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Abstract
Islet dysfunction is central in type 2 diabetes and full-blown type 2 diabetes develops first when the beta cells lose their
ability to secrete adequate amounts of insulin in response to raised plasma glucose. Several mechanisms behind beta cell
dysfunction have been put forward but many important questions still remain. Furthermore, our understanding of the
contribution of each islet cell type in type 2 diabetes pathophysiology has been limited by technical boundaries. Closing
this knowledge gap will lead to a leap forward in our understanding of the islet as an organ and potentially lead to improved
treatments. The development of single-cell RNA sequencing (scRNAseq) has led to a breakthrough for characterising the
transcriptome of each islet cell type and several important observations on the regulation of cell-type-specific gene expres-
sion have been made. When it comes to identifying type 2 diabetes disease mechanisms, the outcome is still limited. Several
studies have identified differentially expressed genes, although there is very limited consensus between the studies. As with
all new techniques, scRNAseq has limitations; in addition to being extremely expensive, genes expressed at low levels may
not be detected, noise may not be appropriately filtered and selection biases for certain cell types are at hand. Furthermore,
recent advances suggest that commonly used computational tools may be suboptimal for analysis of scRNAseq data in
small-scale studies. Fortunately, development of new computational tools holds promise for harnessing the full potential of
scRNAseq data. Here we summarise how scRNAseq has contributed to increasing the understanding of various aspects of
islet biology as well as type 2 diabetes disease mechanisms. We also focus on challenges that remain and propose steps to
promote the utilisation of the full potential of scRNAseq in this area.
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Abbreviations
bulkRNAseq Bulk RNA sequencing
DE Differential expression
DiNA Differential network analysis
GWAS Genome-wide association study
PP cells Pancreatic polypeptide cells
RePACT Regressing principle components for the

assembly of continuous trajectory
scRNAseq Single-cell RNA sequencing

Introduction

Impaired islet function is central in type 2 diabetes but the
underlying mechanisms are not fully understood [1, 2]. The
islets consist of beta, alpha, delta, PP and ghrelin cells (also
known as epsilon cells), producing insulin, glucagon, somato-
statin, pancreatic polypeptide and ghrelin, respectively [3].
Experiments in animal models have provided important
contributions to our understanding of islet pathophysiology
in type 2 diabetes. Access to human islets from organ donors
has enabled experiments that have increased our understand-
ing of human islet function substantially despite the inherent
limitation of impact of isolation and culture procedures, as
well as often limited information on medical history [4–6].
In the past decade single-cell RNA sequencing (scRNAseq)
has impacted several disciplines within biology and facilitated
cataloguing of cell types in entire tissues and organisms [7–9].
The ability to profile individual cell transcriptomes is power-
ful and in recent years the technology has gained
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unprecedented adoption over bulk RNA sequencing
(bulkRNAseq). Given its higher efficiency in capturing
RNA transcripts, scRNAseq has made transcriptome profiling
of rare cell populations possible despite the inherent limitation
in the amount of starting material. The method enables single-
cell resolution of gene expression parameters (e.g. variability,
shape of gene expression distribution and transcriptional
kinetics) that would be masked in bulkRNAseq [10]. Most
tissues and cell populations are heterogeneous and
scRNAseq provides a robust approach for characterising this
heterogeneity. The technique is also invaluable in defining
how distinct populations of cells may respond to stimuli
(e.g. treatment, surroundings, etc.). Another key application
of scRNAseq is the prediction of cellular progression along
dynamic processes, allowing for detection of key drivers of
the process and possibly allowing tracing (e.g. path from
progenitors to mature lineages).

Despite the remarkable progress in scRNAseq technolo-
gy, significant improvements are still needed. Most
scRNAseq protocols capture 5–20% of the transcripts in a
cell, with the most sensitive full-transcript-length-coverage
protocols capable of capturing up to 40% [11]. This
requires several cells to be profiled to overcome technical
variability and attain sufficient statistical power. It is typi-
cal to detect clusters in scRNAseq studies and the bioinfor-
matic workflow often involves gene selection, dimension-
ality reduction and cluster discovery, culminating in a cell–
cell distance measure. This distance tends to become
ambiguous as the number of gene features increases due
to the ‘curse of dimensionality’. Furthermore, analysis of
dynamic processes often culminates in trajectories that are
mere in silico predictions that must be complemented with
biological knowledge for validation and directionality.
Interestingly, the discovery that 15–25% of reads mapped
towards intronic gene regions in most scRNAseq protocols
enables inference of previous or expected states of an indi-
vidual cell based on RNA velocity prediction [12, 13]. This
helps to overcome the assumption of ergodicity that under-
pins most density-based trajectory methods.

