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Abstract: Many visual effects are believed to be processed at several functional and anatomical levels
of cortical processing. Determining if and how the levels contribute differentially to these effects is a
leading problem in visual perception and visual neuroscience. We review and analyze a combination
of extant psychophysical findings in the context of neurophysiological and brain-imaging results.
Specifically using findings relating to visual illusions, crowding, and masking as exemplary cases, we
develop a theoretical rationale for showing how relative levels of cortical processing contributing
to these effects can already be deduced from the psychophysically determined functions relating
respectively the illusory, crowding and masking strengths to the contrast of the illusion inducers, of
the flankers producing the crowding, and of the mask. The wider implications of this rationale show
how it can help to settle or clarify theoretical and interpretive inconsistencies and how it can further
psychophysical, brain-recording and brain-imaging research geared to explore the relative functional
and cortical levels at which conscious and unconscious processing of visual information occur. Our
approach also allows us to make some specific predictions for future studies, whose results will
provide empirical tests of its validity.

Keywords: contrast response functions; cortical processing level; visual illusion; visual crowding;
pedestal masking; lateral masking; feature integration

1. Introduction

Extant psychophysical evidence indicates that cortical processing has a multi-level functional
hierarchy [1,2]. At the lowest level, most likely V1 [3], is binocular rivalry produced by interocular
competition between, say, orthogonal gratings presented to the two eyes, which is followed by an
intermediate level at which metacontrast masking occurs [1]. The metacontrast level is followed
by a higher level at which visual crowding occurs, which in turn is followed by the level at which
object-substitution masking (OSM) occurs [2] (see [4] for a more complete listing of possible functional
levels of stimulus processing). Crowding is believed to rely significantly on neural activity in later
cortical levels, an idea reinforced by findings indicating it depends on conscious, perceptrelated
levels of processing [5–8]. Moreover, research on interocular suppression also indicates that during
binocular rivalry competitive interactions occur at cortical sites beyond V1 that involve high-level
pattern-integrative, in addition to low-level eye-specific, processes [9–11]. Some of the psychophysical,
and therefore indirect, indicators of functional levels have found their counterpart in a variety of more
direct brain-imaging studies of binocular rivalry and metacontrast; with brain-imaging correlates
of competitive interactions in binocular rivalry found as early as the lateral geniculate nucleus
(LGN) [12,13] and cortical area V1 [3], but also as late as human fusiform facial area (FFA) and
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parahippocampal place area (PPA) [14]; and metacontrast correlates are most likely found at cortical
sites beyond V2 [15,16]. Although brain-imaging studies indicate that the anatomical sites correlating
with OSM are found at the post-striate, lateral occipital complex but not at the striate level [17], they
have produced mixed results as to what cortical levels contribute to crowding, and how they do
so [5,18,19].

To assist the search for levels of processing involved in the various visual phenomena discussed
above and additional ones, we suggest on the basis of studies for which data are already available that
contrast response functions may prove to be a useful tool. The evidence supporting our rationale for
tying processing levels to contrast response functions is outlined below.

2. The Relevance of Contrast Response Functions (CRFs)

2.1. Interrelatedness of Naturalistic Distributions of Local Contrasts, Cortical CRFs, and the Distinction
between Perceptual and Preperceptual Vision

Outside of the psychophysical lab human vision is confronted with a multitude of objects and
events embedded in ever changing natural scenes. The greater majority of local contrasts in a typical
real-world scene fall between 0.0 and 0.3 [20–22]. In the striate cortex, the response of neural ensembles
tends to track physical contrast by increasing quasi-linearly with stimulus contrast; while at later,
extrastriate regions (e.g., see Figure 1) [23], the response of neural ensembles is amplified at low
contrasts, rising rapidly over the contrast range of 0 to 0.3 and gradually increases toward maximal
(saturated) response thereafter [24–28] (see note [29]).
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Figure 1. Normalized CRFs, indexed via MEG amplitude, obtained from human striate cortex (black 
lines and symbols) and extrastriate cortex (grey lines and symbols). Adapted from [24] with 
permission from the publisher. 

In line with, and expanding on, previous interpretations [30], this coincidence of (a) the low 
values of local contrasts within typical scenes and (b) amplification of the contrast response in mid-
and high-level cortical sites for contrasts ≤0.3 (followed by saturation) dovetails nicely with the 
following observations regarding the distinction between pre-perceptual or pre-conscious and 
perceptual or conscious vision. (1) At low levels (e.g., V1) in the cortical object-recognition pathway, 
neural responses are largely stimulus-dependent in that they respond equally to a stimulus even 
when it is not perceived, whereas at higher levels (e.g., V4 and V5), neural responses become 
increasingly percept-related, i.e., responding only when the stimulus is perceived [31–33]. (2) To 
maximize extraction of useful perceptual information, the response amplification at low contrasts in 
the mid- and high-level cortical regions characterizes the transition from low-level linear tracking of 
an object’s physical (luminance) contrast to the registration of brightness contrast as a perceptual 
attribute [34]. These two coincidences raise the following significant question: Can the contrast 

Figure 1. Normalized CRFs, indexed via MEG amplitude, obtained from human striate cortex (black
lines and symbols) and extrastriate cortex (grey lines and symbols). Adapted from [24] with permission
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In line with, and expanding on, previous interpretations [30], this coincidence of (a) the low
values of local contrasts within typical scenes and (b) amplification of the contrast response in mid-and
high-level cortical sites for contrasts ≤0.3 (followed by saturation) dovetails nicely with the following
observations regarding the distinction between pre-perceptual or pre-conscious and perceptual or
conscious vision. (1) At low levels (e.g., V1) in the cortical object-recognition pathway, neural responses
are largely stimulus-dependent in that they respond equally to a stimulus even when it is not perceived,
whereas at higher levels (e.g., V4 and V5), neural responses become increasingly percept-related,
i.e., responding only when the stimulus is perceived [31–33]. (2) To maximize extraction of useful
perceptual information, the response amplification at low contrasts in the mid- and high-level cortical
regions characterizes the transition from low-level linear tracking of an object’s physical (luminance)
contrast to the registration of brightness contrast as a perceptual attribute [34]. These two coincidences
raise the following significant question: Can the contrast dependency of visual effects serve to indicate
the relative, low/stimulus-dependent vs. high/percept-related, level of processing underlying these
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effects? i.e., can CRFs be used to differentiate visual effects due to low-level stimulus-dependent response
processes from visual effects due to increasingly high-level percept-related processes?

2.2. Relating CRFs of Individual Neurons to CRFs of Neural Ensembles

One of the problems with assigning quasi-linear responses to the early striate cortex is that
individual neurons there tend to be characterized quantitatively by CRF functions, most if not all
of which are compressively nonlinear in that their responses increase sharply at lower contrasts
and saturate at higher stimulus contrasts [35]. Recall, however, that above we referred to ensembles
of cortical neurons, i.e., a set of neurons at a particular level of cortical processing. No doubt the
quasi-linear MEG [24] and fMRI [27] CRFs characterizing striate cortex depend on the combined
activity of many hundreds, if not thousands, of individual neurons. So, how does one go from the
compressive nonlinear contrast response of individual neurons in striate cortex to a quasi-linear
contrast response of neural ensembles in striate cortex?

A reasonable strategy, implicit in Albrecht and Hamilton’s [35] results (see especially their
Figure 15) and explicitly suggested by Watson and Solomon [36] (see their Figure 16), is to additively
combine the CRFs of several striate neurons whose contrast response functions are characterized by
different contrast-gain characteristics. To illustrate this the left panel of Figure 2, via the thin black lines,
depicts eight V1 neurons (n1, . . . , n8) whose CRFs shift progressively rightward along the contrast
axis. For simplicity, we have characterized their CRFs by using an otherwise identical Naka-Rushton
equation [37] (Rmax = 1; α = 5). However, the semi-saturation constant increases, in steps of 0.1, from
0.1 to 0.8. The thick black line in the left panel depicts the normalized CRF obtained by averaging
the eight individual CRFs. The hypothetical neural-ensemble function it depicts is not strictly linear;
nevertheless, a best fitting linear function, shown by the dotted line, accounts for nearly 98% of its
systematic variation. Though simplified, this approach points to a line of reasoning by which more
exact modelling can adequately account for an empirically obtained quasi-linear striate CRF, such as
that of Hall et al. [24].
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Figure 2. Left panel: Hypothetical normalized CRFs for eight V1 neurons (thin continuous lines),
the resulting normalized neuron-ensemble CRF (thick continuous line), and the best linear fit to the
neuron-ensemble CRF. See text for details on how the neuron-ensemble CRFs of V2 and V4 were
computed. Middle insert: Depiction of how the outputs of seven hypothetical V1 neurons, each with
the same CRF, converge on a single V2 neuron. (An analogous process is assumed to describe how
seven V2 neurons converge on a single V4 neuron.) Right panel: Hypothetical neuron-ensemble CRFs
in V1, V2, and V4.

Let us now turn to the post-striate CRFs. Based on their findings, Tootell et al. [27] argued that
extra-striate cortex has a higher contrast sensitivity than striate cortex, which to them suggests that,
due to neural response pooling, the contrast sensitivity increases by probability summation in the
progressively larger receptive fields of neurons in extrastriate cortex (see middle insert of Figure 2).
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Within the extrastriate cortex, we can extend Tootell et al.’s approach from one cortical level, say, V2, to
the next level, say, V4. To illustrate how this may proceed, the right panel of Figure 2 shows hypothetical
normalized CRFs of neural ensembles in V1, V2 and V4. As depicted in the middle insert of Figure 2,
the V2 response was constructed by allowing the outputs of seven V1 neurons (ni,1, . . . , ni,7), each
with the same CRF, to converge on one V2 neuron (Ni). Across the eight V1 CRFs, via probability
summation this results in the CRF of each of the resulting eight V2 neurons (N1, ..., N8) to shift leftward
on the contrast axis. The average of these eight V2 CRFs, shown in the dark-grey functions in the right
panel, represents the hypothetical V2 neural ensemble response (for details see Appendix A). Now
applying the same method to the construction of eight V4 neurons, with V2 neurons providing the
seven-fold output converging onto each of the V4 neurons, we arrive at a V4 ensemble response shown
by the light-grey functions in the right panel. Because there is successive pooling of responses as one
progresses from V1, via intermediate levels V2 and V4, to inferotemporal cortex, we moreover suggest
that greater degrees of nonlinearity of the CRF obtained for a contrast-dependent visual phenomenon
or effect may be useful indicators that higher levels of processing are involved. Since behavioral data
obtained in psychophysical studies using contrast-dependent response indicators could possibly rely
on activity of neuronal ensembles at any one, several, or all cortical level of processing, one would
be justified in using an obtained CRF that is quasi-linear as indicating the involvement primarily of
an early/low level of cortical processing such as V1, with progressively more compressive nonlinear
CRFs indicating involvement of progressively higher cortical levels. To illustrate how this may or
may not eventuate let us take two flanker paradigms, visual crowding and lateral masking of targets
by flanking stimuli, as examples. Relying on normalized magnitudes produced by both paradigms,
a significant two-way interaction, particularly at the low to intermediate range of flanker contrast,
between flanker paradigm and flanker contrast would indicate that the effects of crowding and lateral
masking involve different levels of processing. A lack of interaction would indicate that the two effects
involve similar levels.

