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Abstract. Spectrin is a major component of a 
membrane-associated cytoskeleton involved in the 
maintenance of membrane structural integrity and the 
generation of functionally distinct membrane protein 
domains. Here, we show that a homolog of erythro- 
cyte/3-spectrin (/3IE*) co-localizes with markers of the 
Golgi complex in a variety of cell types, and that 
microinjected/~-spectrin codistributes with elements of 
the Golgi complex. Significantly, we show a dynamic 
relationship between/3-spectrin and the structural and 
functional organization of the Golgi complex. Dis- 

ruption of both Golgi structure and function, either in 
mitotic cells or following addition of brefeldin A, is 
accompanied by loss of/~-spectrin from Golgi mem- 
branes and dispersal in the cytoplasm. In contrast, 
perturbation of Golgi structure without a loss of func- 
tion, by the addition of nocodazole, results in retention 
of/~-spectrin with the dispersed Golgi elements. These 
results indicate that the association of B-spectrin with 
Golgi membranes is coupled to Golgi organization and 
function. 

T 
hE segregation of specific subclasses of membrane 
proteins and lipids into discrete membrane domains is 
a fundamental aspect of cell structure and function. 

On one level, specialized cells, such as transporting epithelia 
and neurons, require functionally distinct membrane do- 
mains to regulate vectorial transport of ions and solutes or 
unidirectional propagation of electrical stimuli, respectively 
Rodriguez-Boulan and Nelson, 1989; Rodriguez-Boulan and 
Powell, 1992). On another level, membrane domains are im- 
portant in constitutive, dynamic membrane events that occur 
in all cell types. For example, in the secretory pathway mem- 
brane proteins are transported through different membrane 
compartments, each of which are capable of maintaining its 
own distinctive composition of resident proteins while, at the 
same time, allowing a continual flux of nonresident proteins 
(Machamer, 1991). Thus, the formation of membrane do- 
mains is essential not only in cell surface organization of 
polarized cells, but also for the balance of membrane protein 
retention and transport that facilitates the genesis of distinct 
organellar membranes. 

Membrane protein organization can be regulated through 
clustering by a membrane-associated cytoskeletal system. A 
good candidate for such a system is the spectrin-based mem- 
brane skeleton (for review see Bennett, 1990a). In erythro- 
cytes, the membrane skeleton is composed of a number of 
proteins including spectrin, which is comprised of two dis- 
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tinct subunits termed ot and/~. Spectrin self-associates to 
form tetramers ([a/$]2), which in turn are cross-linked by 
short actin polymers and other proteins into an extensive 
two-dimensional filamentous meshwork. This meshwork is 
tightly coupled to the plasma membrane through specific 
interactions with membrane proteins (Bennett, 1990a,b). 
Genetic studies show that defects in membrane skeleton pro- 
teins reduce the structural integrity of the plasma membrane 
of erythrocytes (Agre et al., 1985; Takakuwa et al., 1986). 
In addition to this structural role, extensive self-assembly of 
membrane skeleton components coupled to membrane pro- 
tein binding also leads to a restriction in the mobility and, 
potentially, cell surface distribution of associated membrane 
proteins (Sheetz et al., 1980; Tsuji and Ohnishi, 1986; Tsuji 
et al., 1988). 

The identification of protein isoforms of the membrane 
skeleton in nonerythroid cells, and the subsequent analysis 
of their distributions and functional properties has further 
defined the role of the membrane skeleton in the formation 
of membrane domains. In polarized epithelial cells and neu- 
rons, multiple isoforms of membrane skeleton proteins are 
expressed, and each of these isoforms localizes to different 
domains of the plasma membrane where they interact with 
domain-specific membrane proteins (Lazarides and Nelson, 
1983; Nelson and Veshnock, 1986, 1987; Zagon et al., 1986; 
Morrow et al., 1989; Hammerton et al., 1991). There is evi- 
dence that the membrane skeleton can directly facilitate the 
domain-specific accumulation of these membrane proteins 
by retention in the membrane and, hence, exclusion from 
internalization (Hammerton et al., 1991; Seimers et al., 
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1993). This suggests that the membrane skeleton can be 
viewed as a membrane protein sorting apparatus which 
facilitates the retention of a specific subset of membrane pro- 
teins within a given membrane domain by effectively se- 
questering them away from the endocytic machinery. 

The requirements for membrane structural integrity and 
membrane domain organization are not limited to the plasma 
membrane. The Golgi apparatus is a highly organized or- 
ganelle composed of spatially and functionally distinct com- 
partments responsible for the processing and sorting of 
newly synthesized membrane and secreted proteins (for re- 
view see Pfeffer and Rothman, 1987; Mellman and Simons, 
1992; Rothrnan and Orci, 1992). Each compartment main- 
tains a unique membrane protein composition under condi- 
tions that also allow continuous, sequential transit of newly 
synthesized proteins. This implies the existence of a molecu- 
lar machinery that can distinguish and segregate resident and 
transported membrane proteins. While much is known about 
the interrelationship between the structural and functional 
organization of the Golgi complex, several key aspects re- 
main to be resolved. Specifically, little is known about the 
maintenance of overall Golgi morphology, the retention of 
resident proteins within the various Golgi compartments and 
the sorting of newly synthesized membrane proteins within 
the TGN. 

In this study we demonstrate the existence of an isoform 
of spectrin homologous to erythroid ~-spectrin which local- 
izes to the Golgi apparatus of nonerythroid cells. We show 
that perturbation of Golgi structure and function results in 
a corresponding change in the distribution of the Golgi- 
localized/~-spectrin. Significantly, under conditions which 
disrupt both the structure and function of the Golgi complex, 
B-spectrin is dissociated from Golgi membranes. We suggest 
that, in addition to a structural role, ~spectrin may partici- 
pate in, or directly facilitate, the retention of resident Golgi 
proteins and the sorting of newly synthesized membrane pro- 
teins. 

Materials and Methods 

Antibody Preparation 
Erythrocyte spectiln (/~I~l) was isolated from canine whole blood (Pel- 
Freez, Rogers, AK) according to the method of Bennett (Bennett, 1983). 
For antibody production, low salt extracts of washed erythrocyte ghosts 
were electrophoresed on preparative (12 x 18 x 0.3 cm) 12.5% SDS-POly- 
acrylamide gels (Nelson et al., 1983). Bands corresponding to the spectrin 