Analysis of scRNAseq data is a rapidly evolving field
when it comes to development of computational tools to
utilise the full potential of the technique. The continued
advancements in computational tools as well as
scRNAseq protocols have the potential to significantly
increase our understanding of disease mechanisms in
complex tissues. In the last 5 years, several scRNAseq
studies on human and mouse islets, as well as on stem-
cell-derived islet-like cells, have been presented and here
we will attempt to summarise how scRNAseq has
increased our understanding of human islet biology and
the challenges that remain. We also suggest potential
ways forward that could further improve the utilisation
of scRNAseq.

Studies in islets from donors without diabetes

To date, 19 studies [14–32] have presented scRNAseq
data on human islets, with varying characteristics, includ-
ing sequencing depth, cell number and number of donors
(electronic supplementary material [ESM] Table 1). Seven
studies [14–19, 32] have compared samples from donors
with and without type 2 diabetes and are discussed below.
Overall, the studies show that scRNAseq is technically
feasible in human islets and that there are pros and cons
for the different protocols used. FACS-based cell capture
methods (e.g. Smart-seq2) yield an under-representation
of beta cells and an over-representation of alpha cells
when compared with native islets [17]. This bias seems
less apparent for the Fluidigm C1 method [14, 16, 18],
which appears to be more prone to generating doublets
(i.e. erroneous sequencing of two cells) [25]. To date,
two studies [19, 31] have utilised Drop-seq, a notable
feature being the low number of ghrelin cells [19].
Moreover, single-nucleus RNA sequencing was recently
shown to be a reliable approach for transcriptomic profil-
ing of frozen islets, thus presenting the opportunity for
use of archived islet material [29]. Different methods for
cell type clustering achieved comparable results and accu-
rately clustered cells into the expected pancreatic cell
populations. This is likely attributed to the high mRNA
content of the main hormonal product of each cell type
(50% of the total transcripts for beta, delta and PP cells)
[17]. To date, there have been no big surprises with
respect to cell types and no evidence for novel cell types
has been reported.

In a comprehensive assessment of five studies, Mawla
et al [33] showed that many beta cell marker genes are only
detected in fractions of beta cells. Although scRNAseq is
not zero-inflated [34], absence of expression of single
genes needs to be interpreted with caution as the risk of a
false-negative result is high [24]. Nevertheless, scRNAseq
has generated road maps of cell-type-specific gene expres-
sion in an unprecedented manner, providing information
(e.g. expression of receptors, transcription factors, cell
surface markers for sorting by FACS, and genome-wide
association study [GWAS] genes) that could guide future
experimentation and shed light on the cellular basis for
genetic risk. Perhaps one of the most significant contribu-
tions is the characterisation of the rarer islet cell types,
delta, PP and ghrelin cells, which have not hitherto been
possible to sort by FACS [17, 24].

After confirming that islets exhibit the expected cell-type
composition in agreement with established models based on
histological studies, much attention has focused on subpopu-
lations of cells, particularly of beta cells. It has long been
known that not all beta cells are equal [35–37], and with the
advent of scRNAseq there were high hopes of gaining insights
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into transcriptomic differences between beta cell subpopula-
tions. Six studies report subpopulations of beta cells [15, 17,
19–21, 27], while others do not [16, 18, 25]. Mawla and
Huising [33] compared genes reported to drive the subpopu-
lations in five studies and found surprisingly little consensus,
with not one single gene being replicated between all studies.
It is still not known whether scRNAseq-derived subpopula-
tions are, as discussed in [33, 36], a consequence of low detec-
tion rate by the technique leading to an artefactual overesti-
mation of heterogeneity among cells. It is worth mentioning
that clustering into subpopulations is dependent on the choice
of method and the cut-offs selected, as shown in three islet
datasets [38]. Furthermore, the extent to which subpopulations
are driven by donor differences remains to be determined.
With one exception [17], the reported studies do not specify
influence of donors. Thus, observations of heterogeneity
based on scRNAseq data should be carefully validated, either
histologically (preferably in native pancreatic tissue to rule out
influence of the isolation procedure) or in live cell experi-
ments allowing for correlation of gene expression with func-
tional readouts. An elegant example of the latter is a study
from MacDonald’s group [15], who sequenced cells after
thorough electrophysiological characterisation (a technique
known as patch-seq). Using this approach they linked cellular
functional properties, including exocytosis, to differences in
the transcriptome and found that beta and alpha cells exhibited
significant transcriptomic and electrophysiological heteroge-
neity. Furthermore, by using 484 genes that were highly
expressed and correlated with electrophysiological parame-
ters, the functional properties of a beta cell could be predicted.