The rationale of our approach up to now only incorporates the bottom-up feedforward projections
from one cortical level (e.g., V1) of visual processing to the next level (e.g., V2). However, besides
the feedforward hierarchy from low to high level of cortical processing, a reverse hierarchy giving
rise to massive top-down feedback projections from high levels to lower ones [38–41] also contributes
crucially to visual information processing [42,43]. Such back projections from one level to the preceding
one, by sharpening and amplifying the responses to the stimulus of neurons at the lower, preceding
level [44,45], could thereby also amplify the increasing nonlinearity of the CRFs as one progresses from
lower to higher levels in the cortical visual object-recognition pathway (for a possible consequence of
such top-down amplification see Section 4.2 below).

That said and having laid out the above groundwork for our approach, we next review three
exemplary visual phenomena: illusions, crowding, and masking. Our reason for choosing and limiting
our analyses to these phenomena is that for all three (i) several extant studies indicate that they
can involve different levels of processing and (ii) at most only a few studies have systematically
investigated contrast-dependent effects produced by varying the contrast of the inducers of visual
illusions, crowding and masking. Like masking, visual-illusions and crowding have been studied
extensively, but mostly without systematic changes of illusion-inducer, flanker contrast, or mask
contrast. Since we are especially interested in contrast effects, most of these studies, not directly
relevant to the development of our level-specific and contrast-dependent approach, are not included
in the following discussions.

3. Contrast-Dependent Effects in Visual Illusions, Crowding, and Pedestal Masking

3.1. Visual Illusions

Visual illusions are ubiquitous and have been objects of interest in vision research since at least the
ninteenth century. One of them, the tilt illusion, can be obtained when test and inducing gratings are
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presented concurrently (simultaneous tilt illusion) or as an effect seen in a test grating after adapting
to an inducing grating (successive tilt illusion) [46]. Moreover, the tilt illusion can manifest in two
ways [47–49]: (1) as a repulsive effect in which, for instance, a vertical test grating appears to be tilted
slightly in the opposite, clockwise direction when surrounded by an annular grating tilted about 15 deg
counterclockwise from vertical; (2) as an assimilative effect in which the vertical test grating appears to
be tilted in the same counterclockwise direction as that the surround grating tilted about 75 deg in the
counterclockwise direction from vertical. Blakemore, Carpenter and Georgeson [50] proposed that
the simultaneous tilt illusion is produced by lateral inhibition among cortical orientation detectors,
and in his recent review of the tilt illusion, Clifford [49] has presented a strong case that both the
repulsive and assimilative tilt illusions can be explained by a model assuming such inhibition among
populations of orientation detectors. On the reasonable assumption that the neurons responding to the
orientation of the inducing grating increasingly inhibit the neurons responding to the orientation fo
the test graing as the inducing grating’s contgrast increases, one would expect that the repulsive effect
of the simultaneous tilt illusion in turn increases as inducing contrast increases.

Pearson and Clifford [51] used a circular patch of a vertical test grating surrounded by an
annular patch of a tilted inducing grating (see Figure 3, inset) to study the repulsive version of the
simultaneous tilt effect. In one condition (Condition 1) they investigated the tilt illusion when the
percept of the surround grating presented to the left eye was binocular-rivalry (b-r) suppressed a by
noise-mask surrounding a central grating presented to the right eye. In a second, non-rivaling condition
(Condition 2) the stimuli in the left and right eye were arranged so that no b-r suppression of the
surrounding inducer grating occurred; i.e., it was visible throughout each trial. Pearson and Clifford
varied the Michelson contrast of the surround grating from 0.01 to 0.50. The results (see Figure 3)
showed that both conditions yielded the tilt illusion, with Condition 1 producing a smaller illusion
than Condition 2 across all but the lowest and highest surround contrast. Yet even in Condition 1 the
strength of the illusion increased monotonically with inducer contrast, indicating that in this condition
the illusion can be generated at a pre-perceptual (pre-conscious) level of processing, somewhere
between the level at which binocular rivalry was resolved and the level at which the surround grating
registers perceptually in consciousness [52].
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Figure 3. Tilt illusion (in deg) as a function of linearized surround-inducer contrast when the tilted
surround is visible (black circles) and when it is b-r suppressed (grey circles). Continuous lines are best
fitting Naka-Rushton functions; dotted line is best fitting linear function to the contrast-dependent tilt
illusion when the surround is b-r suppressed. Upper inset: Pearson & Gifford’s stimuli presented to
observers’ left and right eyes under dichoptic viewing, giving rise to b-r suppression of the left-eye
annular grating surround by a right-eye annular noise mask, and the resultant binocularly fused
percept. Adapted from [51] with permission from the publisher.
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Significant here is that when the inducing grating is visible, the tilt illusion (see black curve in
Figure 3) increases nonlinearly with contrast of the surround grating—steeply in the low contrast
range of 0.0 to 0.1 and thereafter saturating. We take this strong nonlinear contrast-amplification
trend when the surround grating is visible to indicate, in line with the previous rationale and
findings [24,27], that the interaction between the surround grating and the target grating involves
mainly high (percept-related levels of processing in the post-striate areas of visual cortex, relative
to low (stimulus-dependent) levels of cortical processing in striate cortex. In contrast, when the
inducing surround grating is b-r suppressed (see grey curve in Figure 3), the tilt illusion increases in a
nearly perfect linear manner, with the best-fit linear function accounting for nearly 99% of systematic
variability. Although we take this strong linear trend to indicate, again in line with previous findings
and with Pearson and Clifford’s own interpretation, that the interaction between the b-r suppressed
inducing grating and the perceived target grating involves mainly a low (pre-perceptual) level of cortical
processing in striate cortex, higher-level involvement in the b-r suppression cannot be ruled conclusively.

The reason for this tentativeness is the limited range of inducer contrasts (0.0 to 0.5) used by
Pearson and Clifford. It is possible that the effect of b-r suppression of the inducer did not cause a
change from a higher level to a lower level at which it exerted is effect. One can feasibly argue that b-r
suppression caused a reduction of contrast gain at the higher level, resulting in the neural contrast
response to shift to the right along the inducer-contrast axis. Figure 4 illustrates how this might happen.
The thin black lines depict CRFs of eight high-level neurons when the inducer is visible; while the thick
black solid and dotted lines depict the neural-ensemble CRF and its best-fit linear function. Similarly,
the thin and dashed grey lines depict CRFs of the same eight high-level neurons when their contrast
response is b-r suppressed, with the suppression causing a decrease of contrast gain across all eight
neurons. The thick grey solid and dotted lines depict the neural-ensemble CRF and its best-fit linear
function. Like Pearson and Clifford’s findings, in this simplified model the high-level neural-ensemble
CRF is highly non-linear over the contrast range of 0.0 to 0.55 when the inducer is visible, with the best
linear fit accounting for only 57% of its systematic variability across inducer contrast. In comparison,
the high-level neural-ensemble CRF is highly linear over the contrast range of 0.0 to 0.55 when the
inducer is b-r suppressed, with the linear fit accounting for 99% of its systematic variability across
inducer contrast.
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Figure 4. Black lines and symbols: Hypothetical normalized CRFs for eight high-level extrastriate
neurons (thin black continuous lines), the resulting normalized neuron-ensemble CRF (thick black
continuous line), and the best linear fit (black dotted line) to the neuron-ensemble CRF when
tilt-inducing surround is visible. Grey lines and symbols: Hypothetical normalized CRFs for the same
eight high-level extrastriate neurons (thin grey dashed lines), the resulting normalized neuron-ensemble
CRF (thick grey continuous line), and the best linear fit (grey dotted line) to the neuron-ensemble CRF
when tilt-inducing surround is b-r suppressed.
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Despite this concordance between Pearson and Clifford’s findings and the above model based on
high-level b-r suppression, we take this scenario to be unlikely, for the following reasons. (1) Neural
correlates of b-r suppression occur as early as striate cortex [3] and even at the precortical LGN
level [12,13]. (2) According to Tong and Engel [3], their results indicate that binocular rivalry may
be fully resolved at the striate level. (3) As noted by Lee and Blake [10], although high-level pattern
rivalry may modulate the low-level, eye-based b-r suppression [3], it is neural processing at the striate
levels that is most heavily implicated in the alternating rivalrous phases of suppression and dominance
during binocular rivalry [3,53,54]. Hence, on the warranted assumption that the resolution of binocular
occurs primarily, if not totally, in V1, it is most likely that when the visibility of the inducer is b-r
suppressed, the cortical inducer-target interaction occurs in low-level, linear stimulus-space, whereas
when the inducer is perceived, the interaction occurs in high-level, nonlinear percept-space.

3.2. Visual Crowding

Visual crowding, a reduction of visibility of a peripheral target stimulus when it is flanked by
nearby distractor stimuli (see Figure 5, left panel), is an important research area per se but also because
its effects spill over into many other research areas such as reading, visual search, object and facial
recognition, and Gestalt grouping [55–58]. While, as we noted above, it is recognized that low- and
high-level cortical processing can contribute to crowding, it is not clear if and under what conditions
the low- and high-level processes contribute differentially to the entire crowding effect. According
to our rationale, the following results indicate that these differential contributions can already be
assessed, albeit with some caution.

Vision 2018, 2, x FOR PEER REVIEW  7 of 20 

 

Despite this concordance between Pearson and Clifford’s findings and the above model based 
on high-level b-r suppression, we take this scenario to be unlikely, for the following reasons. (1) 
Neural correlates of b-r suppression occur as early as striate cortex [3] and even at the precortical 
LGN level [12,13]. (2) According to Tong and Engel [3], their results indicate that binocular rivalry 
may be fully resolved at the striate level. (3) As noted by Lee and Blake [10], although high-level 
pattern rivalry may modulate the low-level, eye-based b-r suppression [3], it is neural processing at 
the striate levels that is most heavily implicated in the alternating rivalrous phases of suppression 
and dominance during binocular rivalry [3,53,54]. Hence, on the warranted assumption that the 
resolution of binocular occurs primarily, if not totally, in V1, it is most likely that when the visibility 
of the inducer is b-r suppressed, the cortical inducer-target interaction occurs in low-level, linear 
stimulus-space, whereas when the inducer is perceived, the interaction occurs in high-level, 
nonlinear percept-space.  

3.2. Visual Crowding 

Visual crowding, a reduction of visibility of a peripheral target stimulus when it is flanked by 
nearby distractor stimuli (see Figure 5, left panel), is an important research area per se but also 
because its effects spill over into many other research areas such as reading, visual search, object and 
facial recognition, and Gestalt grouping [55–58]. While, as we noted above, it is recognized that low- 
and high-level cortical processing can contribute to crowding, it is not clear if and under what 
conditions the low- and high-level processes contribute differentially to the entire crowding effect. 
According to our rationale, the following results indicate that these differential contributions can 
already be assessed, albeit with some caution.  