subunit were excised and eleetroeluted (Isco, Lincoln, NE). New Zealand 
White rabbits were inoculated with electroeluted fl-spectrin emulsified in 
Freunds adjuvant (Sigma Chemical Co., St. Louis, MO). Bovine lens 
c~-spectrin was prepared from purified bovine lens plasma membranes (Nel- 
son et al., 1983) by preparative electrophoresis as described above for 
/~-spectrin. The excised portion of the gel was ground up, mixed with 
Freunds adjuvant, and injected directly into rabbits. Antisera obtained from 
immunized rabbits were treated with 35 % saturated ammonium sulfate, and 
the precipitated immunoglobulin fraction was resuspended in phosphate 
buffered saline containing 1 mM sodium azide (PBS-azide) and stored at 
-70"C. Monoclonal anti-B-tubulin was from Amersham Corp. (Arlington 
Heights, IL). A mouse monoclonal antibody directed against Golgi mem- 
branes (lee, S. L., V. Malhotra, D. I. Tai, M. Moil, S. Bao, J. D. Song, 
Q. An, and L. B. Chen. 1991. J. Cell Biol. 115:409a) was generously 
provided by Dr. Lan Bo Chert (Dana-Farber Institute, Boston, MA). Poly- 
clonal anti-B-COP and monoclonal anti-mannosidase H were generously 
provided by Dr. Jennifer Lippincott-Schwartz (NIH/NICHD, Bethesda, 
MD). Mouse monoclonal anti-cation independent mannose phosphate 
receptor (86f7) and anti-lysosomal glycoprotein (35cl) were generously 

provided by Dr. Donald Messner (University of Rochester, Rochester, NY). 
A polyclonal antiserum directed against a 15-amino acid peptide that corre- 
sponds to residues 6-20 of the mouse fl-spectrin gene I were kindly 
provided by Dr. Steven Goodman (University of South Alabama School of 
Medicine, Mobile, AL). 

Affinity Purification 
A spectrin-Sepharose affinity resin was prepared by coupling purified ca- 
nine erythrocyte spectrin to Sepharose CL-4B. Erythrocyte spectiln derived 
from a low salt extract of canine erythrocyte ghosts was purified further by 
centrifugation (40,000 g, 15 h, SW-40 rotor) on 5-20% sucrose gradients 
(wt/vol, 20 mM KCI, 5 mM sodium phosphate, pH 7.5, I mM sodium azide, 
0.2 mM dithiothreitol; Bennett, 1983). This resulted in the removal of con- 
taminating low molecular weight material and gave rise to a spectrin prepa- 
ration that was >90% pure as assessed on Coomassie stained SDS-poly- 
acrylamide gels. Spectrin was coupled to cyanogen bromide-activated 
Sepharose CL-4B (Sigma Chemical Co.) at a concentration of 1 mg/mi bed 
volume according to the manufacturers instructions. The resin was blocked 
by washing with 10 bed volumes of PBS-azide containing 1 mg/mi bovine 
serum albumin (fraction V, heat shock; Sigma Chemical Co.). BSA- 
Sepharose was prepared under identical conditions using bovine serum al- 
bumin fraction V (cold alcohol precipitation; Sigma Chemical Co.). The 
affinity purification procedure was carried out as follows, l ml of ~spec-l 
antiserum was mixed with 1 ml of affinity resin (equilibrated in PBS-azide) 
and diluted to a volume of 8 mi with PBS-azide. This suspension was rocked 
12-15 h at 4°C and then poured into a 1 x l0 cm column. The nonbound 
material was eluted (flow rate ffi 0.5 mi/min) and saved (flow-through frac- 
tion). The resin was washed with 25 ml of PBS-azide, 25 ml of low salt wash 
buffer (10 mM sodium phosphate, pH 7.5) and 25 mi of high salt wash buffer 
(0.5 M NaCI, 10 mM sodium phosphate, pH 7.5). Bound antibody was 
eluted with 6 mi 0.1 M glycine-HCl, pH 2.5 (acid ehiate) followed by 6 mi 
0.1 M triethylamine, pH 11.7 (base eluate). The acid eluate was neutralized 
with 0.6 ml 1 M Tris base and pooled with the base eluate. The pooled eluate 
fractions, as well as the flow-through fraction, were dialyzed 12-15 h 
against 2 liters of PBS-azide and concentrated by ultrafiltration (Centriprep- 
30; Amicon Corp., Beverly, MD) to the original serum volume of 1 ml. 

Cell Culture and Microscopy 
Madin-Darby canine kidney (MDCK), Madin-Darby bovine kidney 
(MDBK) 2 epithelial cells and normal rat kidney cells (NRK) were grown 
in high glucose DME (Sigma Chemical Co.) containing, 10% fetal bovine 
serum (Gemini Bioproducts, Calabasas, CA) and 100 U/ml penicillin and 
100/~g/ml streptomycin (GIBCO BRL, Gaithersburg, MD). Cultures were 
maintained at 37"C with 5% CO2 in air. Microtubule disruption experi- 
ments were performed by incubating MDCK cells in culture media contain- 
ing 33 ~M nocodazole (Sigma Chemical Co.) for 30 min at 4°C. The cells 
were then washed briefly with fresh media (37"C) and further incubated in 
media containing 33 ~M nocodazole at 37°C. In experiments with BFA, 
MDBK cells were incubated for various periods of time in media containing 
5 t~g/ml BFA (Epicentre Technologies, Madison, Wl) at 37°C. For BFA 
wash-out experiments, BFA-treated cells were washed with PBS (37°C) and 
further incubated in BFA-free media (37°C). 

For immunofluorescence experiments, cells were plated for 12-15 h on 
collagen-coated glass cover slips. The cells were fixed either with cold 
methanol (-20°C, 5 min), 1.9% formaldehyde in PBS (22"C, 10 rain) or 
with a solution of 1% paraformaldehyde, 100 mM lysine 10 mM sodium 
m-peilodate, and 0.1% saponin in PBS (PLP). Formaldehyde fixed cells 
were permeabilized by treatment with 0.01% saponin (Sigma Chemical Co.) 
for 10 min. All subsequent steps were conducted in the presence of 0.01% 
saponin. Fixed and permeabilized cells were blocked with PBS containing 
0.2% BSA, 50 mM ammonium chloride, 0.5% goat serum (GIBCO BRL, 
Gaithersburg, MD) and 5 ftg/mi DNASe (Boehringer Mannheim Biochemi- 
cals, Indianapolis, IN). The cells were then washed with PBS containing 
0.2% BSA (PBS:BSA) and incubated for 1-2 h with primary antibody 
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diluted in PBS-BSA as indicated in the figure legends. Following thi s incu- 
bation, cells were washed for 15 rain with PBS-BSA and incubated with 
rhodamine- or fluorescein-conjugated goat anti-mouse or rabbit IgG 
(Boehringer Mannheim Biochemicais) diluted 100-fold in PBS-BSA. Ex- 
cess secondary antibody was washed away with PBS-BSA and the coverslips 
were mounted in 70% glycerol (vol/vol in PBS) containing I0 mg/rnl 
n-prow1 gallate (Sigma Chemical Co.). Double labeling experiments were 
performed by sequential incubations with both primary antibodies followed 
by incubation with a mixture of both secondary antibodies. Cells double 
stained with Bspoc-1 and B-COP were first incubated with anti-B-COP fol- 
lowed by fluorescein-conjugated goat anti-rabbit IgG. The cells were then 
wash extensively with PBS-BSA (4x, 10 rain) and incubated with 
rhodamine-conjugated (see below) affinity purified Bspec-1. DNA was 
stained with the fluorescent DNA intercalating agent YOYO-1 (Molecular 
Probes, Eugene, OR), which was stored as a 1 rnM stock in 1:4 
DMSO/H20 and diluted 10,000-fold in PBS-BSA prior to incubation with 
cells for 30 min. 