Several important f indings made possible by
scRNAseq need to be highlighted. Fang et al [19] found
1188 beta cell genes associated with obesity and
Segerstolpe et al [17] reported genes (e.g. PCSK1N) with
cell-type-specific correlation to BMI. Several of the cell-
type-resolved, BMI-correlated genes did not correlate
with BMI when using a simulated bulk analysis [17]. By
studying islets from donors spanning from 1 month to
54 years of age, Enge et al [22] found that transcriptional
noise increases with age and associates with cellular
stress. In addition, somatic mutations increased with age
(both in alpha and beta cells but particularly in duct cells)
and, as a sign of potential cellular fate drift, atypical
(double) hormone expression increased with age [22]. It
should be mentioned that not many donors were used for
each age and larger follow-up studies are warranted.
Furthermore, Wang et al showed that alpha and beta cells
from juvenile donors (19 and 24 months of age) differ
from adult cells, indicative of incomplete differentiation
[14]. As an example, a large fraction of genes enriched in
adult beta cells were found to be expressed in juvenile
alpha cells. These findings were corroborated, and a
refined analysis of the postnatal islet maturation process

was presented, in a significantly larger study from the
same group [32].

Evidence for proliferating alpha cells has been demonstrat-
ed [14, 17–19, 26]. Dominguez Gutierrez et al [26] found that
alpha cells proliferate at a fivefold higher rate than beta cells
from the same donors and verified such cells with in situ
hybridisation. Pseudotime analysis revealed a progressive
increase in cell cycle score along the proliferating subpopula-
tion state and several genes important for regulating alpha cell
proliferation were put forward. The authors suggest replica-
tion of existing alpha cells as a source of renewal of alpha cells
in adulthood [26]. On the same note, Li et al [30] and
Marquina-Sanchez et al [31] used scRNAseq for assessing
artemether-induced effects primarily on alpha cell gene
expression.

Xin et al [27] identified beta cells clusters, with varying
expression of INS and endoplasmic reticulum stress genes.
Using pseudotime analysis, the authors proposed that beta
cells transition between a state of activity with high INS
expression and a state of recovery with low of INS expression
and increased unfolded protein response activation [27]. In
another study, Muraro et al [20] identified cell-type-enriched
surface markers and tested their usefulness for sorting of alpha
and beta cells using FACS. Improved alpha cell yield was
seen when using CD24 and CD44 for sorting out acinar and
ductal cell, respectively. TM4SF4 was found to be highly
enriched in alpha cells and an 85% pure alpha cell population
was achieved when sorting for its encoded protein (transmem-
brane 4 L6 familymember 4; TM4SF4) [20]. In another study,
based on the same dataset, a protocol for scRNAseq data-
guided sorting by FACS without antibodies was developed
[39].

It is not well known how pancreatic cells are renewed and
from which cellular source. Using a novel computational
approach, StemID, Grün et al [28] identified subpopulations
of pancreatic duct cells as potential multipotent cells. Notably,
a subpopulation expressing FTH1 and FTL was suggested to
differentiate into beta cells and co-expression of ferritin light
chain (FTL) and insulin in human ductal epithelial cells was
confirmed immunohistochemically. The finding that StemID-
identified Lgr5-expressing cells in the intestine of mice, as
well as known stem cell populations in bone marrow, lends
credibility to the pancreatic data. The concept of duct cells as
progenitors gains support from a study on sorted duct cells
[40]. Notably, when such cells were transplanted under the
kidney capsule of immunodeficient mice, differentiation
along all pancreatic lineages was observed.