 

Figure 5. (Left panel): (upper) Gabor-target and flanker stimuli used by Levi & Carney; (lower) letter 
target and flanker stimuli used by Pelli et al. (Right panel): Threshold elevation as a function of 
flanker contrast. Data points for both studies are accompanied by best fitting Naka-Rushton 
functions; dotted lines are best fitting linear functions. A dashed line extrapolates the Naka-Rushton 
function for Pelli et al.’s results beyond their highest Michelson contrast of 0.33. Adapted from [59] 
and from [60] with permission from the publishers. 

Levi and Carney [59] used horizontally oriented Gabor patches as targets and wedges of 
surrounding gratings as flankers in displays akin to that shown in the upper portion of the left panel 
of Figure 5. Pelli, Palomares and Majaj [60] used letters as targets and flankers in displays akin to that 
shown in the lower portion of the left panel of Figure 5. To measure the tilt threshold of the target 
Gabor in the experimental condition of Levi and Carney study, on each trial observers (Os) had to 
decide, after being presented with two temporal windows—one containing a horizontal Gabor, the 
other a Gabor tilted slightly from horizontal—which interval contained the more counterclockwise 
tilted one. The same measure was obtained in a baseline condition where Os viewed the Gabors 
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provide measures of the contrast threshold of the target letter in Pelli et al.’s study, on each trial Os, 
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Figure 5. (Left panel): (upper) Gabor-target and flanker stimuli used by Levi & Carney; (lower) letter
target and flanker stimuli used by Pelli et al. (Right panel): Threshold elevation as a function of flanker
contrast. Data points for both studies are accompanied by best fitting Naka-Rushton functions; dotted
lines are best fitting linear functions. A dashed line extrapolates the Naka-Rushton function for Pelli
et al.’s results beyond their highest Michelson contrast of 0.33. Adapted from [59] and from [60] with
permission from the publishers.

Levi and Carney [59] used horizontally oriented Gabor patches as targets and wedges of
surrounding gratings as flankers in displays akin to that shown in the upper portion of the left
panel of Figure 5. Pelli, Palomares and Majaj [60] used letters as targets and flankers in displays akin
to that shown in the lower portion of the left panel of Figure 5. To measure the tilt threshold of the
target Gabor in the experimental condition of Levi and Carney study, on each trial observers (Os) had
to decide, after being presented with two temporal windows—one containing a horizontal Gabor, the
other a Gabor tilted slightly from horizontal—which interval contained the more counterclockwise
tilted one. The same measure was obtained in a baseline condition where Os viewed the Gabors
without the flankers. The flanker’s Michelson contrast was varied from 0.01 to 0.80. Likewise, to
provide measures of the contrast threshold of the target letter in Pelli et al.’s study, on each trial
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Os, guessing when they were not sure, had to identify the flanked target letter by choosing from
among several (usually 10) letters that were presented after its 200-ms presentation. Here the flanker’s
Michelson contrast [61] was varied from near 0.0 (roughly 0.005) to 0.33. The right panel of Figure 5
shows the results of the two studies. Note that in the Levi and Carney study the threshold elevation
for identifying the tilt of the target Gabor increased quasi-linearly as the flanker contrast increases
from 0.01 to 0.80 [62], with the linear trend (dotted black line) accounting for 96% of the systematic
variability (the Naka-Rushton function (continuous black line) accounted for 99%). What may be less
than mere coincidence is the strong agreement between Levi and Carney’s results and, as evident
from Figure 1, the quasi-linear increase of normalized MEG amplitudes recorded from human striate
cortex by Hall et al. [24]. As noted above, the best linear fit to Levi and Carney’s quasi-linear increase
of normalized target thresholds as flanker contrast increased accounted for 94% of the systematic
variability; while for Hall et al. the best linear fit to their quasi-linear increase of normalized MEG
amplitude accounted for 82% of the systematic variability. In contrast, in Pelli et al.’s study the
normalized threshold contrast for identifying the flanked target letter increased clearly nonlinearly (the
linear trend (dotted grey line) accounted for only 38% of systematic variability, whereas the nonlinear
Naka-Rushton function (continuous grey line) accounts for 99% of systematic variability, with a very
steep rise in threshold as flanker contrast increased from 0.04 to 0.16, after which it levels off [63].

3.3. Pedestal Masking

Pedestal masking is a specific case of simultaneous pattern masking, i.e., when target and mask
overlap spatiotemporally. As an example of this type of masking, a horizontal Gabor, like that shown
in the inset of Figure 6 (right panel), serves as the pedestal (contrast = C) and as the pedestal plus
contrast increment (contrast = C + ∆C). For pedestal contrasts of about C = 0.05 and higher, pedestal
masking experiments tend to yield linear threshold-increment vs. pedestal-contrast (TvC) functions
(e.g., see [64]). Watanabe, Paik and Blake [65] investigated the TvC function when the pedestal was
visible and when it was b-r suppressed, and their results are shown in Figure 6 (left panel). Note that
while threshold increments when the pedestal was b-r suppressed were about twice as large as those
when the pedestal was visible, both functions were linear for pedestal contrasts ranging from 0.1 to 0.5.
Relative to the visible pedestal condition, the b-r suppressed pedestal condition thus yielded roughly a
two-fold decrease of the sensitivity in the threshold-detecting mechanism, across all pedestal contrasts;
this, however, all the while maintaining the linearity of the TvC function.

Vision 2018, 2, x FOR PEER REVIEW  8 of 20 

 

Michelson contrast [61] was varied from near 0.0 (roughly 0.005) to 0.33. The right panel of Figure 5 
shows the results of the two studies. Note that in the Levi and Carney study the threshold elevation 
for identifying the tilt of the target Gabor increased quasi-linearly as the flanker contrast increases 
from 0.01 to 0.80 [62], with the linear trend (dotted black line) accounting for 96% of the systematic 
variability (the Naka-Rushton function (continuous black line) accounted for 99%). What may be less 
than mere coincidence is the strong agreement between Levi and Carney’s results and, as evident 
from Figure 1, the quasi-linear increase of normalized MEG amplitudes recorded from human striate 
cortex by Hall et al. [24]. As noted above, the best linear fit to Levi and Carney’s quasi-linear increase 
of normalized target thresholds as flanker contrast increased accounted for 94% of the systematic 
variability; while for Hall et al. the best linear fit to their quasi-linear increase of normalized MEG 
amplitude accounted for 82% of the systematic variability. In contrast, in Pelli et al.’s study the 
normalized threshold contrast for identifying the flanked target letter increased clearly nonlinearly 
(the linear trend (dotted grey line) accounted for only 38% of systematic variability, whereas the 
nonlinear Naka-Rushton function (continuous grey line) accounts for 99% of systematic variability, 
with a very steep rise in threshold as flanker contrast increased from 0.04 to 0.16, after which it levels 
off [63]. 

3.3. Pedestal Masking 

Pedestal masking is a specific case of simultaneous pattern masking, i.e., when target and mask 
overlap spatiotemporally. As an example of this type of masking, a horizontal Gabor, like that shown 
in the inset of Figure 6 (right panel), serves as the pedestal (contrast = C) and as the pedestal plus 
contrast increment (contrast = C + ΔC). For pedestal contrasts of about C = 0.05 and higher, pedestal 
masking experiments tend to yield linear threshold-increment vs. pedestal-contrast (TvC) functions 
(e.g., see [64]). Watanabe, Paik and Blake [65] investigated the TvC function when the pedestal was 
visible and when it was b-r suppressed, and their results are shown in Figure 6 (left panel). Note that 
while threshold increments when the pedestal was b-r suppressed were about twice as large as those 
when the pedestal was visible, both functions were linear for pedestal contrasts ranging from 0.1 to 
0.5. Relative to the visible pedestal condition, the b-r suppressed pedestal condition thus yielded 
roughly a two-fold decrease of the sensitivity in the threshold-detecting mechanism, across all 
pedestal contrasts; this, however, all the while maintaining the linearity of the TvC function.  

 
Figure 6. (Left panel) threshold increments as a function of pedestal contrast when the pedestal is 
visible (black circles) and when it is b-r suppressed (grey circles). Dotted lines are best fitting linear 
functions. (Right panel) V1 fMRI amplitude as a function of pedestal contrast when the pedestal is 
visible. Dotted lines are best fitting linear functions. Inset illustrates a pedestal grating and a pedestal 
with an increment of its contrast. Adapted from [65] and from [66] with permission from the 
publishers. 

Figure 6. (Left panel) threshold increments as a function of pedestal contrast when the pedestal is
visible (black circles) and when it is b-r suppressed (grey circles). Dotted lines are best fitting linear
functions. (Right panel) V1 fMRI amplitude as a function of pedestal contrast when the pedestal is
visible. Dotted lines are best fitting linear functions. Inset illustrates a pedestal grating and a pedestal
with an increment of its contrast. Adapted from [65] and from [66] with permission from the publishers.
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The linearity of Wanatabe et al.’s psychophysical TvC function may be an artifact of their restricted
range of pedestal contrasts; hence, their finding alone cannot be taken as the sole evidence for
pedestal masking occurring at low, striate levels of processing. Figure 6 (right panel) shows results
obtained by Zenger-Landoldt and Heeger [66]. They indicate that a related linearity holds also when
psychophysical and fMRI measures of V1 are made during pedestal masking for pedestal contrasts
ranging from 0.1 to 0.8 [67]. Moreover, our search of the literature has revealed two other sources
of pedestal masking, in which pedestal contrast was varied up to a value of 0.8. The left panel of
Figure 7 shows results from Hu, Klein and Carney [68], averaged across two Os and across three spatial
frequencies [69] of the pedestal, and the right panel shows results from Greenlee and Heitger [70], again
averaged across two Os. Confirming the findings of Zenger-Landolt and Heeger over a similar range
of contrasts, both results indicate that the increment threshold for detecting the contrast increment
superposed on the pedestal increases nearly linearly with the contrast of the pedestal.
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In conjunction with Zenger-Landoldt & Heeger’s findings and those indicating that binocular
rivalry is resolved as early as V1 [3,53,54], the fact that linearity of the TvC function was maintained
for both visible and b-r suppressed pedestals in the Watanabe et al. study reinforces the conclusion
that cortical correlates of pedestal masking are to be found early, and primarily, in V1. Moreover, the
combined results of Zenger-Landoldt and Heeger’s, Hu et al.’s, and Greenlee & Heitger’s studies
reinforce this interpretation by showing that the linearity of the TvC function can hold for pedestal
contrasts ranging up to 0.80. Pedestal contrasts cannot be much higher than 0.90, since one must allow
the remaining 0.10 of contrast for the measurement of the threshold increment. A future study in
which the pedestal contrast varies from about 0.05 to the maximal allowable value somewhere around
0.90 should resolve any remaining uncertainty as to the linearity of the TvC function. We predict that
the TvC function will be strongly linear.
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4. Discussion, Implications, and Directions for Further Research

4.1. A Distinction between Functional and Anatomic Levels of Processing

The rationale of our approach relies primarily on the role of feedfoward hierarchy of cortical visual
processing and secondarily on the importance of reverse-hierarchy feedback processing. Much past
anatomical research has provided a fairly rich data base supporting cortical feedforward processing
and its possible role, but rather sparse studies report on the feedback projections and their possible roles.
Nonetheless, rich feedback projections do exist [38–40] and their possible roles in visual perception
have been noted [41–44]. However, despite the complexity of cortical visual processing, relative
cortical levels of processing have been proposed for several visual paradigms, such as interocular and
pattern competition [3,11,14], visual crowding (see Levi [56]) and visual masking [15–17]. Even when
direct electrophysiological or brain-imaging results are not available to draw conclusions regarding
anatomical levels or processing, purely functional levels obtained from psychophysical studies can be
distinguished [1,2,4] without, as noted by one of us [4], needing or being able to relate these functional
levels to specific anatomical ones.