Plastic embedded sections of rat liver were prepared using the Poly- 
sciences Immuno-Bed kit (Polysciences Inc., Warrington, PA). Sections 
were prepared and fixed as described (Avner el al., 1992). All other steps 
in the immunofluorescence staining protocol were the same as described 
above except for the primary antibody incubation which was carried out for 
12 h at 4°C. 

Stained cells were observed by epifluorescence using a Zeiss Axiophot 
microscope (Carl Zeiss, Thornwood, NY) and photographed with either 
Kodak Tri-X PAN 400 or Ektachrome 400 HC film (Eastman Kodak, Roch- 
ester, NY). Alternatively, some specimens were observed with a laser scan- 
ning confocal microscope (Cell Sciences Imaging Facility, Stanford Univer- 
sity, Stanford, CA). 

Golgi-enriched membranes from rat liver were prepared for electron mi- 
croscopy as follows. Membranes (30-50 #g protein) were pelleted by brief 
(15 rain) high speed centrifugation (100,000 g; Beckman TL-100 ultracen- 
trifuge; Beckman Instruments, Palo Alto, CA). The pellet was fixed in 1% 
glutaraldehyde in cacodylate buffer (0.1 M cacodylate, pH 7.4, 0.2 M su- 
crose) and postfixed in 0.5% osmium tetroxide with 1% potassium fer- 
ricyanide (in cacodylate buffer). The pellet was suspended in 1.5% agar to 
facilitate processing. The sample was en bloc stained with 2 % uranyl ace- 
tate and embedded in Embed 812 (Electron Microscopy Sciences, Ft. 
Washington, PA). Ultrathin sections were post-stained with uranyl acetate 
and lead citrate and examined at 60 kV in a Philips 410 electron microscope. 

Microinjection 
For microinjection studies, purified canine erythrocyte spectrin was labeled 
with rhodamine isothiocyanate as follows. Spectrin (1 mg/ml in 150 mM so- 
dium bicarbonate, pH 9.0) was incubated for 1 h at 22°C in the presence 
of a 30-fold molar excess of rhodamine isothiocyanate (Molecular Probes). 
The reaction was terminated by the addition of hydroxy|amine, pH 8.0 to 
a final concentration of 0.15 M, and subsequent incubation for 1 h. The sam- 
ple was then fraetionated on a 1 x 10 cm column of Sephadex G-25 (Sigma 
Chemical Co.) equilibrated with microinjection buffer (48 mM K2HPO4, 
14 mM NaH2PO4, 4.5 mM KH2PO4, pH 7.2). Fractions containing la- 
beled protein were pooled, dialyzed 18 h against microinjection buffer and 
concentrated by ultraiiltration (Centrieon-30; Amicon Corp.). Before mi- 
croinjection, the rhodamine spectrin preparation was centrifuged 20 rain at 
10,000 g. MDCK cells grown on collagen coated coverslips were microin- 
jected (at 37°C) according to the method of Graessmann el al. (Graessmann 
et al., 1980) using an Eppendorf/Zeiss microinjection system. For control 
experiments, lysine-derivifized rhodamine-dextran (Molecular Probes) was 
diluted fivefoid in microinjection buffer and centrifuged 20 rain at 10,000 g 
prior to injection. Cells were injected over a period of 1 h and then in- 
cubated for an additional 4 h before they were fixed in -20°C methanol 
and processed for indirect immunot]uorescence as described above. 

Immunoblotting, Immunoprecipitations, 
and Membrane Preparations 
SDS-PAGE and immunoblots were performed as described previously 
(Nelson and Veshnock, 1986). For immunopreeipitation experiments, 
confluent MDCK cells were incubated 12 h in low calcium (5 raM), 
rnethionine-free DME (Nelson and Veshnock, 1987) containing 500 t~Ci 
[35S]melhionine (New England Nuclear/DuPont, Wilmington, DE). Cells 
were then extracted for 10 rain at 220C in extraction buffer (50 mM NaCI, 
300 mM sucrose, 10 tram Pipes, pH 6.8, 3 mM MgCI2, 0.5% [vol/vol] Tri- 
ton X-100, 0.2 mM leupeptin, 0.2 mM 1,10 phenanthroline, 20 ~g/ml pep- 

statin A, 0.4 mM PMSF), scraped from the surface of the culture plate and 
centrifuged 10,000 g for 20 rain. Sodium dodecylsulfate was added to a final 
concentration of 0.5 % and the extract was boiled for 5 rain. The sample was 
then diluted lO-fold with extraction buffer and processed for immunoprecip- 
Ration as described previously (Nelson and Veshnock, 1986). Bovine lens 
plasma membranes were solated from decapsulated lenses as described 
(Nelson el al., 1983). 

Purified Golgi membranes were isolated from rat liver by the method of 
Malhotra el al. (1989). Fractionation of pttrified membranes on wheat germ 
agglutinin agarose was performed with the following protocol. Golgi- 
enriched membranes were pelleted by centrifugation (100,000 g, 15 rain; 
Beckman TLA 100 ultracentrifuge) and resuspended in homogenization 
buffer (10 mM Tris-HC1, pH 7.3, 0.5 M sucrose, 5 mM EDTA, 5 mM 
EGTA). Membranes (30 #g membrane protein) were then incubated in a 
total volume of 400 td with 100 #1 of wheat germ agghtinin agarose (WGA- 
agarose; Sigma Chemical Co.) for 18 h at 4"C. WGA-agarose beads were 
pelleted by brief (1 rain) low speed centrifugation in a tabletop clinical cen- 
trifuge. The supernatant or unbound fraction (300 gl) was decanted and 
stored at 4°C and the pellet or bound fraction was washed once with buffer 
and resuspended to a final volume of 300 #1.5'-Nucleosidase activity was 
measured by incubating 40 tA of sample with 2.5 gl of 100 mM adenosine 
monophosphate (Sigma Chemical Co.) and 200 mM MgCI2 for 60 rain at 
37°C. Inorganic phosphate release was quantitated using the method of Lan- 
zetta et al. (1979). Galactosyltransferase assays were performed as de- 
scribed (Fleicher and Smigel, 1978). 