Combining the sequencing depth and low cost of
bulkRNAseq with the resolution of scRNAseq, using
deconvolution for cell type adjustment is an attractive idea.
Baron et al [21] developed a bulk sequence single-cell
deconvolution analysis pipeline (Bseq-SC) and used their
scRNAseq data for deconvolution of a published
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bulkRNAseq dataset [41]. Notably, many of the previously
reported HbA1c-level-associated genes were not significantly
associated after cell type adjustment. Further studies, prefera-
bly using scRNAseq and bulkRNAseq data from the same
donors, are warranted to understand the potential and repro-
ducibility of this approach.

Mouse models have been instrumental for our understand-
ing of islet biology and evaluation of how well mouse islets
reflect human islets was assessed in two studies [18, 21].
When comparing all genes, strong correlations were seen
between non-diabetic human expression and expression of
mouse homologous genes for both alpha and beta cells [18,
21]. However, for genes enriched in alpha or beta cells there
were considerable differences between the two species [18].
For a summary of scRNAseq studies in mouse islets see Text
box 1. These findings highlight the need for human islet
experiments and the need for further evaluation of how well
mouse models, including type 2 diabetes models, reflect the
situation in humans.

Studies in islets from donors with type 2
diabetes

Understanding cell-type-specific alterations in biological
processes in type 2 diabetes will promote increased

understanding of not only type 2 diabetes disease mechanisms
but also potential compensatory mechanisms trying to coun-
teract the disease. Seven studies have provided cell-type-
specific information in donors with type 2 diabetes and non-
diabetic donors [14–19, 32]. Studies performed in islets from
donors with type 1 diabetes are summarised in Text box 2.
Below, we provide a brief summary of the type 2 diabetes-
related findings highlighted by the authors.

Segerstolpe et al [17] noted differential expression (DE) of
76 genes in beta cells, with INS and FXYD2 being among the
downregulated genes in type 2 diabetic beta cells while GPD2

Mouse studies

Several mouse scRNAseq studies have produced

important contributions to our understanding of

foremost developmental islet biology (ESM Table 1). 

Cell-type-specific gene expression has been 

generated (e.g. from adult normal mouse islets [54, 

55], islet-infiltrating cells in the NOD mouse [56], and 

in Dnmt1 and Arx knockout mouse islets) showing 

that these genes are needed to maintain the alpha 

cell phenotype [57]. Furthermore, different aspects of 

pancreas development have been studied. The 

Stoffers laboratory characterised early development 

in islet cells from e13.5 mouse embryos [58] and 

another study compared dorsal and ventral fate of 

Pdx1-expressing cells and identified distinct lineage 

differentiation pathways in the two parts of the 

developing pancreas [59]. By studying sorted cells 

spanning from embryonic day e17.5 to postnatal day 

P60, Qiu et al provided insights into cell number 

expansion and maturation as well as cellular

heterogeneity of alpha and beta cells during 

development [60]. Other studies have focused on

endocrine progenitor cells in fetal pancreas [61] and 

transcriptional dynamics associated with declining 

proliferation in the postnatal state [62].

Studies of type 1 diabetes

islets

There are very few scRNAseq studies on islets from 

donors with type 1 diabetes. Camunas-Soler et al [15]

performed patch-seq in cells from three donors with 

type 1 diabetes and found increased numbers of PP 

cells and duct cells. The latter was observed also by 

Wang et al [14]. Interestingly, the few type 1 diabetes 

beta cells analysed had similar electrophysiological 

properties and appeared to exhibit similar expression 

levels of INS, PDX1 and MAFB to expression levels 

in beta cells from non-diabetic donors. RBP4 and 

FFAR4 expression was lower and genes related to 

immune activation and allograft rejection were 

enriched in type 1 diabetes beta cells. Alpha cells 

from donors with type 1 diabetes had increased 

expression of NKX6.1, lower expression of NKX2.2, 

and enrichment of genes associated with duct cells. 