4.2. Interpretations of Crowding Studies

We have presented evidence that the contrast-response function can be used to assess levels of
cortical processing in the simultaneous tilt illusion, visual crowding, and pedestal masking. Regarding
first the crowding studies, our analyses and interpretations have the following methodological and
theoretical implications. Based on Levi’s extensive review [56] and Pelli et al.’s extensive experimental
investigations [60] of visual crowding, the consensus is that crowding is distinct from what is termed
ordinary masking, by which is meant masking with spatial overlap of the target and flanker stimuli.
However, while, as noted above, crowding is a multi-level phenomenon [71], it is thought to rely
primarily on higher, post-striate levels of processing—a possible candidate being V4 [5,56,72,73]—at
which integration/conjunction of visual primitives, such as orientation, processed in V1, and perceptual
pooling and grouping play an important role [2,18,56,57,73,74].

When target and flanking stimuli are similar, crowding typically tends to be stronger [75]. In the
case of Levi and Carney’s study, we suggest that, by using the same (2.5 c/deg) spatial frequency and
(near-horizontal and horizontal) orientation of the target Gabors and the flanking grating patches,
the stimuli favored the component of crowding consisting of lateral inhibitory (masking) interactions
between neural units selectively tuned to the same spatial frequencies and orientations. A possible
underlying mechanism could be the spatially extensive divisive surround inhibition from outside the
classical receptive field of striate neurons [76–78]. Particularly relevant here is the suggestion of Polat
and co-workers [79–81] that lateral masking relies primarily on low-level inhibitory interactions found
as early as striate cortex. If, in the Levi and Carney study, such low-level mechanisms were the major
contributors to interactions between spatially proximal stimuli, one would expect increases of flanker
contrast to produce nearly linear increases of target threshold (see also [82]). On one hand, that would
indicate, as noted, that Levi and Carney were investigating a low-level lateral masking component
rather than a high-level feature-integrative component of crowding. On the other hand, in Pelli et al.’s
study, the clearly nonlinear increase, with strong amplification at low flanker contrasts, implicates the
additional contribution of the high-level component to visual crowding.

Another implication is based on comparison of results reported by Chung, Levi and Legge [83]
and by Pelli et al. Based on estimates of Chung et al.’s results, it may also be possible to track
a transition from the contribution of low-level to high-level visual processes in visual crowding.
Chung et al. measured crowding effects using narrow-band spatial-frequency filtered letters, and
Pelli et al. measured crowding effects using unfiltered letters (see Figure 8). Note in Figure 8 that with
filtered letters the Chung et al. target threshold increases nearly linearly (R2 = 0.968) with the contrast
of the flankers, at least up to a value of 0.5 used by Chung et al. (the Naka-Rushton function yielded
a slightly higher R2 = 0.999) [84]. However, with unfiltered letters it increases clearly nonlinearly
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in the Pelli et al. study. Aware of the problem raised by Chung et al.’s and Pelli et al.’s restricted
flanker-contrast ranges, we nonetheless conjecture that, relative to using unfiltered images such as
the letters in Pelli et al.’s study, using filtered letters biases the main contribution to crowding away
from high-level processing of letters and toward low-level lateral masking among spatial frequency
channels; the narrower the filter bandwidth of the filtered images, the greater the bias towards
lower-level processing.Vision 2018, 2, x FOR PEER REVIEW  11 of 20 
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4.3. The Problem of Residual Nonlinearities

Residual nonlinearities in striate cortex [24] that might influence psychophysical tests of low-level
vision could arise in two ways. One source of residual nonlinearity could derive from the nonlinear
CRFs of magnocellular (M) neurons [85]. It remains to be determined to what extend, if any, this
possible source of nonlinearity makes its contribution to experimentally obtained CRFs. A possible hint
lies in comparing the V1 fMRI recordings of Zenger-Landoldt and Heeger to those of Gardner et al. [86]
and Li et al. [87]. The latter two studies used adapting or pedestal stimuli—checkerboards and
sinusoidal grating patches, respectively—which flickered at a rate of 7.5 Hz, whereas the former study
used gratings counterphasing at 4 Hz. This difference in flicker rate may have biased the visual system
in the latter two studies toward the output of the the more briskly responding M neurons relative to
the more sluggish responding parvocellular (P) neurons [88], which would be activated more strongly
in the former study. Gardner et al. also obtained increasing adapting effects of flickering checkerboards
as their contrast increased from 0.0625 to 0.25, something to be expected since the CRF of M neurons
rises steeply and begins to saturate at contrasts of 0.1 to 0.2 [85]. An second source could be cortical
feedback. When applying our rationale of systematically varying inducer contrast to visual effects such
as crowding or illusions in which on theoretical grounds interactions between the flanker or inducer
and the test stimuli rely on low, linear levels of contrast processing (e.g., as in lateral masking and the
simultaneous-brightness illusion), one is faced with the effects of residual perceptual nonlinearities.
When inducer and target are clearly visible, this is an unavoidable feature of experiments on visual
crowding or illusions. One way to minimize the intrusion of such perceptual residues is to use stimuli
believed to interact at low levels of visual processing, as in Polat’s lateral masking and in Levi and
Carney’s crowding studies. In the Levi and Carney studies, the flankers were clearly visible; and
even here small residual nonlinearities of the visual system’s contrast response to the flankers are
evident in that the slightly nonlinear Naka-Rushton functions do a slightly better job of accounting for
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the findings (R2 = 0.998) than does a best-fit linear function (R2 = 0.944) (see Figure 5). Since neural
activity at high-level, post-striate cortical sites feed back to the striate cortex [89,90], it is possible that
such feedback contributes some nonlinearity to the contrast response of striate neurons whenever the
inducer is visible. To avoid even this small intrusion of nonlinearity, a more dramatic way to minimize
or eliminate the influence of a perceptual residue is to b-r suppress [53] or adaptation suppress [91] the
perception of the inducing stimuli, since both types of suppression are thought to prevent processing
beyond V1.

An immediate additional implication is suggested for crowing studies such as Pelli et al.’s that
are thought to tap into high-level, percept-dependent cortical processing. As shown in Figure 8,
Pelli et al.’s results indicate a strong nonlinear contrast response function of the crowding effect when
letters are used as flankers (and, of course, as test stimuli). Adopting the rationale and method of
b-r suppression, one would expect that when the flanking letters, as in the Pelli et al. study, are b-r
suppressed, the resulting crowding effect will not tap into high-level, percept-related post-striate
cortical sites but only into neural processes at the low, striate level. Consequently, we make the strong
prediction that here, with the same stimuli used by Pelli et al., the crowding effect should increase
gradually and linearly as the flanker contrast increases; whereas it will increase nonlinearly when the
flankers are visible.

Related to the crowding phenomenon, above we noted that evidence regarding if and to what
extent different anatomical levels of cortical neural networks contribute to crowding points to the
involvement of several cortical levels [5,18,19,92]. Our analysis and proposal imply that future
brain-recording and brain-imaging studies, in which flanker contrast is systematically varied, may go
a significant way toward revealing the factors contributing to the previous mixed findings.

4.4. Extensions to Other Visual Phenomena

Another implication is that the proposed approach supports applying our rationale to studying the
comparative processing levels of many additional visual phenomena such as visual illusions. We [93]
are currently applying it to investigations of the processing levels of simultaneous brightness induction,
a version of the tilt illusion different from the one used by Pearson and Clifford, the Ponzo illusion, as
well as the White effect [94]. Using our version of the simultaneous tilt illusion, we replicated Pearson
and Clifford’s tilt-illusion results obtained when the inducer was visible (see Figure 3). Our results
also showed that the magnitude of the tilt illuison increases sharply over inducer contrasts ranging
from 0.0 to 0.15 and saturates therafter. According to our proposal, this clear noninearity found in
both results indicates that, when the inducer grating is visible, the simultaneous tilt illusion engages
lateral inhibitoty interactions among populations of orientation detectors not only at low levels but
also at high-levels of visual processing. This would be consistent with the sysematic anatomical maps
of neural orientation-specific units found not only in the columnar organization of V1 but also in the
interstripe regions of V2 and in V4 [95]. As there are a host of visual effects that reveal important visual
processing mechanisms, such as modal and amodal contour completion [89,96], grating induction [97],
and phantom gratings [98], to name just a few, one also could readily apply the approach outlined here
to these effects. The psychophysical investigations of how their magnitudes change with variation of
inducer contrast also could stimulate a search for converging evidence obtained from brain-recording
and brain-imaging techniques akin to those used, e.g., by Murray et al. [90] in their study of modal
and amodal contours and Zenger-Landoldt and Heeger [66] in their study of pedestal masking.

One of the leading concerns of visual neuroscience in recent decades has been the distinction
between neural correlates of conscious and unconscious vision (NCCVs and NCUVs). Besides
visual masking, crowding, and binocular rivalry, there are more than twenty additional noninvasive
“blinding” techniques to render stimuli phenomenally invisible or, if visible as in crowding,
phenomenally unrecognizable [4,99]. These techniques can be used to establish a functional hierarchy
of not only of conscious but also of unconscious visual processing [1,2,4]. The rationale for establishing
such hierarchies on unconscious processing can be illustrated by examining the measurable effects
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of a stimulus varying in contrast but suppressed by different psychophysical blinding methods. For
instance, consider an experiment in which three different psychophysical blinding methods are used
on the same observers. If a stimulus varying in contrast but rendered phenomenally invisible by
low-level b-r suppression yields a linear CRF, one could infer that the invisible stimulus is processed up
to the earliest, striate levels of visual cortex but not at later levels. However, if the same stimulus, now
rendered invisible by a high-level suppression produced, for example, by OSM [2], yields a strongly
nonlinear CRF, one could infer that the invisible stimuli are processed up to a late, poststriate level
of visual cortex. In comparison, if backward pattern masking suppresses the visibility of the stimuli
and a moderately nonlinear CRF is obtained, one could infer that the invisible stimuli are processed
beyond striate cortex level but not up to the late poststriate level. In conjunction with brain-recording
and -imaging techniques, such comparative studies could establish how high in the visual cortex
unconscious processing of a stimulus (NCUVs) are to be found, and thus rule out processing at that
and lower levels as being NCCVs.