Results 

Spectrin Isoforms are Differentially Localized in 
MDCK Cells 
Antisera were raised against ot-spectrin (ct-fodrin, odII;*; 
nomenclature based on Maichiodi-Albedi et al., 1993) iso- 
lated from the plasma membranes of a nonvascular tissue, 
lens, and 15-spectrin ( t iE* ~-spectrin) from plasma mem- 
branes of purified canine erythrocytes. As shown previously 
(Nelson and Veshnock, 1986; Morrow et al., 1989), ot-fodrin 
localized to the cytoplasmic surface of the basolateral mem- 
brane of confluent monolayers of polarized MDCK cells 
(Fig. 1 D, b). This antiserum recognizes the ot-spectrin iso- 
form in lens (~-fodrin), but not the isoform expressed in 
erythrocytes (Fig. 1 A, lanes e and f ) .  In direct contrast, the 
erythrocyte spectrin antibody (~spec-1) predominantly rec- 
ognized a 220-kD protein (~-spectrin) from erythrocyte 
plasma membranes (Fig 1 A, lane c), but did not detect 
c~- or ~-spectrin isoforms in the extract of lens plasma mem- 
branes (Fig. 1 A, lane d), even though equal amounts of 
spectrin from both sources were present (Fig. 1 A, lanes a 
and b). Minor cross-reactivity was detected against c~-spec- 
trin from erythrocytes (Fig. 1 A, lane c). As expected, the 
13spec-1 antibody strongly stained the erythrocytc plasma 
membrane (Fig. 1 C). Differences in reactivity of the Bspec-1 
antibody to spectrin isoforms was not species or tissue de- 
pendent; cross-reactivity was found in a variety of tissues de- 
rived from diverse sources including dog, rat, mouse, 
chicken, monkey, and cow (not shown). 

MDCK calls were analyzed with the/3spec-1 antibody for 
the presence of an erythroid/~-spectrin homolog. A polypep- 
tide of the appropriate molecular mass (220 kD) was immu- 
noprecipitated from [3sS]methionine-labeled MDCK cells 
(Fig. 1 B, lane a); additional minor protein bands were pres- 
ent also in the control immunoprecipitate (Fig. 1 B, lane b). 
The antibody also recognized a single polypeptide of identi- 
cai molecular mass upon western blotting of purified rat liver 
Golgi membranes (see Fig. 5 A). In addition, indirect im- 
munofluorescence revealed a pattern of staining that was 
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Figure 1. Differential localization of spectrin isoforms in MDCK 
cells. (A) Proteins from purified canine erythrocytes (lanes a, c, and 
e) and purified bovine lens plasma membranes (lanes b, d, and f) 
were solubilized in SDS-sample buffer, separated in a 5% 
SDS-polyacrylamide gel, and either stained with Coomassie blue 
(a and b), or transferred to nitrocellulose and immunoblotted with 
antisera to either erythroid/3-spectrin (/3spec-1; lanes c and d) or 
lens c~-spectrin (c~F3; lanes e and f). The electrophoretic mobilities 
of erythroid a and/3 subunits (aI and/31) are indicated to the left 
of lane a, whereas those of lens spectrin subunits (call and/3II) are 
shown to the right of lane f Note that the lens a and/3 subunits 
migrate as a closely spaced doublet (lane b). (B) [3sS]Methionine- 
labeled polypeptides were immunoprecipitated from a detergent 
extract of MDCK cells using either the/3spec-I (lane a; affinity 
purified) or c~F3 (lane c) antibodies. As a control (lane b), an iden- 
tical precipitation was carded out with the eluate fraction from the 
mock affinity purification procedure (BSA-Sepharose, see Fig. 2 
and Materials and Methods). Immunoprecipitated proteins were 
separated in a 7.5% SDS-polyacrylamide gel and visualized by 
fluorography. The mobilities of erythroid aI and/31 subunits are 
shown. (C) Erythrocytes residing within a blood vessel of a plastic 
imbedded section of rat liver were stained with the/3spec-1 antisera 
by indirect immunofluorescence. The image was obtained using a 
scanning laser confocal microscope. Arrows indicate cells which 
show plasma membrane staining. (D) MDCK cells grown either at 
confluence (48 h, b and d) or at subconfluent density (a and c) were 
fixed in 1.9% formaldehyde, permeabilized with 0.01% saponin, 
and stained with affinity purified/3spec-1 (c and d) or c~F3 (a and 
b) by indirect immunofluorescence and imaged by confocal micros- 
copy. Bars, 5/zm. 

different from the subcellular distribution of lens c~-fodrin 
(Fig. 1 D). The most prominent feature of this staining pat- 
tern was the appearance of numerous reticular structures 
clustered near the nucleus (Fig. 1 D, c), which by morpho- 
logical criterion alone highly resembled the Golgi apparatus 
(see below). Serial optical sections of cells using a scanning 
laser confocal microscope revealed that these structures re- 

side beneath the surface of the cell within the cytoplasm, in- 
dicating that they represent an intracellular organelle or 
membrane system rather than a surface membrane organiza- 
tion (not shown). These structures were not observed with 
the c~-fodrin antibody (Fig. 1 D, a and b), even upon exami- 
nation of serial confocal optical sections (not shown). The 
presence of perinuclear reticular elements stained with 
/3spec-1 was independent of cell density (Fig. 1 D, c and d). 
At confluence, faint staining of the lateral membranes was 
also observed. However, the intensity of this staining was 
markedly less than that of the reticular elements, indicating 
that the latter reflects the predominant steady state localiza- 
tion of the immunoreactive protein. 

To demonstrate that the/3spec-1 antiserum stained/3-spec- 
trin in these cells we affinity purified the antibody using a 
spectrin-Sepharose affinity resin (Fig. 2). The affinity 
purification procedure (see Materials and Methods) gave rise 
to two fractions: a flow-through fraction which contained 
material which did not bind to the column, and an eluate 
fraction containing the affinity purified antibody. Both of 
these fractions were analyzed for their ability to blot purified 
erythrocyte spectrin (Fig. 2 A) and stain intracellular reticu- 
lar structures (Fig. 2 B). As a control, an aliquot of/3spec-1 
immune serum was identically fractionated using a column 
of BSA-Sepharose affinity resin and subjected to the same 
analysis. 

By Western blotting, the majority of the immuno-reactive 
antibody was present in the eluate fraction of the spectrin- 
Sepharose column (Fig. 2 A, lane d). Only a relatively small 
amount of activity was present in the nonbound or flow- 
through fraction (Fig. 2 A, lane c), probably due to over- 
saturation of the immobilized antigen with the antiserum. 
The eluate fraction immunoprecipitated a 220-kD polypep- 
tide that co-migrated with erythrocyte B-spectrin by SDS- 
PAGE (Fig. 1 B, lane a). Upon mock affinity purification of 
the/~spec-1 antiserum with BSA-Sepharose (Fig. 2 A, lanes 
a and b; Fig. 1 B, lane b), an eluate fraction was obtained 
which showed no immunoreactivity by either Western blot- 
ting (Fig. 2 A, lane b) or immunoprecipitation (Fig. 1 B, 
lane b). 

The flow-through and eluate fractions obtained from the 
affinity purification of ~spec-1 antibody were used to stain 
MDCK cells (Fig. 2 B, c and d). Perinuclear reticular struc- 
tures were stained strongly with the eluate fraction (Fig. 2 
B, d). In contrast, the flow-through fraction (Fig. 2 B, c) 
stained amorphous material devoid of reticular structures. 
As expected, the eluate fraction from the mock purification 
(Fig. 2 B, b) did not stain MDCK cells, demonstrating the 
specificity of the affinity purification. Staining by the mock 
flow-through fraction (Fig. 2 B, a), which is equivalent to the 
unfractionated antibody, represents an accurate composite of 
the two fractions obtained from the spectrin-Sepharose 
affinity column (Fig. 2 B, c and d). 