Notably, the patch-seq approach is feasible for cryo-

preserved human islet samples, opening a possible 

route for studies in archive material. In a recent 

study [63] (using islets from five donors with type 1 

diabetes, eight donors with type 1 diabetes-

associated autoantibodies [AAB
+
], and 11 control

donors), type 1 diabetes donors were found to have a 

lower proportion of beta cells and a higher proportion 

of duct and acinar cells. Furthermore, beta cell-

specific downregulation of pathways related to

immune/stress response, apoptosis and TNF

signalling was observed in cells from donors with type 

1 diabetes. Interestingly, similar alterations were seen 

in normoglycaemic (but potentially prediabetic) AAB
+

donors. Finally, duct cells of both type 1 diabetes and 

AAB
+

donors displayed upregulation of pathways

related to apoptosis, autophagy and immune

signalling, and type 1 diabetes duct cells were

enriched for genes associated with MHC Class II

activity.
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and LEPROTL1 were among the upregulated genes. One
hundred genes were differentially expressed in alpha cells
and five genes (e.g. ISL1) were differentially expressed in
PP cells. Gene set enrichment analysis showed that genes
responsible for mitochondrial energy metabolism and
protein synthesis were downregulated in most cell types,
whereas apoptosis and cytokine signalling genes were
upregulated in donors with type 2 diabetes. Xin et al [18]
found DE of 48 genes in beta cells, 54 genes in alpha cells,
119 genes in delta cells and 33 genes in PP cells. Most of
these genes have roles in non-islet cell growth, or no known
function in islets, whereas 8.5% have a known function in
islets. Wang et al [14] presented data from three adult non-
diabetic donors and two adult donors with type 2 diabetes.
No systematic DE analysis was performed but gene expres-
sion profiles of type 2 diabetes alpha and beta cells were
found to be reminiscent of their juvenile counterparts, part-
ly due to elevated expression of cell cycle genes. The
authors suggest that type 2 diabetic beta cells may not be
able to maintain fully differentiated status and that their
data support previous studies on partial dedifferentiation
in type 2 diabetic beta cells. In a larger follow-up study,
Avrahami et al expanded on these findings and presented
gene sets associated with type 2 diabetes in alpha and beta
cells [32]. Lawlor et al [16] could not detect type-2-
diabetes-driven clustering but found cells clustered by
donor identity. DE was detected for 248 genes in beta cells,
138 genes in alpha cells and 24 genes in delta cells. Among
the affected beta cell genes, the authors highlighted lower
expression of STX1A and higher expression of DLK1 in
type 2 diabetic donors. CD36 expression was increased,
while GDA expression was lower in type 2 diabetic alpha
cells.

Taking advantage of a high number of sequenced cells, Fang
et al [19] used a novel approach to identify disease-associated
alterations. Using the regressing principle components for the
assembly of continuous trajectory (RePACT) approach, they
analysed disease-associated single-cell heterogeneity. Although
the analysis was based on a limited number of type 2 diabetic
donors (n = 3), a large number (1368) of type 2 diabetes-
associated genes was identified in beta cells (e.g. IAPP and
CPE). Many genes were affected similarly by type 2 diabetes
and obesity, although others (e.g. INS) were increased in obesity
but reduced in type 2 diabetes. Furthermore, using a CRISPR
screen for insulin regulatory genes in MIN6 cells, 17 of the
obesity- or type-2-diabetes-affected beta cell genes were found
to regulate intracellular insulin content. Whether or not the limit-
ed overlap between the two approaches is due to species differ-
ences remains to be established. Nonetheless, the cohesion-
loading complex and the NuA4/Tip60 histone acetyltransferase
complex were shown to be novel regulators of insulin.
Camunas-Soler et al [15] also used the function-to-gene-
expression approach to assess type 2 diabetes affected genes.

The expression of genes that were first shown to be correlated
with insulin exocytosis in non-diabetic donors was subsequently
assessed in donors with type 2 diabetes. Interestingly, evidence
for a compensatory exocytosis response in beta cells from
donors with type 2 diabetes was presented. Furthermore,
ETV1 was enriched in beta cells from donors with type 2 diabe-
tes, increased ETV1 expression was associated with reduced
exocytosis, and knockdown of ETV1 rescued exocytosis specif-
ically in these beta cells.