Similarly, instead of investigating levels of processing across psychophysical blinding methods,
one can investigate them within a given blinding method. For instance, by using contrast-response
functions as an indicator one can make predictions about the level of processing in various types of
interocular competition. With orthogonal gratings presented interocularly that give rise to eye-seciifc
rivary, one would expect to tap into the unconscious processing of spatial-frequency and orientation
selective analyzers known to exist as early as the striate level of cortical processing [3,53,54]. Here one
would expect to obtain linear CRFs as the contrast of the suppressed stimulus is varied. However,
with interocular presentation of faces and houses [14], one would expect to engage the additional
competitive interactions between shape/object-specific processing in post-striate FFA and PPA levels
of processing. Here, one might expect to obtain nonlinear CRFs when the visibility of one of the
contrast-varying stimuli, say, the house, is suppressed by a face of a constant high-contrast. The same
rationale readily applies to the many varieties of low- and high-level masking effects [2,100].

Exploring CRFs with psychophysical and brain-recording and -imaging techniques such as EEG,
MEG, and optical and fMRI imaging also can reveal the functional levels contributing to the processing
for a host of other visual stimuli. Examples are the processing of stimuli defined by equiluminant
chromatic contrasts, or equiluminant second-order stimuli, e.g., texture stimuli defined by orientation
or size contrast, and dynamic stimuli defined by speed- or direction-of-motion contrasts.

5. Summary and Conclusions

To the question that is the title of our article, we can answer “Yes, they can”. To allow us to make
some claims about how differences in contrast-dependent changes of various visual effects might be
useful when investigating functional and cortical levels of processing, we have selectively “mined”
existing data from only those studies in which inducer contrasts were systematically varied. Based
on analyses of these limited studies, we have argued that, for functions relating the magnitude of
visual effects to the contrast of stimuli inducing them, differences in the degree of nonlinearity can
be useful indicators of corresponding differences in the levels of processing underlying the effects.
Of course, since most of these studies have limited ranges of the contrast of the effect-inducing stimuli,
our proposal has tentative but nevertheless also suggestive aspects. The important suggestion is that
once prior studies are replicated, and novel experiments are devised, each with a generously inclusive
range of effect-inducer contrasts, the resulting function relating inducer contrasts to magnitude
of visual effects can indicate more conclusively the relative levels of conscious or unconscious
processing involved in producing the effects. By defining a broadly applicable research strategy
in the field of vision science, our proposal can foster the generation of novel hypotheses guiding
further psychophysical, brain-recording, and brain-imaging research.
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Appendix A

We develop the rationale for obtaining the contrast-response functions (CRFs) of individual
neurons and of an ensemble of neurons. We begin with the assumption that the CRF of a neuron is
well approximated by the hyperbolic-ratio Naka-Rushton equation:

R(C) = Rmax·Cα/(Cα
0.5 + Cα); (A1)

where Rmax is the maximal response magnitude, C is the contrast, C0.5 is the contrast at which half of
Rmax is obtained. At which contrast values (Cs) R(C) begins to rise and how rapidly R(C) rises depends
jointly on C0.5 and the exponent α. The contrast-gain characteristic of the equation is determined
by Cα

0.5, with larger values of C0.5 or α corresponding to lower contrast gain; the response-gain
characteristic of the equation is determined by Rmax, with larger values yielding larger responses.
For simplicity, in the following we begin with eight hypothetical V1 neurons; and we assume, for all
eight hypothetical neurons: (i) that the response-gain characteristic is the same, with Rmax = 1; and (ii)
that the contrast-gain characteristic, determined by Cα

0.5, has α fixed at a value of 5, but C0.5 arying in
steps of 0.1 from 0.1 to 0.8 in a hypothetical ensemble of eight V1 neurons.

Since there are eight neurons, we rewrite Cα
0.5, as Ĉα

i , i = 1, . . . , 8. Then, by Equation (A1), the
CRF for the eight V1 neurons can be given by

RV1i(C) = Rmax·Cα/
(

Ĉα
i + Cα

)
; i = 1, . . . , 8. (A2)

The resulting graphic representation of the of the corresponding eight V1 neurons’ CRFs is given
by the eight thinner continuous lines in the bottom panel of Figure 2. These eight neurons comprise a
neural ensemble whose CRF, given by RV1ensemble(C), first summed and then normalized by averaging,
results in

RV1ensemble(C) = ∑8
i=1 RV1i(C)/8. (A3)

The resulting graphic representation of the of the normalized V1 neural-ensemble CRF is given
by the thicker continuous line in the left panel of Figure 2. Note that CRF is nearly linear (see thick
dotted line: R2 = 0.975) [101].

We take the outputs of several neurons at one cortical level, e.g., V1, to converge via their
(probability) summation [27] on to a single neuron at the next cortical level, e.g., V2, . . . and iteratively
to higher levels. Since the responses of individual V1 are normalized and therefore range from 0
to 1, we can take the contrast-dependent variations of their normalized response magnitudes to be
the contrast-dependent variations of their response probabilities. As shown in the middle panel of
Figure 2, again for simplicity, we assume that the outputs of seven neurons at one level converge on to
a single neuron at the next level. For the convergent probability summation of the outputs of seven V1
neurons on to a single V2 neuron, the CRF for each ith V2 neuron is given by:

RV2i(C) = 1 −
(
1 − RV1i(C)

)7; i = 1, . . . , 8. (A4)

In Figure A1, the CRFs of the resulting eight individual V2 neurons are depicted by the
thinner continuous lines. These eight V2 neurons comprise a neural ensemble whose CRF, given
by RV2ensemble(C), again first summed and then normalized by averaging, resulting in
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RV2ensemble(C) = ∑8
i=1 RV2i(C)/8. (A5)

The corresponding graphic representation of the of the normalized V2 neural-ensemble CRF is
given by the thicker continuous line in the upper panel of Figure A1. Since, compared to the individual
neural V1 CRFs, the individual V2 neural CRFs shift toward lower contrast values (increased contrast
gain), the V2 neural-ensemble CRF rises more quickly at low contrasts than the V1 counterpart and
therefore also is more nonlinear.Vision 2018, 2, x FOR PEER REVIEW  15 of 20 
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1. Breitmeyer, B.G.; Koç, A.; Öğmen, H.; Ziegler, R. Functional hierarchies of nonconscious visual processing.
Vis. Res. 2008, 48, 1509–1513. [CrossRef] [PubMed]

2. Chakravarthi, R.; Cavanagh, P. Recovery of a crowded object by masking the flankers: Determining the locus
of feature integration. J. Vis. 2009, 9, 4. [CrossRef] [PubMed]

3. Tong, F.; Engel, S.A. Interocular rivalry revealed in the human cortical blind-spot representation. Nature
2001, 411, 195–199. [CrossRef] [PubMed]

4. Breitmeyer, B.G. Experimental “blinding” methods reveal a functional hierarchy of unconscious visual
processing. Conscious. Cognit. 2015, 35, 234–250. [CrossRef] [PubMed]

5. Anderson, E.J.; Dakin, S.C.; Schwarzkopf, D.S.; Rees, G.; Greenwood, J.A. The neural correlates of
crowding-induced changes in appearance. Curr. Biol. 2012, 22, 1199–1206. [CrossRef] [PubMed]

6. Dakin, S.C.; Greenwood, J.A.; Carlson, T.A.; Bex, P.J. Crowding is tuned for perceived (not physical) location.
J. Vis. 2011, 11, 2. [CrossRef] [PubMed]

7. Maus, G.W.; Fischer, J.; Whitney, D. Perceived positions determine crowding. PLoS ONE 2011, 6, e19796.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.visres.2008.03.015
http://www.ncbi.nlm.nih.gov/pubmed/18511097
http://dx.doi.org/10.1167/9.10.4
http://www.ncbi.nlm.nih.gov/pubmed/19810785
http://dx.doi.org/10.1038/35075583
http://www.ncbi.nlm.nih.gov/pubmed/11346796
http://dx.doi.org/10.1016/j.concog.2015.01.012
http://www.ncbi.nlm.nih.gov/pubmed/25704454
http://dx.doi.org/10.1016/j.cub.2012.04.063
http://www.ncbi.nlm.nih.gov/pubmed/22658599
http://dx.doi.org/10.1167/11.9.2
http://www.ncbi.nlm.nih.gov/pubmed/21824980
http://dx.doi.org/10.1371/journal.pone.0019796
http://www.ncbi.nlm.nih.gov/pubmed/21629690


Vision 2018, 2, 14 16 of 20

8. Wallis, T.S.A.; Bex, P.J. Visual crowding is correlated with awareness. Curr. Biol. 2011, 21, 254–258. [CrossRef]
[PubMed]

9. Kovács, I.; Papathomas, T.V.; Yang, M.; Fehér, A. When the brain changes its mind: Interocular grouping
during binocular rivalry. Proc. Natl. Acad. Sci. USA 1996, 93, 15508–15511. [CrossRef] [PubMed]

10. Lee, S.-H.; Blake, R. A fresh look at interocular grouping during binocular rivalry. Vis. Res. 2004, 44, 983–991.
[CrossRef] [PubMed]

11. Tong, F.; Meng, M.; Blake, R. Neural bases of binocular rivalry. Trends Cognitive Sci. 2006, 10, 502–511.
[CrossRef] [PubMed]

12. Haynes, J.D.; Deichmann, R.; Rees, G. Eye-specific effects of binocular rivalry in the human lateral geniculate
nucleus. Nature 2005, 438, 496–499. [CrossRef] [PubMed]

13. Wunderlich, K.; Schneider, K.A.; Kastner, S. Neural correlates of binocular rivalry in the human lateral
geniculate nucleus. Nat. Neurosci. 2005, 8, 1595–1602. [CrossRef] [PubMed]

14. Tong, F.; Nakayama, K.; Vaughan, J.T.; Kanwisher, N. Binocular rivalry and visual awareness in human
extrastriate cortex. Neuron 1998, 21, 753–759. [CrossRef]

15. Haynes, J.D.; Driver, J.; Rees, G. Visibility reflects dynamic changes of effective connectivity between V1 and
fusiform cortex. Neuron 2005, 46, 811–821. [CrossRef] [PubMed]

16. Tse, P.U.; Martinez-Conde, S.; Schlegel, A.A.; Macknik, S.L. Visibility, visual awareness, and visual masking
of simple unattended targets are confined to areas in the occipital cortex beyond human V1/V2. Proc. Natl.
Acad. Sci. USA 2005, 102, 17178–17183. [CrossRef] [PubMed]

17. Carlson, T.A.; Rauschenberger, R.; Verstraten, F.A.J. No representation without awareness in the lateral
occipital cortex. Psychol. Sci. 2007, 18, 298–302. [CrossRef] [PubMed]

18. Freeman, J.; Donner, T.H.; Heeger, D.J. Inter-area correlations in the ventral visual pathway reflect feature
integration. J. Vis. 2011, 11, 15. [CrossRef] [PubMed]