These results show that upon fractionation of the/~spec-1 
antiserum on spectrin-Sepharose both immunoreactivity to- 
ward/3-spectrin (Fig. 2 A, lane d), and staining of perinu- 
clear reticular structures (Fig. 2 B, d) are highly enriched 
in the specific eluate fraction, and depleted in the flow- 
through fraction (Fig. 2 A, lane c: Fig. 2 B, c). We conclude 
that antibody binding to/3-spectrin directly correlates with 
staining of perinuciear reticular structures in MDCK cells. 
Identical results were obtained with an independently [are- 
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Figure 2. Affinity purification of Bspec-1. The/$spec-1 antiserum 
was fractionated by chromatography on either BSA-Sepharose or 
spectrin-Sepharose. Nonbound (flow-through) and specifically 
eluted (eluate) fractions were collected from both columns and as- 
sayed by both western blotting and indirect immunofluorescence 
staining of MDCK cells. (A) Immunoblots of purified canine eryth- 
rocyte spectrin were performed with the flow-through (a and c) or 
eluate fractions (b and d) from either the BSA-Sepharose (a and b) 
or spectrin-Sepharose (c and d) column. (B) MDCK cells stained 
with the BSA-Sepharose flow-through (a) and eluate (b) or the 
spectrin-Sepharose flow-through (c) and eluate (d). Images were 
obtained with a Zeiss Axiophot microscope. Bar, 5 tLm. 

pared/~-spectrin antibody (not shown). Moreover, an ad- 
ditional B-spectrin-specific antiserum raised against a 15- 
amino acid peptide that corresponds to a region of B-spectrin 
(amino acids 6-20) that is unique to the erythroid isoform 1 
also stained perinuclear reticular structures identical to 
those revealed with the Bspec-1 antiserum (Fig. 3, k and l). 
In contrast, this staining pattern was not observed with a 
polyclonal antiserum I directed against a specific peptide de- 
rived from a non-erythroid B-spectrin (not shown). Hence, 
three independent antisera specific for erythroid B-spectrin 
all stained identical intracellular structures, indicating that 
the staining pattern observed is due to the presence of an 
erythroid B-spectrin homolog in association with these intra- 
cellular sites. 

B-Spectrin Localization to the Golgi Apparatus 

To determine the identity of the perinuclear reticular struc- 
tures recognized by the B-spectrin antibody, cells stained 
with Bspec-1 were co-labeled with antibodies specific for 
marker proteins of different intracellular organelles (Fig. 3). 
Extensive co-localization was observed with antibodies that 
recognize Golgi membrane proteins. Bspec-1 staining com- 
pletely overlapped that of a monoclonal antibody directed 
against Golgi membranes (Fig. 3, a and b; Lee, S. L., V. 
Malhotra, D. I. Tai, M. Mori, S. Bao, J. D. Song, Q. An, 
andL. B. Chen. 1991. J. CeUBioL 115:409a), which in turn 
exactly co-localized with the Golgi coat protein B-COP (Fig. 
3, c and d). The extent of overlap between B-spectrin distri- 
bution and Golgi membranes is shown in a high magnifica- 
tion, double exposure of an NRK cell double stained with 
Bspec-1 and an antiserum directed against the Golgi resident 
protein mannosidase ]I (Man II, Fig. 4). Overall, the distri- 
bution patterns of B-spectrin and Man II co-localized exten- 
sively (Fig. 4, a-c), demonstrating that both proteins are 
associated with the same organdie. However, closer exami- 
nation revealed regions (300-600 tun) enriched in B-spectrin 
but devoid of mannosidase II (Fig. 4 d). 

Significant but less extensive co-localization was observed 
between Bspec-1 and an antibody to the cation-independent 
mannose phosphate receptor (CI-MPR, Fig. 3, g and h). 
Previous studies have shown that the CI-MPR cycles be- 
tween the TGN and late endosome compartments (Kornfeld, 
1992; Johnson and Kornfeld, 1992). Thus, the overlap of CI- 
MPR and Bspec-1 staining is likely to reflect TGN localiza- 
tion, whereas the punctate staining pattern of CI-MPR lo- 
cated more towards the periphery of the cell, and which did 
not appear to overlap with the Bspec-1 pattern, probably 
represents late endosomes. Staining with an antibody to a 
lysosomal membrane glycoprotein (lgp) showed that lyso- 
somes do not co-localize with the structures stained with the 
Bspec-1 antibody (Fig. 3, i and j) .  In fact, lysosomes appear 
to be excluded from the region of the cytoplasm containing 
the B-spectrin reactive membranes. At present, attempts to 
localize B-spectrin at the ultrastructural level by immuno- 
electron microscopy are inconclusive. However, based upon 
the unequivocal co-localization of Bspec-1 and Golgi mark- 
ers at the light microscope level, we conclude that the 
perinuclear structures stained with Bspec-1 are Golgi mem- 
branes. 

As further support for the Golgi-localization of spectrin 
we prepared a membrane fraction from rat liver homoge- 
nates that was highly enriched in Golgi membranes (Fig. 5 
C; and Malhotra, et al., 1989). Immuno-blot analysis of this 
fraction using the Bspec-1 antiserum (Fig. 5 A) revealed the 
presence of an immunoreactive species with a molecular 
mass equivalent to that of erythroid 3-spectrin (220 kD, Fig. 
5 A); no other bands were detected. To demonstrate that the 
presence of this cross-reacting polypeptide was not due to 
contaminating plasma membrane vesicles, we subjected the 
enriched Golgi membrane preparation to an additional frac- 
tionation on wheat germ agglutinin agarose (WGA-agarose; 
Fig. 5 B). We found that plasma membrane vesicles (assayed 
by 5'-nucleosidase activity) were equally distributed between 
the bound and unbound fractions (Fig. 5 B), presumably due 
to only half of the plasma membrane vesicles having their 
lectin-binding sites exposed. The binding of 5'-nucleosidase 
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Figure 3. Subc~llular localization of 
B-SlC~ctrin. MDCK (a-f), MDBK cells 
(g-j), or c2c,2 mouse myoblasts (k and 
1) were fixed either in methanol (a and 
b), 1.9% formaldehyde or PLP (k 
and l). Formaldehyde- and PLP-fixcd 
cells were permeabilized with 0.01% 
saponin. Cells were double stained 
with antibodies specific for the follow- 
ing antig¢m: B-spe~'in and Col# mom- 
branes (a and b); B-COP and Golgi 
membranes (c and d); B-spectrin and 
B-COP (e and f);  B-spectrin and CI- 
MPR (g and h); B-spectrin and a lyso- 
somal glycoprotein (i and J ); erythroid 
B-spectrin peptide 1 and Golgi mem- 
branes (k and l). In all cases except e 
and f (see Materials and Methods) rab- 
bit polyclonal antibodies (a, c, g, and 
i) were visualized with fluorescein- 
conjugated goat anti-rabbit IgG, and 
mouse monoclonal antibodies (b, d, h, 
and j)  with rhodamine-conjugated 
goat anti-mouse IgG. In g and h the ar- 
rows show deviations in the colocaliza- 
tion between B-spectrin and CI-MPR. 
All images were obtained with a laser 
scanning confocal microscope. Bar, 
5 #m. 

containing vesicles to WGA-agarose was blocked following 
preincubation with 1 M N-acetyl glucosamine, confirming 
the specificity of  the interaction (not shown). 

