reagents/materials/analysis tools:

SK. Wrote the paper: SK PKM.

References

1. Golubchik T, Wise MJ, Easteal S, Jermiin LS (2007) Mind the gaps: evidence of

bias in estimates of multiple sequence alignments. Mol Biol Evol 24: 2433–2442.

2. Edgar RC (2010) Quality measures for protein alignment benchmarks. Nucleic

Acids Res 38: 2145–2153.

3. Thompson JD, Linard B, Lecompte O, Poch O (2011) A comprehensive

benchmark study of multiple sequence alignment methods: current challenges

and future perspectives. PLoS One 6: e18093.

4. Ogdenw TH, Rosenberg MS (2006) Multiple sequence alignment accuracy and

phylogenetic inference. Syst Biol 55: 314–328.

5. Hartmann S, Vision TJ (2008) Using ESTs for phylogenomics: can one

accurately infer a phylogenetic tree from a gappy alignment? BMC Evol Biol 8:

95.

6. Cantarel BL, Morrison HG, Pearson W (2006) Exploring the relationship

between sequence similarity and accurate phylogenetic trees. Mol Biol Evol 23:

2090–2100.

7. Dwivedi B, Gadagkar SR (2009) Phylogenetic inference under varying

proportions of indel-induced alignment gaps. BMC Evol Biol 9: 211.

8. Howe K, Bateman A, Durbin R (2002) QuickTree: building huge Neighbour-

Joining trees of protein sequences. Bioinformatics 18: 1546–1547.

Figure 3. Comparison of DendroBLAST derived supertree with concatenated protein sequence phylogeny. A) Phylogenetic tree
produced from concatenated multiple sequence alignment using maximum likelihood and Bayesian methods. Green circles indicate 100% support
under both methods. Numbers at nodes indicate percent support from bootstrapped analyses. Green branches indicate bipartitions found in tree B,
red branches indicate bipartitions absent from tree B. B) Supertree constructed from quartets derived from DendroBLAST trees. Green branches
indicate bipartitions found in tree A, red branches indicate bipartitions not found in tree A.
doi:10.1371/journal.pone.0058537.g003

Alignment Free Phylogenetic Trees

PLOS ONE | www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e58537



9. Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction

algorithms based on the minimum-evolution principle. J Comput Biol 9: 687–
705.

10. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic

analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–
2690.

11. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of
phylogenetic trees. Bioinformatics 17: 754–755.

12. Novak A, Miklos I, Lyngso R, Hein J (2008) StatAlign: an extendable software

package for joint Bayesian estimation of alignments and evolutionary trees.
Bioinformatics 24: 2403–2404.

13. Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and
accurate large-scale coestimation of sequence alignments and phylogenetic trees.

Science 324: 1561–1564.
14. Suchard MA, Redelings BD (2006) BAli-Phy: simultaneous Bayesian inference

of alignment and phylogeny. Bioinformatics 22: 2047–2048.

15. Hagopian R, Davidson JR, Datta RS, Samad B, Jarvis GR, et al. (2010)
SATCHMO-JS: a webserver for simultaneous protein multiple sequence

alignment and phylogenetic tree construction. Nucleic Acids Res 38: W29–34.
16. Yona G, Linial N, Linial M (2000) ProtoMap: automatic classification of protein

sequences and hierarchy of protein families. Nucleic Acids Res 28: 49–55.

17. Kriventseva EV, Servant F, Apweiler R (2003) Improvements to CluSTr: the
database of SWISS-PROT+TrEMBL protein clusters. Nucleic Acids Res 31:

388–389.
18. Kelil A, Wang S, Brzezinski R, Fleury A (2007) CLUSS: clustering of protein

sequences based on a new similarity measure. BMC Bioinformatics 8: 286.
19. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for

large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.

20. Jothi R, Zotenko E, Tasneem A, Przytycka TM (2006) COCO-CL: hierarchical
clustering of homology relations based on evolutionary correlations. Bioinfor-

matics 22: 779–788.
21. Liu X, Wan L, Li J, Reinert G, Waterman MS, et al. (2011) New powerful

statistics for alignment-free sequence comparison under a pattern transfer model.

J Theor Biol 284: 106–116.
22. Reinert G, Chew D, Sun F, Waterman MS (2009) Alignment-free sequence

comparison (I): statistics and power. J Comput Biol 16: 1615–1634.
23. Vinga S, Almeida J (2003) Alignment-free sequence comparison-a review.

Bioinformatics 19: 513–523.
24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.

25. Lake JA, Servin JA, Herbold CW, Skophammer RG (2008) Evidence for a new

root of the tree of life. Syst Biol 57: 835–843.

26. Walter R (1976) Principles of Mathematical Analysis. New York: McGraw-Hill.

27. Loewenstein Y, Portugaly E, Fromer M, Linial M (2008) Efficient algorithms for

accurate hierarchical clustering of huge datasets: tackling the entire protein

space. Bioinformatics 24: i41–49.

28. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum

evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:

1641–1650.

29. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-

likelihood trees for large alignments. PLoS One 5: e9490.

30. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003)

The COG database: an updated version includes eukaryotes. BMC Bioinfor-

matics 4: 41.

31. Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic

computing. Bioinformatics 26: 1569–1571.

32. Robinson D, Foulds L (1981) Comparison of phylogenetic trees. Mathematical

Biosciences 53: 131–147.

33. Katoh K, Kuma K, Miyata T, Toh H (2005) Improvement in the accuracy of

multiple sequence alignment program MAFFT. Genome Inform 16: 22–33.

34. Talavera G, Castresana J (2007) Improvement of phylogenies after removing

divergent and ambiguously aligned blocks from protein sequence alignments.

Syst Biol 56: 564–577.

35. Kelly S (2010) Archaeal phylogenomics provides evidence in support of a

methanogenic origin of the Archaea and a thaumarchaeal origin for the

eukaryotes. Philos Trans R Soc Lond B Biol Sci.

36. Piaggio-Talice R, Burleigh G, Eulenstein O (2004) Quartet Supertrees:. In:

Bininda-Edmonds ORP, editor. Phylogenetic Supertrees: Combining Informa-

tion to Reveal the Tree of Life: Springer. pp. 173–191.

37. Holland B, Conner G, Huber K, Moulton V (2007) Imputing supertrees and

supernetworks from quartets. Syst Biol 56: 57–67.

38. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate

large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

39. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 32: 1792–1797.

40. Dessimoz C, Gil M (2010) Phylogenetic assessment of alignments reveals

neglected tree signal in gaps. Genome Biol 11: R37.

41. Jordan G, Goldman N (2012) The effects of alignment error and alignment

filtering on the sitewise detection of positive selection. Mol Biol Evol 29: 1125–

1139.

Alignment Free Phylogenetic Trees

PLOS ONE | www.plosone.org 11 March 2013 | Volume 8 | Issue 3 | e58537