19. Millin, R.; Arman, A.C.; Chung, S.T.; Tjan, B.S. Visual crowding in V1. Cereb. Cortex 2014, 24, 3107–3115.
[CrossRef] [PubMed]

20. Chirimuuta, M.; Clatworthy, P.L.; Tolhurst, D.J. Coding of the contrasts in natural images by visual cortex
(V1) neurons: A Bayesian approach. J. Opt. Soc. Am. A 2003, 20, 1253–1260. [CrossRef]

21. Chirimuuta, M.; Tolhurst, D.J. Does a Bayesian model of V1 contrast coding offer a neurophysiological
account of human contrast discrimination? Vis. Res. 2005, 45, 2943–2959. [CrossRef] [PubMed]

22. Tadmor, Y.; Tolhurst, D.J. Calculating the contrasts that retinal ganglion cells and LGN neurones encounter
in natural scenes. Vis. Res. 2000, 40, 3145–3157. [CrossRef]

23. Figures 1, 3, and 5–8 of the present paper were redrawn using data values extracted with DataThief software
(available at datathief.org) from originally published figures. Consequently, there may be very small
differences between the data-point values used to plot the original figures and the values extracted by us.
Moreover, although some of the original figures had contrasts displayed on a logarithmic scale along their
abscissae, in Figures 1, 3, and 5–8 all contrasts are displayed on a linear scale along their abscissae. Except
for two studies [24,66] that did not specify mean luminance of the visual display, the remaining data were
obtained from studies [51,59,60,65,68,70,83] specifying mean display luminances ranging from 10. 7 (low
photopic) to 120 cd/m2 (medium photopic). This is an important consideration, since parvocellular and
magnocellular neurons respectively yield linear and nonlinear CRFs at photopic mean-luminance levels,
whereas both types of neurons tend to yield linear CRFs at scotopic mean-luminance levels [102].

24. Hall, S.D.; Holliday, I.E.; Hillebrand, A.; Furlong, P.L.; Singh, K.D.; Barnes, G.R. Distinct contrast response
functions in striate and extra-striate regions of visual cortex revealed with magnetoencephalography (MEG).
Clin. Neurophysiol. 2005, 116, 1716–1722. [CrossRef] [PubMed]

25. Lu, H.D.; Roe, A.W. Optical imaging of contrast response in macaque monkey V1 and V2. Cereb. Cortex 2007,
17, 2675–2695. [CrossRef] [PubMed]

26. Sani, I.; Santandrea, E.; Golzar, A.; Morrone, M.C.; Chelazzi, L. Selective tuning for contrast in macaque area
V4. J. Neurosci. 2013, 33, 18583–18596. [CrossRef] [PubMed]

27. Tootell, R.B.H.; Hadjikhani, N.K.; Vanduffel, W.; Liu, A.K.; Mendola, J.D.; Sereno, M.I.; Dale, A.M. Functional
analysis of primary visual cortex (V1) in humans. Proc. Natl. Acad. Sci. USA 1998, 95, 811–817. [CrossRef]
[PubMed]

28. Williford, T.; Maunsell, J.H.R. Effects of spatial attention on contrast response functions in macaque area V4.
J. Neurophysiol. 2006, 96, 40–54. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cub.2011.01.011
http://www.ncbi.nlm.nih.gov/pubmed/21277208
http://dx.doi.org/10.1073/pnas.93.26.15508
http://www.ncbi.nlm.nih.gov/pubmed/8986842
http://dx.doi.org/10.1016/j.visres.2003.12.007
http://www.ncbi.nlm.nih.gov/pubmed/15031091
http://dx.doi.org/10.1016/j.tics.2006.09.003
http://www.ncbi.nlm.nih.gov/pubmed/16997612
http://dx.doi.org/10.1038/nature04169
http://www.ncbi.nlm.nih.gov/pubmed/16244649
http://dx.doi.org/10.1038/nn1554
http://www.ncbi.nlm.nih.gov/pubmed/16234812
http://dx.doi.org/10.1016/S0896-6273(00)80592-9
http://dx.doi.org/10.1016/j.neuron.2005.05.012
http://www.ncbi.nlm.nih.gov/pubmed/15924866
http://dx.doi.org/10.1073/pnas.0508010102
http://www.ncbi.nlm.nih.gov/pubmed/16282374
http://dx.doi.org/10.1111/j.1467-9280.2007.01892.x
http://www.ncbi.nlm.nih.gov/pubmed/17470251
http://dx.doi.org/10.1167/11.4.15
http://www.ncbi.nlm.nih.gov/pubmed/21521832
http://dx.doi.org/10.1093/cercor/bht159
http://www.ncbi.nlm.nih.gov/pubmed/23833128
http://dx.doi.org/10.1364/JOSAA.20.001253
http://dx.doi.org/10.1016/j.visres.2005.06.022
http://www.ncbi.nlm.nih.gov/pubmed/16081128
http://dx.doi.org/10.1016/S0042-6989(00)00166-8
http://dx.doi.org/10.1016/j.clinph.2005.02.027
http://www.ncbi.nlm.nih.gov/pubmed/15953561
http://dx.doi.org/10.1093/cercor/bhl177
http://www.ncbi.nlm.nih.gov/pubmed/17264252
http://dx.doi.org/10.1523/JNEUROSCI.3465-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24259580
http://dx.doi.org/10.1073/pnas.95.3.811
http://www.ncbi.nlm.nih.gov/pubmed/9448245
http://dx.doi.org/10.1152/jn.01207.2005
http://www.ncbi.nlm.nih.gov/pubmed/16772516


Vision 2018, 2, 14 17 of 20

29. Although two investigations [26,28] reported an overall monotonic nonlinear increase (with amplification in
the low-contrast range) of neural CRFs, they also found that a subset of neurons showed contrast selectivity
(peak response not at a contrast of 1.0, but at lower contrasts) when the monkeys’ attention was directed
toward the stimuli falling in their receptive fields. This selectivity for contrast makes sense, since besides the
selective chromatic contrasts giving rise to distinguishable colors, selective achromatic contrasts giving rise
to distinguishable perceptual grey levels also are important features of visual stimuli [34].

30. Avidan, G.; Harel, M.; Hendler, T.; Ben-Bashat, D.; Zohary, E.; Malach, R. Contrast sensitivity in human visual
areas and its relationship to object recognition. J. Neurophysiol. 2002, 87, 3102–3116. [CrossRef] [PubMed]

31. Leopold, D.A.; Logothetis, N.K. Activity changes in early visual cortex reflect monkey’s percept during
binocular rivalry. Nature 1996, 379, 549–552. [CrossRef] [PubMed]

32. Logothetis, N.; Schall, J.D. Neuronal correlates of subjective visual perception. Science 1989, 245, 761–763.
[CrossRef] [PubMed]

33. Sheinberg, D.L.; Logothetis, N.K. The role of temporal cortical areas in perceptual organization. Proc. Natl.
Acad. Sci. USA 1997, 94, 3408–3413. [CrossRef] [PubMed]

34. Pashler, H.; Dobkins, K.; Huang, L. Is contrast just another feature for visual selective attention? Vis. Res.
2004, 44, 1403–1410. [CrossRef] [PubMed]

35. Albrecht, D.G.; Hamilton, D.B. Striate cortex of monkey and cat: Contrast response function. J. Neurophysiol.
1882, 48, 217–237. [CrossRef] [PubMed]

36. Watson, A.B.; Solomon, J.A. Model of visual contrast gain control and pattern masking. J. Opt. Soc. Am. A
1997, 14, 2379–2390. [CrossRef]

37. The Naka-Rushton equation is given by (C) = Rmax·Cα/(Cα
0.5 + Cα); where C is the variable contrast;

Rmax is the maximal response; C0.5 is the contrast producing half of the maximal response; and α is a
free-parameter exponent.

38. Felleman, D.J.; Burkhalter, A.; van Essen, D.C. Cortical connections of areas V3 and VP of macaque monkey
extrastriate visual cortex. J. Compart. Neurol. 1997, 379, 21–47. [CrossRef]

39. Salin, P.-A.; Bullier, J. Corticocortical connections in the visual system: Structure and function. Physiol. Rev.
1995, 75, 107–154. [CrossRef] [PubMed]

40. Shipp, S.; Zeki, S. The organization of connections between areas V5 and V2 in macaque monkey visual
cortex. Eur. J. Neurosci. 1989, 1, 333–354. [CrossRef] [PubMed]

41. Bullier, J. Integrated model of visual processing. Brain Res. Rev. 2001, 36, 96–107. [CrossRef]
42. Hochstein, S.; Ahissar, M. View from the top: Hierarchies and reverse hierarchies in the visual system.

Neuron 2002, 36, 791–804. [CrossRef]
43. Wyatte, D.; Jilk, D.J.; O’Reilly, R.C. Early recurrent feedback facilitates visual object recognition under

challenging conditions. Front. Psychol. 2014, 5, 674. [CrossRef] [PubMed]
44. Cardin, V.; Friston, K.J.; Zeki, S. Top-down modulations in the visual form pathway revealed with dynamic

causal modeling. Cereb. Cortex 2011, 21, 550–562. [CrossRef] [PubMed]
45. Hupé, J.M.; James, A.C.; Payne, B.R.; Lomber, S.G.; Girard, P.; Bullier, J. Cortical feedback improves

discrimination between figure and background by V1, V2 andV3 neurons. Nature 1998, 394, 784–787.
[CrossRef] [PubMed]

46. Campbell, F.W.; Maffei, L. The tilt aftereffect: A fresh look. Vis. Res. 1971, 11, 833–840. [CrossRef]
47. Morant, R.B.; Harris, J.R. Two different after-effects of exposure to visual tilts. Am. J. Psychol. 1965, 78,

218–226. [CrossRef] [PubMed]
48. Tomassini, A.; Solomon, J.A. Awareness is the key to attraction: Dissociating the tilt illusions via conscious

perception. J. Vis. 2014, 14, 15. [CrossRef] [PubMed]
49. Clifford, C.W. The tilt illusion: Phenomenology and functional implications. Vis. Res. 2014, 104, 3–11.