In contrast to the results observed with the plasma mere- 

brane marker, an enzymatic marker  for the Golgi apparatus 
(galactosyltransferase) accumulated exclusively in the un- 
bound fraction following incubation with WGA-agarose 
(Fig. 5 B).  This result implies that lectin-binding sites of 
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l~gure 4. Golgi localization of B-spectrin. A high magnification im- 
age of an MDCK cell double stained with flspec-1, followed by a 
rhodamine-conjugated secondary antibody (b), and an anti- 
mannosidase II monoclonal antibody, followed by a fluorescein- 
conjugated secondary antibody (a). In a double exposure of the 
rhodamine and fluorescein images, the yellow color indicates the 
overlap of the two fluorescent antibodies (c and d). A higher 
magnification image (d) of a region of the cell shown in c reveals 
the presence of numerous knob-like structures stained only with the 
#-spectrin antibody (arrowheads). Images were obtained with a 
scanning laser confocal microscope. Bars: (c) 5 t~m; (d) 2.5/zm. 

fractionation on WGA-agarose leads to a differential parti- 
tioning of Golgi and plasma membrane derived vesicles and 
that this is due to a difference in the topology of the mem- 
brane vesicles and hence accessibility of lectin-binding sites. 

We next determined the distribution of spectrin following 
WGA-agarose fractionation. We found that, like the Golgi 
membrane marker, the 220-kD immunoreactive polypeptide 
was found exclusively in the unbound fraction (Fig. 5 B). 
Hence, a polypeptide of the same molecular weight as spec- 
lain which reacts with a spectrin-specific antiserum co- 
purifies with Golgi but not plasma membrane-derived vesi- 
cles. These results strongly support our conclusion that an 
isoform of spectrin localizes to the Golgi apparatus. 

We also performed an experiment to evaluate the subcellu- 
lar localization of/3-spectrin to the Golgi complex that was 
independent of ~spec-1 antibody reactivity. Purified canine 
erythrocyte spectrin was covalenfly labeled with rhodamine 
and microinjected into living MDCK cells (see Materials 
and Methods). The cells were then fixed, permeabilized, and 
stained with the Golgi-specific monoclonal antibody. The 
microinjected rhodamine-spectrin accumulated primarily as 
punctate perinuclear structures (Fig. 6, a, d, and g). There 
was also a faint diffuse signal that could correspond to free 
cytoplasmic protein. In all cases the punctate perinuclear 
structures resided in the same region of the cytoplasm as the 
Golgi apparatus, and overlapped the distribution of reticular 
Golgi elements identified with the Golgi marker antibody 
(Fig. 6, c and f ) .  In contrast, microinjection of rhodamine- 
labeled dextran produced a diffuse pattern that extended 
evenly throughout the cytoplasm and did not give rise to 
localized punctate structures like those observed with micro- 
injected ~-spectrin or ~spec-1 staining. It is also possible that 
the punctate peri-nuclear structures labeled with rh-spectrin 
were lysosomes (Fig. 5, a, d, and g). However, staining of 
microinjected ceils with antibodies against lysosomal mem- 
brane proteins showed no colocalization of rh-spectrin with 
lysosomes (not shown). In addition, rh-spectrin tended to 
localize to a central region of the Golgi complex (Fig. 6) 
whereas lysosomes tended to reside more toward the periph- 
ery of the cytoplasm (Fig. 3, i and j) .  We conclude that these 
results are consistent with the proposal that B-spectrin as- 
sociates directly with the Golgi apparatus. Furthermore, 
since these experiments were totally independent of the anti- 
spectrin antiserum, we can more confidendy rule out the 
possibility that the Bspec-1 recognizes a Golgi resident pro- 
tein distinct from B-spectrin but which has a cross-reacting 
epitope. 

Golgi-derived membranes are primarily lumenal and hence 
are unable to interact with the WGA-agarose beads. Such a 
topology for purified Golgi membranes has been reported 
previously (Persson et al., 1991). Examination of the Golgi 
membrane preparation by electron microscopy (Fig. 5 C) re- 
vealed an abundance of intact stacks of Golgi cisternae, indi- 
caring that normal Golgi morphology and topology was 
maintained. In addition, protease protection experiments 
showed that the majority (89% + 13%, n = 3) of the galac- 
tosyltransferase activity (a lumenal enzyme) in this prepara- 
tion was protected from proteolysis except when 0.5 % Triton 
X-100 was added (data not shown). These results show that 

Dynamics of [3-Spectrin Distribution during 
Disruption of Goigi Structure and Function 
The onset of mitosis is accompanied by a rearrangement of 
cytoplasmic microtubules, a corresponding fragmentation 
and redistribution of the Golgi apparatus (Lucocq et ai., 
1989; Lucocq and Warren, 1987), and a temporary cessation 
of protein processing and secretion (Warren et al., 1983). To 
establish whether the distribution of Golgi-localized/~-spec- 
trin is also affected during the cell cycle, we surveyed cul- 
tures of log phase MDCK cells, that had been fixed and 
stained with ~spec-l, for ceils captured in different stages of 
mitosis (Fig. 7). The/3spec-1 staining pattern was distinctly 
different in cells undergoing mitosis compared to interphase 
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Figure 5. Association of a 
220-kD spectrin with rat liver 
Golgi membranes. (A) Puri- 
fied Golgi membranes were 
subjected to SDS-PAGE and 
immunoblotted with /3sec-1. 
Positions of molecular weight 
standards are indicated to the 
left (values given are in kD, 
DF,, dye front). (B) Purified 
Golgi membranes were frac- 
tionated on wheat germ agglu- 
tinin agarose as described in 
the Materials and Methods. 
Equal amounts of the bound 
and unbound fractions were 
assayed for the plasma mem- 
brane marker 5'-nueleosidase, 
the Golgi marker galaetosyl- 
transferase, and subjected to 
SDS-PAGE followed by im- 
munoblotting with affinity pu- 
rified/3spec-1 (error bars rep- 
resent the mean standard error 
of quadruplicate measure- 
ments). Spectrin could not be 
detected in the bound fraction. 
Immunoblots were quantitated 
by dansitometry. (C) A repre- 
sentative electron micrograph 
of pelleted Golgi-enriched 
membranes before fractiona- 
tion on WGA agarose. Arrows 
indicate morphologically dis- 
tinguishable Golgi cisternae 
and stacks of cisternae. 