Except for observations of fewer beta cells in two studies
[16, 17], type 2 diabetes has not yet been clearly associated
with altered cell-type composition or altered subpopulations
of cells. Quite remarkably, even though very few ghrelin cells
have been profiled, all studies but that of Wang et al [14] (four
cells in one donor with type 2 diabetes) find ghrelin cells
exclusively in non-diabetic donors. This was also the case in
our dataset (Smart-seq2 data from six non-diabetic donors and
six with type 2 diabetes; Gene Expression Omnibus accession
number: GSE153855) and 75% lower ghrelin cell density was
confirmed immunohistochemically in islets from donors with
type 2 diabetes [42].

The ultimate goal of the studies comparing data from
donors with and without type 2 diabetes was to identify
type 2 diabetes disease mechanisms in beta cells. In three
of the studies, systematic global DE analysis was
performed in a comparable manner [16–18]. When
comparing the differentially expressed beta cell genes
for these studies with DeSeq2 [43] data from our dataset
(GSE153855), the four studies had no differentially
expressed genes in common, although FXYD2 was
differentially expressed in three studies and another 30
genes were shared between two studies (Fig. 1a). When
including RePACT data from [19], FXYD2 was the only
gene common to four out of five studies and another 15
genes were common to three studies (ESM Fig. 1). A
similarly low degree of overlap was seen for alpha, delta
and PP cells (Fig. 1b–d).

A common disease mechanism or disease-induced
alteration in gene expression would allow for replication
across datasets. So far, DE of only one gene, FXYD2, has
been convincingly replicated between studies. One inter-
pretation of the data is that altered FXYD2 expression is a
major cause of beta cell dysfunction in type 2 diabetes.
Fxyd2 knockout mice exhibit improved glucose tolerance,
beta cell hyperplasia and elevated fasting and postprandial
plasma insulin levels [44]. However, FXYD2 does not
appear to be genetically associated with type 2 diabetes
risk or beta cell function as one would expect if altered
FXYD2 expression was of major importance for beta cell
dysfunction. An alternative interpretation is that the
current approaches do not fully capture type 2 diabetes-
induced disease biology. If they did, one would also
expect genes with established and experimentally proven
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roles in beta cell pathophysiology to appear and for such
genes to be replicated between studies. There are several
reasons to suggest that this a likely interpretation: (1) the
inherent low detection rate of scRNAseq could mean that
disease biology is only captured in a fraction of the cells;
(2) the available studies are small in terms of cell counts
and participants, leading to low statistical power; (3) type
2 diabetes is a heterogeneous disease and five clear
subtypes are defined [45], thus beta cells from an
insulin-resistant individual, with cells capable of compen-
sating for the insulin demand, will most likely behave
differently from beta cells from an individual with a
primary beta cell defect; (4) the data has been analysed
using suboptimal methods for DE analysis [43]; and (5)
the data lack adjustment for donor variance. In summary,
the available studies find no association between type 2
diabetes and cell-type composition or subpopulations of
islet cells. Individual reports put forward novel type 2

diabetes-associated genes, some of which have been func-
tionally validated [15], but very few have been replicated
between studies.