[CrossRef] [PubMed]
50. Blakemore, C.; Carpenter, R.H.S.; Georgeson, M.A. Lateral inhibition between orientation detectors in the

human visual system. Nature 1970, 228, 37–39. [CrossRef] [PubMed]
51. Pearson, J.; Clifford, C.W.G. Suppressed patterns alter vision during binocular rivalry. Curr. Biol. 2005, 15,

2142–2148. [CrossRef] [PubMed]
52. A similar finding [91] has been reported when the surrounding tilt-inducing grating is rendered invisible by

adaption-induced blindness (AIB). Moreover, AIB, like eye-specific b-r suppression, most likely occurs at a
low, striate level of processing.

http://dx.doi.org/10.1152/jn.2002.87.6.3102
http://www.ncbi.nlm.nih.gov/pubmed/12037211
http://dx.doi.org/10.1038/379549a0
http://www.ncbi.nlm.nih.gov/pubmed/8596635
http://dx.doi.org/10.1126/science.2772635
http://www.ncbi.nlm.nih.gov/pubmed/2772635
http://dx.doi.org/10.1073/pnas.94.7.3408
http://www.ncbi.nlm.nih.gov/pubmed/9096407
http://dx.doi.org/10.1016/j.visres.2003.11.025
http://www.ncbi.nlm.nih.gov/pubmed/15066399
http://dx.doi.org/10.1152/jn.1982.48.1.217
http://www.ncbi.nlm.nih.gov/pubmed/7119846
http://dx.doi.org/10.1364/JOSAA.14.002379
http://dx.doi.org/10.1002/(SICI)1096-9861(19970303)379:1&lt;21::AID-CNE3&gt;3.0.CO;2-K
http://dx.doi.org/10.1152/physrev.1995.75.1.107
http://www.ncbi.nlm.nih.gov/pubmed/7831395
http://dx.doi.org/10.1111/j.1460-9568.1989.tb00799.x
http://www.ncbi.nlm.nih.gov/pubmed/12106143
http://dx.doi.org/10.1016/S0165-0173(01)00085-6
http://dx.doi.org/10.1016/S0896-6273(02)01091-7
http://dx.doi.org/10.3389/fpsyg.2014.00674
http://www.ncbi.nlm.nih.gov/pubmed/25071647
http://dx.doi.org/10.1093/cercor/bhq122
http://www.ncbi.nlm.nih.gov/pubmed/20621984
http://dx.doi.org/10.1038/29537
http://www.ncbi.nlm.nih.gov/pubmed/9723617
http://dx.doi.org/10.1016/0042-6989(71)90005-8
http://dx.doi.org/10.2307/1420493
http://www.ncbi.nlm.nih.gov/pubmed/14290750
http://dx.doi.org/10.1167/14.12.15
http://www.ncbi.nlm.nih.gov/pubmed/25311303
http://dx.doi.org/10.1016/j.visres.2014.06.009
http://www.ncbi.nlm.nih.gov/pubmed/24995379
http://dx.doi.org/10.1038/228037a0
http://www.ncbi.nlm.nih.gov/pubmed/5456209
http://dx.doi.org/10.1016/j.cub.2005.10.066
http://www.ncbi.nlm.nih.gov/pubmed/16332541


Vision 2018, 2, 14 18 of 20

53. Lee, S.-H.; Blake, R.; Heeger, D. Travelling waves of activity in primary visual cortex during binocular rivalry.
Nat. Neurosci. 2005, 8, 22–23. [CrossRef] [PubMed]

54. Polonsky, A.; Blake, R.; Braun, J.; Heeger, D.J. Neuronal activity in human primary visual cortex correlates
with perception during binocular rivalry. Nat. Neurosci. 2000, 3, 1153–1159. [CrossRef] [PubMed]

55. Herzog, M.H.; Sayim, B.; Chicherov, V.; Manassi, M. Crowding, grouping, and object recognition: A matter
of appearance. J. Vis. 2015, 15, 5. [CrossRef] [PubMed]

56. Levi, D.M. Crowding—An essential bottleneck for object recognition: A mini-review. Vis. Res. 2008, 48,
635–654. [CrossRef] [PubMed]

57. Pelli, D.G.; Tillman, K.A. The uncrowded window of object recognition. Nat. Neurosci. 2008, 11, 1129–1135.
[CrossRef] [PubMed]

58. Whitney, D.; Levi, D.M. Visual crowding: A fundamental limit on conscious perception and object recognition.
Trends Cognitive Sci. 2011, 15, 160–168. [CrossRef] [PubMed]

59. Levi, D.M.; Carney, T. Crowding in peripheral vision: Why bigger Is better. Curr. Biol. 2009, 19, 1988–1993.
[CrossRef] [PubMed]

60. Pelli, D.G.; Palomares, M.; Majaj, N.J. Crowding is unlike ordinary masking: Distinguishing feature
integration from detection. J. Vis. 2004, 4, 12. [CrossRef] [PubMed]

61. Pelli et al. used Weber-contrast values to plot their data. We have converted them to Michelson-contrast
values to make their results compatibly comparable with the Michelson contrast used by Levi and Carney.
This resulted in Pelli et al.’s Weber-contrast range of 0 to 1 being compressed into a Michelson-contrast
range of 0 to 0.33. For Michelson contrasts larger than 0.33, the relative thresholds for Pelli et al.’s data were
assumed to be those extrapolated via the Naka-Rushton function.

62. Using the same stimuli and methods, Levi & Carney [82] replicated this trend (shown in the right panel of
their Figure 5) for normal (nonamblyopic) observers. However, Yeotikar et al. [103] failed to replicate the
effects of flanker contrast variations on the strength of crowding. They ascribed the discrepancy of findings
to differences in separation between the target and flanker Gabors in the Levi & Carney [59,82] studies and
in their study. We believe that another possible source of the discrepancy is that in the Levi & Carney studies
the carrier frequency of the target Gabors was 2.5 c/deg with a 1/f Gaussian standard deviation of 0.4,
whereas in the Yeotikar et al. study the carrier frequency was 6 c/deg with a Gaussian standard deviation
of 0.16. We suggest that the orientation of the off-horizontal, tilted Gabor patches used as targets by Levi
and Carney may have been more difficult to discriminate from flanking horizontally oriented ones than the
similar off-horizontally tilted target Gabors used by Yeotikar et al., which were more likely to “pop out” as
different from the flanking horizontally tilted Gabor patches.

63. The Pelli et al. results shown in Figure 5 were obtained from their Figure 11a by averaging results obtained
with center-to-center target-flanker separations of 0.50 deg and those with center-to-center target-flanker
separations of 0.75 deg, at which target and flankers did not overlap spatially. Since at these separations the
0.32-deg wide target and flanker letters used by Pelli et al. did not overlap spatially, ordinary masking with
overlapping stimuli was not involved. Also, since the data of Pelli et al.’s Figure 11a were somewhat noisy,
the data values extracted from it as well as from the less noisy data in Levi and Carney’s [59] Figure 3 were
obtained from the best fitting functions found in both figures.

64. Legge, G.E.; Foley, J.M. Contrast masking in human vision. J. Opt. Soc. Am. 1980, 70, 1458–1471. [CrossRef]
[PubMed]

65. Watanabe, K.; Paik, Y.; Blake, R. Preserved gain control for luminance contrast during binocular rivalry
suppression. Vis. Res. 2004, 44, 3065–3071. [CrossRef] [PubMed]

66. Zenger-Landoldt, B.; Heeger, D.J. Response suppression in V1 agrees with psychophysics of surround
masking. J. Neurosci. 2003, 23, 6884–6893.

67. The right panel of Figure 6 was derived from Zenger-Landolt and Heeger’s Figure 9. To show the tight
coupling between fMRI amplitude and psychophysical increment thresholds, they scaled the increment
thresholds to the range of fMRI amplitudes.

68. Hu, Q.; Klein, S.A.; Carney, T. Can sinusoidal Vernier acuity be predicted by contrast discrimination? Vis.
Res. 1993, 33, 1241–1258. [CrossRef]

69. For each of the three pedestal spatial frequencies of 5, 10 and 20 c/deg, the TvC functions, averaged across
the two Os showed strong linearities that accounting for 98, 97 and 96% of systematic variability, respectively.

70. Greenlee, M.W.; Heitger, F. The functional role of contrast adaptation. Vis. Res. 1998, 28, 791–797. [CrossRef]

http://dx.doi.org/10.1038/nn1365
http://www.ncbi.nlm.nih.gov/pubmed/15580269
http://dx.doi.org/10.1038/80676
http://www.ncbi.nlm.nih.gov/pubmed/11036274
http://dx.doi.org/10.1167/15.6.5
http://www.ncbi.nlm.nih.gov/pubmed/26024452
http://dx.doi.org/10.1016/j.visres.2007.12.009
http://www.ncbi.nlm.nih.gov/pubmed/18226828
http://dx.doi.org/10.1038/nn.2187
http://www.ncbi.nlm.nih.gov/pubmed/18828191
http://dx.doi.org/10.1016/j.tics.2011.02.005
http://www.ncbi.nlm.nih.gov/pubmed/21420894
http://dx.doi.org/10.1016/j.cub.2009.09.056
http://www.ncbi.nlm.nih.gov/pubmed/19853450
http://dx.doi.org/10.1167/4.12.12
http://www.ncbi.nlm.nih.gov/pubmed/15669917
http://dx.doi.org/10.1364/JOSA.70.001458
http://www.ncbi.nlm.nih.gov/pubmed/7463185
http://dx.doi.org/10.1016/j.visres.2004.07.011
http://www.ncbi.nlm.nih.gov/pubmed/15474579
http://dx.doi.org/10.1016/0042-6989(93)90211-E
http://dx.doi.org/10.1016/0042-6989(88)90026-0


Vision 2018, 2, 14 19 of 20

71. Liu, T.; Jiang, Y.; Sun, X.; He, S. Reduction of the crowding effect in spatially adjacent but cortically remote
visual stimuli. Curr. Biol. 2009, 19, 127–132. [CrossRef] [PubMed]

72. Motter, B.C.; Simoni, D.A. The roles of cortical image separation and size in active visual search performance.
J. Vis. 2007, 7, 6. [CrossRef] [PubMed]

73. Tripathy, S.P.; Cavanagh, P. The extent of crowding in peripheral vision does not scale with target size.
Vis. Res. 2002, 42, 2357–2369. [CrossRef]

74. The level at which post-striate feature conjunctions are processed [104–107] implicates also the level at which
attentional effects may play a major role [108], this despite the fact the role of attention in crowding is in
dispute [57].

75. Kooi, F.L.; Toet, A.; Tripathy, S.P.; Levi, D.M. The effect of similarity and duration on spatial interaction in
peripheral vision. Spat. Vis. 1994, 8, 255–279. [CrossRef] [PubMed]

76. Bair, W.; Cavanaugh, J.R.; Movshon, J.A. Time course and time–distance relationships for surround
suppression in macaque V1 neurons. J. Neurosci. 2003, 23, 7690–7701. [PubMed]

77. Cavanaugh, J.R.; Bair, W.; Movshon, J.A. Nature and interaction of signals from the receptive field center
and surround in macaque V1 neurons. J. Neurophysiol. 2002, 88, 2530–2546. [CrossRef] [PubMed]

78. Webb, B.S.; Dhruv, N.T.; Solomon, S.G.; Tailby, C.; Lennie, P. Early and late mechanisms of surround
suppression in striate cortex of macaque. J. Neurosci. 2005, 25, 11666–11675. [CrossRef] [PubMed]

79. Polat, U. Functional architecture of long-range perceptual interactions. Spat. Vis. 1999, 12, 143–162. [CrossRef]
[PubMed]

80. Polat, U.; Sagi, D. Temporal asymmetry of collinear lateral interactions. Vis. Res. 2006, 46, 953–960. [CrossRef]
[PubMed]

81. Polat, U.; Sterkin, A.; Yehezkel, O. Spatio-temporal low-level neural networks account for visual masking.
Adv. Cognitive Psychol. 2007, 3, 153–165. [CrossRef] [PubMed]

82. Levi, D.M.; Carney, T. The effect of flankers on three tasks in central, peripheral, and amblyopic vision. J. Vis.
2011, 11, 10. [CrossRef] [PubMed]

83. Chung, S.T.; Levi, D.M.; Legge, G.E. Spatial-frequency and contrast properties of crowding. Vis. Res. 2001,
41, 1833–1850. [CrossRef]

84. The Chung et al. results shown in our Figure 8 were derived from the left panel of their Figure 9, which
shows threshold elevations, for target and flanker letters having a spatial frequency of 1.25 c/letter, which
did not change with flanker contrasts below 0.06, but on a log-log scale increased linearly with a slope of 0.3
as flanker contrasts increased beyond a value of 0.06. Similar results, depicted in the right panel of their
Figure 9, were obtained with a target and flanker spatial frequency of 2.5 d/deg, but here with a smaller
slope of 0.13.