cells. Most prominently, we observed a marked increase in 
diffuse staining throughout the cytoplasm of mitotic cells, as 
well as a complete loss of staining of reticular elements (Fig. 
7, a and b). Note that interphase ceils in the same fields show 
little or not diffuse cytoplasmic staining compared to mitotic 
cells. Previous studies (Lucocq et al., 1989) have shown that 
during mitosis the Golgi apparatus breaks down into mul- 
tivesicular Golgi clusters and into univesicular structures 
which are distributed throughout the cytoplasm. Co-local- 
ization of/3-spectrin with Golgi fragments was not evident 
(Fig. 7, c and d). Hence, we conclude that the marked eleva- 
tion in the intensity of cytoplasmic/3-spectrin staining ob- 
served in mitotic cells represents the dissociation of/3-spec- 
trin from Golgi membranes. In addition to the diffuse 
cytoplasmic staining, the/3spec-1 antibody strongly stained 
two punctate structures that aligned perpendicular to the 
plane of the chromosomes (Fig. 7, e and f ) .  From their mor- 
phology and geometric orientation with respect to the chro- 
mosomes these structures are centrosomes; the significance 
of this staining pattern is not known at present. 

Depolymerization of microtubules in interphase cells with 
nocodazole mimics, at least partially, changes in Golgi struc- 
ture observed during mitosis (Kreis, 1990). Nocodazole- 
induced microtubule disruption leads to a fragmentation of 
the Golgi complex resulting in the accumulation of Golgi 
stacks throughout the cytoplasm. However, in contrast to mi- 
totic cells, the fragmented Golgi stacks remain functional 
and protein secretion continues under these conditions (Iida 
and Shibata, 1991). Accordingly, we examined the effects of 
nocodazole treatment on the distribution of Golgi/3-spectrin 
in NRK cells. Disruption of microtubules by treatment at 
4°C in the presence of nocodazole has little or not effect on 
the morphology of either the Golgi complex or associated 
Golgi/3-spectrin (Fig. 8, b, g, and l). This is consistent with 
previous studies that have shown that dispersion of the Golgi 
complex occurs only after cells are warmed above a thresh- 
old temperature (34°C; Turner and Tartakoff, 1989), indi- 
cating that microtubule depolymerization alone is not suf- 
ficient for alterations in Golgi morphology or /3-spectrin 
distribution. Upon warming to 37°C, the Golgi complex be- 
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Figure 6. Microinjection of rhodamine-spectrin. Rhodamine-spectrin or rhodamine-dextran were microinjected into living MDCK cells. 
The cells were then fixed in methanol and stained with the Golgi-specific monoclonal antibody (a-h). single cells injected with rhodamine- 
spectrin were examined for rhodamine fluorescence (a, d, and g), to reveal the distribution of injected spectrin; and fluorescein fluorescence 
(b, e, and h), to reveal Golgi distribution. Double exposures of rhodamine and fluorescein fluorescence (c and f )  shows that Golgi and 
rh-spectrin distributions co-localize throughout a large region of the cytoplasm. Discrete features stained by both rh-spectrin and the Golgi 
monoclonal antibody can be resolved (arrowheads). In contrast to the distribution of rh-spectrin, microinjected rh-dextran (i) gave a stain- 
ing pattern indicative of a diffuse cytoplasmic distribution. Images were obtained with a Zeiss Axiophot microscope. Bar, 5 #m. 

gan to disperse; fragmentation of the Golgi complex was 
partial after 20 min (Fig. 8, c, h, and m), extensive within 
40 min (Fig. 8, d, i, and n) and complete after 12 h (Fig. 8, 
e, j ,  and o). The pattern of B-spectrin distribution differed 
slightly from that of the Golgi membranes under these condi- 
tions. After 20 rain, the majority of the/~-spectrin signal re- 
mained associated with larger perinuclear structures (Fig. 8 
c), whereas much of the Golgi marker was found associated 
with small peripheral punctate Golgi stacks (Fig. 8 m). 
While spectrin staining was observed on only a minority of 
these peripheral Golgi fragments (Fig. 8 m), there was no 
evidence for a general dissociation of spectrin from Golgi 
membranes. Longer incubations (40 min) resulted in an in- 
crease in the number of peripheral punctate structures which 
were stained with both/5-spectrin and Golgi marker antibod- 

ies (Fig. 8 n). These structures persisted following prolonged 
incubation of cells at 37°C in nocodazole (12 h, Fig. 8 o). 

The structural integrity of the Golgi apparatus is also 
greatly perturbed in the presence of the fungal metabolite 
brefeldin A (BFA). Previous studies have shown that within 
a few minutes of BFA treatment, Golgi membranes form an 
extensive network of tubules which are thought to be in- 
volved in the retrograde transport of membranes from the 
Golgi to the endoplasmic reticulum (for review see Klausner 
et al., 1992). Longer incubations with the drug results in a 
complete loss of Golgi structure and an accumulation of 
Golgi markers within the ER (Lippincott-Schwartz et al., 
1990). Similar events occur within the TGN (Wood et al., 
1991; Reaves and Banting, 1992). We stained MDBK cells 
with/$spec-1 following treatment for 10 min with BFA (Fig. 
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Figure 7. #-Spectrin in mitotic ceils. Two separate fields (a and b) 
of/~spec-l-stained MDCK cells each containing a single mitotic 
cell (arrows) are shown. Note the marked difference in the intensity 
of diffuse cytosolic staining in the mitotic ceils compared to the sur- 
rounding interphase cells. A cell which was double-stained with 
/~spec-1 (d) and the Golgi monoclonal antibody (c) shows that the 
diffusely distributed staining pattern seen with #spec-1 does not 
correspond to the distribution of mitotic Golgi fragments localized 
throughout the cytoplasm, e andfshow mitotic MDCK ceils double 
stained with ~spec-1 (red) and the DNA intercalating dye YOYO-I 
(green). It can be seen that the/~antibody stained two punctate 
structures (arrowheads) that were aligned perpendicularly to the 
plane defined by the chromosomal DNA. Bars: (a and b) 5 gm; (c 
and d) 2.5/zm. 

9); BFA treatment of MDCK cells has been shown to result 
in few changes in Golgi morphology (Hunziker et al., 1991). 
Under these conditions, we detected membranous tubules 
emanating from both the Golgi (Fig. 9 f )  and the TGN (Fig. 
9 e) that were stained with the Golgi-specific and CI-MPR 
antibodies, consistent with previous reports (Lippincott- 

Schwartz et al., 1990; Wood et al., 1991; Reaves and Bant- 
ing, 1992). Co-staining with/~spec-1 revealed that B-spectrin 
was diffusely distributed throughout the cytoplasm under 
these conditions (Fig. 9 d); little or no ~-spectrin staining 
was detected on the membranous tubules, suggesting that 
B-spectrin had dissociated from Golgi membranes. This 
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effect was completely reversible; upon removal of BFA, 
&spectrin rapidly reassociated with the Golgi membranes 
coincident with the restoration of steady state Golgi mor- 
phology (Fig. 9, g-i). This behavior of Golgi fl-spectrin in 
the presence of BFA mirrored that of the Golgi coat protein 
t-COP, which also undergoes a reversible, BFA-dependent, 
net loss from Golgi membranes (Donaldson et al., 1990; 
Orci et al., 1991). Significantly, examination of the time 
course of the BFA effect shows that both fl-spectrin and 
t -COP dissociate from the Golgi as early as 2 rain after the 
addition of BFA (Fig. 10, b and j) .  Thus, there appears to 
be both a temporally and spatially co-ordinate rapid, net loss 
of these proteins from Golgi membranes. 