Potential ways forward

The available studies have contributed important information
that has increased our knowledge on many aspects of islet cell
biology. However, with respect to identifying type 2 diabetes
disease biology, the contribution to our understanding has
been limited. We advocate that this is a consequence of DE
analysis being a blunt tool for identifying alterations in biolog-
ical processes between two groups in small-scale studies with
heterogeneous starting material. scRNAseq data has proven to
be highly heterogeneous, and the DE analysis tools attempt to
overcome variability by averaging expression across cells.
Likely this leads to a loss of meaningful information in lieu
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of very large sample sizes. A recent study highlighted the
limitations of commonly used DE methods for scRNAseq
data. Many of the methods were found to conflate variability
between replicates with the effect of biological perturbations
and a systematic bias towards highly expressed genes was
noted [43]. Furthermore, DE analysis is based on the abun-
dance of mRNA present in different cells. Recent advances
suggest that the timing of mRNA expression, as well as spatial
information onmRNA expression, provides meaningful infor-
mation [46, 47]. Hence, the field needs refined computational
tools to use the full potential of scRNAseq. We propose that
an ultimate test of such tools is their ability to recapitulate
known patterns of gene expression. There are examples of
methods that hold promise for improved sensitivity and which
have been able to recapitulate known gene expression
patterns. Thus, trajectory-based methods (e.g. pseudotime
analysis) have proven useful for studying gradual alterations
towards different cellular states (e.g. cell lineages) and
subpopulations of alpha and beta cells [26, 27, 37, 48]. This
type of analysis involves first categorising cells into different
states and thereafter ordering the cells onto trajectories based
on their way through the process to another state. Caution is
needed, as this method could span all cells with trajectories,
regardless of whether they actually participate in a dynamic
process [47]. RNA velocity is another approach that, based
on the ratio of exon-to-intron reads, leverages the fact that
newly transcribed, unspliced mRNAs can be distinguished
and infers a time derivate of the gene expression state.
Thereby, RNA velocity predicts the future state of individ-
ual cells on a time scale [13]. In the islet field, so far, RNA
velocity (scVelo) has been used to show lineage relation-
ships between islet cells in fetal mice and has outperformed
pseudotime analysis in recapitulating known lineage rela-
tionships [12]. Both methods infer a time factor, based on
the assumption that different cellular states represent differ-
ent times on a time scale. In addition, both approaches
exploit cellular heterogeneity, rather than averaging it as
in DE analysis. On the same note, RePACT analysis has
proven useful for identifying disease-associated cellular
heterogeneity [19]. The method is based on organising cells
into pseudostates along a type 2 diabetes trajectory (i.e. the
degree to which a cell has transformed during disease
development). Thereafter, cells from different pseudostates
are compared. The advantage of this approach is that it does
not assume that all cells are equally affected by disease and
could potentially provide enhanced sensitivity for assessing
disease-associated alterations; replication of its usefulness
in larger studies and across datasets is warranted.

Notably, most approaches used to analyse scRNAseq data
do not account for the possibility that gene expression could
be organised and synchronised in genetic programmes (e.g.
for orchestrating specific cellular functions). Network analysis
has been successfully used to identify such programmes or

modules (e.g. by assessing co-expression of mRNAs within
a population of cells). Multiple techniques with varying capa-
bility of identifying disease-relevant pathways [49] or known
regulatory networks [50] are available. Furthermore, methods
for comparing changes in network structure between cells of
two states (e.g. disease vs healthy) have also been developed.
Interestingly, differential network analysis (DiNA), which
enables detection of changes in the interplay between
mRNAs rather than assessing changes in single mRNAs, has
been shown to outperform DE analysis [51]. DiNA has, to the
best of our knowledge, not been applied to scRNAseq data but
combining this approach with a reliable method for dealing
with donor variation seems attractive and should be evaluated
and replicated in independent datasets.

In addition, increased numbers of samples and
sequenced cells are needed to increase the analytical power
and, likely, numbers approaching the ones presented in a
recent bulkRNAseq study [52] are needed to increase the
diversity of donors enough to allow for studies of different
subtypes of diabetes [45]. One way of achieving this is to
integrate existing datasets, as recently shown [53].
However, given the risk for influence from batch effects,
large-scale studies with uniform sampling and analysis
protocols with freshly isolated islets f rom well-
characterised donors (e.g. clinical data, medical records,
genome sequencing) is warranted.

Concluding remarks

scRNAseq has generated unprecedented insight into impor-
tant aspects of islet biology, foremost by uncovering cell-
type-specific gene expression in all islet cell populations.
Using the derivate of such data, novel computational methods
have convincingly reproduced known biological processes
(e.g. cell lineage tracing) in developmental and stem cell stud-
ies.When it comes to increased understanding of type 2 diabe-
tes disease mechanism, it is likely we have still not seen the
full potential of the technique. To move forward there is a
need for the following: (1) large-scale studies with high-
quality islets from well-characterised donors; (2) improved
analysis methodology, capable of adjusting for donor variance
and for exploiting the high dimensionality of scRNAseq data
to untangle the biological processes that are altered in type 2
diabetes; (3) replication in independent datasets; and (4)
experimental and histological validation of findings. Clearly,
scRNAseq technology is here to stay and with the rapid devel-
opment in the field, with respect to analysis tools and proto-
cols with lower costs, the technique will most likely, within
the near future, contribute to a major leap forward in our
understanding of the altered characteristics of each islet cell
type in type 2 diabetes.
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