85. Kaplan, E.; Shapley, R.M. The primate retina contains two types of ganglion cells, with high and low contrast
sensitivity. Proc. Natl. Acad. Sci. USA 1986, 83, 2755–2757. [CrossRef] [PubMed]

86. Gardner, J.L.; Sun, P.; Waggoner, R.A.; Ueno, K.; Tanaka, K.; Cheng, K. Contrast adaptation and representation
in human early visual cortex. Neuron 2005, 47, 607–620. [CrossRef] [PubMed]

87. Li, X.; Lu, Z.-L.; Tjan, B.S.; Dosher, B.A.; Chu, W. Blood oxygenation level-dependent contrast response
functions identify mechanisms of covert attention in early visual areas. Proc. Natl. Acad. Sci. USA 2008, 105,
6202–6207. [CrossRef] [PubMed]

88. Schiller, P.H.; Logothetis, N.K. The color-opponent and broad-band channels of the primate visual system.
Trends Neurosci. 1990, 13, 392–398. [CrossRef]

89. Albert, M.K. Mechanisms of modal and amodal interpolation. Psychol. Rev. 2007, 114, 455–469. [CrossRef]
[PubMed]

90. Murray, M.M.; Foxe, D.M.; Javitt, D.C.; Foxe, J.J. Setting boundaries: Brain dynamics of modal and amodal
illusory shape completion in humans. J. Neurosci. 2004, 24, 6898–6903. [CrossRef] [PubMed]

91. Motoyoshi, I.; Hayakawa, S. Adaptation-induced blindness to sluggish stimuli. J. Vis. 2010, 10, 16. [CrossRef]
[PubMed]

92. Motter, B.C. Modulation of transient and sustained response components of V4 neurons by temporal
crowding in flashed stimulus sequences. J. Neurosci. 2006, 26, 9683–9694. [CrossRef] [PubMed]

93. Brown, J.M.; Breitmeyer, B.G.; Hale, R.G.; Plummer, R.W. Contrast sensitivity indicates processing level of
visual illusions. J. Exp. Psychol. 2018, in press.

http://dx.doi.org/10.1016/j.cub.2008.11.065
http://www.ncbi.nlm.nih.gov/pubmed/19135367
http://dx.doi.org/10.1167/7.2.6
http://www.ncbi.nlm.nih.gov/pubmed/18217821
http://dx.doi.org/10.1016/S0042-6989(02)00197-9
http://dx.doi.org/10.1163/156856894X00350
http://www.ncbi.nlm.nih.gov/pubmed/7993878
http://www.ncbi.nlm.nih.gov/pubmed/12930809
http://dx.doi.org/10.1152/jn.00692.2001
http://www.ncbi.nlm.nih.gov/pubmed/12424292
http://dx.doi.org/10.1523/JNEUROSCI.3414-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16354925
http://dx.doi.org/10.1163/156856899X00094
http://www.ncbi.nlm.nih.gov/pubmed/10221425
http://dx.doi.org/10.1016/j.visres.2005.09.031
http://www.ncbi.nlm.nih.gov/pubmed/16274724
http://dx.doi.org/10.2478/v10053-008-0021-4
http://www.ncbi.nlm.nih.gov/pubmed/20517505
http://dx.doi.org/10.1167/11.1.10
http://www.ncbi.nlm.nih.gov/pubmed/21220540
http://dx.doi.org/10.1016/S0042-6989(01)00071-2
http://dx.doi.org/10.1073/pnas.83.8.2755
http://www.ncbi.nlm.nih.gov/pubmed/3458235
http://dx.doi.org/10.1016/j.neuron.2005.07.016
http://www.ncbi.nlm.nih.gov/pubmed/16102542
http://dx.doi.org/10.1073/pnas.0801390105
http://www.ncbi.nlm.nih.gov/pubmed/18413602
http://dx.doi.org/10.1016/0166-2236(90)90117-S
http://dx.doi.org/10.1037/0033-295X.114.2.455
http://www.ncbi.nlm.nih.gov/pubmed/17500635
http://dx.doi.org/10.1523/JNEUROSCI.1996-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15295024
http://dx.doi.org/10.1167/10.2.16
http://www.ncbi.nlm.nih.gov/pubmed/20462317
http://dx.doi.org/10.1523/JNEUROSCI.5495-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16988039


Vision 2018, 2, 14 20 of 20

94. White, M. The effect of the nature of the surround on the perceived lightness of grey bars within square-wave
test gratings. Perception 1981, 10, 215–230. [CrossRef] [PubMed]

95. Felleman, D.J.; Xiao, Y.; McClendon, E. Modular organization of occipito-temporal pathways: Cortical
connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque
monkeys. J. Neurosci. 1997, 17, 3185–3200. [PubMed]

96. Murray, M.M.; Wylie, G.R.; Higgins, B.A.; Javitt, D.C.; Schroeder, C.E.; Foxe, J.J. The spatiotemporal dynamics
of illusory contour processing: Combined high-density electrical mapping, sources analysis, and functional
magnetic resonance imaging. J. Neurosci. 2002, 22, 5055–5073. [PubMed]

97. McCourt, M.E.; Blakeslee, B. Contrast-matching analysis of grating induction and suprathreshold contrast
perception. J. Opt. Soc. Am. A 1994, 11, 14–24. [CrossRef]

98. Brown, J.M.; Gyoba, J.; May, J.G. Stationary phantoms and grating induction with oblique inducing gratings:
Implications for different mechanisms underlying the two phenomena. Psychon. Bull. Rev. 2001, 8, 278–283.
[CrossRef] [PubMed]

99. Kim, C.-Y.; Blake, R. Psychophysical magic: Rendering the visible ‘invisible’. Trends Cognitive Sci. 2005, 9,
381–388. [CrossRef] [PubMed]

100. Breitmeyer, B.G.; Öğmen, H. Visual Masking: Time Slices through Conscious and Unconscious Vision; Oxford
University Press: Oxford, UK, 2006.

101. The near linearity of the normalized V1 neural-ensemble response remains robust over variations not only
of C0.5 (as demonstrated above) but also over variations of α and of Rmax. In fact, it remains intact when all
three are varied independently and randomly. We ran four simulations in which Rmax could vary randomly
in steps of 0.05 from 0.65 to 1.0, C0.5 randomly in steps of 0.1 from 0.1 to 0.8, and α randomly in steps
of 0.4 from 3.6 to 6.4. The four best linear fits accounted for 95.6, 99.3, 96.7, and 90.9% of the systematic
variability. The best linear fit of the average of the four V1 ensemble responses accounted for 98.2% of
systematic variability.

102. Purpura, K.; Kaplan, E.; Shapley, R.M. Background light and the contrast gain of primate P and M retinal
ganglion cells. Proc. Natl. Acad. Sci. USA 1988, 85, 4534–4537. [CrossRef] [PubMed]

103. Yeotikar, N.S.; Khuu, S.K.; Asper, L.J.; Suttle, C.M. Configuration specificity of crowding in peripheral vision.
Vis. Res. 2011, 51, 1239–1248. [CrossRef] [PubMed]

104. Anzai, A.; Peng, X.; Van Essen, D.C. Neurons in monkey visual area V2 encode combinations of orientations.
Nat. Neurosci. 2007, 10, 1313–1321. [CrossRef] [PubMed]

105. Ito, M.; Komatsu, H. Representation of angles embedded within contour stimuli in area V2 of macaque
monkeys. J. Neurosci. 2004, 24, 3313–3324. [CrossRef] [PubMed]

106. Pasupathy, A.; Connor, C.E. Population coding of shape in area V4. Nat. Neurosci. 2002, 5, 1332–1338.
[CrossRef] [PubMed]

107. Tsunoda, K.; Yamane, Y.; Nishizaki, M.; Tanifuji, M. Complex objects are represented in macaque
inferotemporal cortex by the combination of feature columns. Nat. Neurosci. 2001, 4, 832–838. [CrossRef]
[PubMed]

108. Robertson, L.C. Binding, spatial attention and perceptual awareness. Nat. Neurosci. Rev. 2003, 4, 93–102.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1068/p100215
http://www.ncbi.nlm.nih.gov/pubmed/7279550
http://www.ncbi.nlm.nih.gov/pubmed/9096153
http://www.ncbi.nlm.nih.gov/pubmed/12077201
http://dx.doi.org/10.1364/JOSAA.11.000014
http://dx.doi.org/10.3758/BF03196162
http://www.ncbi.nlm.nih.gov/pubmed/11495115
http://dx.doi.org/10.1016/j.tics.2005.06.012
http://www.ncbi.nlm.nih.gov/pubmed/16006172
http://dx.doi.org/10.1073/pnas.85.12.4534
http://www.ncbi.nlm.nih.gov/pubmed/3380804
http://dx.doi.org/10.1016/j.visres.2011.03.016
http://www.ncbi.nlm.nih.gov/pubmed/21458478
http://dx.doi.org/10.1038/nn1975
http://www.ncbi.nlm.nih.gov/pubmed/17873872
http://dx.doi.org/10.1523/JNEUROSCI.4364-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/15056711
http://dx.doi.org/10.1038/972
http://www.ncbi.nlm.nih.gov/pubmed/12426571
http://dx.doi.org/10.1038/90547
http://www.ncbi.nlm.nih.gov/pubmed/11477430
http://dx.doi.org/10.1038/nrn1030
http://www.ncbi.nlm.nih.gov/pubmed/12563280
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Relevance of Contrast Response Functions (CRFs) 
	Interrelatedness of Naturalistic Distributions of Local Contrasts, Cortical CRFs, and the Distinction between Perceptual and Preperceptual Vision 
	Relating CRFs of Individual Neurons to CRFs of Neural Ensembles 

	Contrast-Dependent Effects in Visual Illusions, Crowding, and Pedestal Masking 
	Visual Illusions 
	Visual Crowding 
	Pedestal Masking 

	Discussion, Implications, and Directions for Further Research 
	A Distinction between Functional and Anatomic Levels of Processing 
	Interpretations of Crowding Studies 
	The Problem of Residual Nonlinearities 
	Extensions to Other Visual Phenomena 

	Summary and Conclusions 
	
	References