In summary, these results show that under conditions 
where there is a dramatic alteration in Golgi morphology and 
a complete loss of Golgi function (mitosis and BFA treat- 
ment), fl-spectrin becomes dissociated from Golgi mem- 
branes and appears diffuse throughout the cytoplasm. In 
contrast, under conditions where Golgi structure is per- 
turbed but without a loss of function (nocodazole treatment), 
~spectrin distribution more closely correlates with that of 
fragmented Golgi membranes. These results imply that the 
association of fl-spectrin with Golgi membranes, and Golgi 
function are coupled. 

Discussion 

At the level of the plasma membrane, the spectrin-based 
membrane skeleton plays fundamental roles in the main- 
tenance of the structural integrity of the cell surface and in 
the formation of discrete membrane domains (Bennett, 
1990; Nelson et al., 1990). Neither of these functions, how- 
ever, are unique to the plasma membrane; intracellular or- 
ganelles also have a requirement for membrane structural in- 
tegrity and membrane domain formation. In addition to the 
localization of spectrin isoforms in plasma membrane do- 
mains, we have now identified a homolog of the erythroid 
isoform of fl-spectrin that localizes to the Golgi apparatus of 
nonerythroid cells, indicating that this family of structural 
proteins plays a broad role in membrane organization 
throughout the cell. 

Since spectrin was initially identified as a component of 
a cytoskeletal network which resides and functions at the 
plasma membrane, it is necessary to consider two important 
questions related to the distribution of spectrin with Golgi 
membranes: (a) does the antibody #spec-1 recognize a spec- 
trin in nonerythroid cells, and not an unrelated protein with 
a cross-reactive epitope; and (b) are the structures stained 
by this antibody representative of the Golgi complex? To ad- 
dress the first question, it can be argued that the flspec-1 an- 
tiserum was specific for spectrin. First, the antibody was 
raised against electrophoretically pure fl-spectdn which was 
derived from an already highly purified preparation of spec- 
trin. Second, the spectrin was isolated from erythrocytes, a 
tissue which lacks a Golgi apparatus and, hence, does not 
contain Golgi resident proteins that could contaminate the 
spectrin preparation. Third, the antibody stained erythro- 
cyte plasma membranes (Fig. 1 C), and reacted with eryth- 
rocyte fl-spectrin but not lens fodrin (Fig. 1 A), indicating 
that it is mono-specific for the antigen to which it was raised. 
Fourth, the antibody immunoprecipitated purified erythro- 
cyte fl-spectrin (not shown) and a 220-kD protein from 

MDCK cells that co-migrated with fl-spectrin in SDS-POly- 
acrylamide gels (Fig. 1 B). Finally, we prepared a second 
fl-spectrin antiserum which gave identical results to those 
obtained with the flspec-1 antibody used in these studies (not 
shown). 

That the flspec-1 staining pattern observed in MDCK cells 
is due to flspec-1 specificity toward an endogenous fl-spec- 
trin homolog was first demonstrated by affinity purification 
of the antibody on spectrin-Sepharose. The affinity purified 
antibody strongly stained Golgi membranes (Fig. 2), indi- 
cating that antibody staining of Golgi membranes and bind- 
ing to spectrin are directly correlated. In support of this 
conclusion we found that two independently prepared anti- 
erythroid fl-spectrin antisera, one that was prepared in paral- 
lel to flspec-1 (not shown) and a second ~ that was raised 
against a short peptide corresponding to a unique region of 
erythroid fl-spectrin (Fig. 3, k and l), also stained the Golgi 
apparatus. The antigen recognized by the flspec-1 antiserum 
was found to dissociate from Golgi membranes under differ- 
ent experimental conditions, indicating that flspec-1 recog- 
nizes a protein that is peripherally associated with the cyto- 
plasmic face of Golgi membranes, as expected for a 
spectfin-like molecule. It is interesting to note that in mitotic 
cells plasma membrane localized spectrin, like Golgi local- 
ized fl-spectrin, rapidly dissociates from membrane binding 
sites (Fowler and Adam, 1992). Finally, from preliminary 
studies we have been able to identify a Golgi-localized anky- 
fin by immunofluorescence staining and by expression of 
recombinant ankyrin domains (Beck, K., and W. Nelson, 
unpublished observations). Taken together these results ar- 
gue strongly that the staining pattern observed with the 
flspec-1 antiobdy does in fact reveal an isoform of spectrin 
that associates with the Golgi complex. 

A Golgi localized, 200-kD peripheral membrane protein 
of unknown function has recently been identified (de AI- 
meida et al., 1993; Narula et al., 1992). Like the Golgi 
localized spectrin reported here, this protein (p200) be- 
comes rapidly dissociated from the Golgi complex following 
treatment with BFA (de Almeida et al., 1993; Narula et al., 
1992), raising the possibility that p200 and Golgi spectrin 
are identical. However, this seems unlikely due to the differ- 
ence in molecular mass between the two proteins as well as 
the fact that BFA induced dissociation of p200 from Golgi 
membranes is blocked by pretreatment with aluminum fluo- 
ride (de Almeida et al., 1993), whereas we have found that 
aluminum fluoride has no effect on the sensitivity of Golgi 
fl-spectrin to BFA (data not shown). Moreover, preliminary 
sequence data for p200 has revealed no sequence homology 
with speetrin (Jenifer Stow, personal communication). In- 
terestingly, Pimplikar et al. (1994) have identified several 
high molecular weight proteins in TGN-derived transport 
vesicle isolates from MDCK cells. These proteins have been 
proposed to be part of the sorting machinery for membrane 
proteins, but their relationship to spectrin is unknown. 

The intracellular staining pattern of flspec-1 was compared 
with that of marker proteins of several intracellular com- 
parlments which localize to the perinuclear region of the 
cytoplasm (Golgi complex, TGN, late endosomes and lyso- 
somes, Figs. 3 and 4). Extensive co-localization was ob- 
served only with antibodies to Golgi markers (Figs. 3 and 
4), and was seen even under conditions when the Golgi was 
dispersed to the periphery of the cytoplasm by disruption of 
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Figure 8. 
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Figure 8. /~-Spectrin distribu- 
tion in nocodazole-treated 
MDCK cells. Subconfluent 
cultures of NRK cells were ei- 
ther untreated (control; a,f, k, 
and p) or treated with nocoda- 
zole (33 /~M) for 30 rain at 
4°C to disrupt microtubules. 
This was followed by incuba- 
tion for either 30 min at 4°C 
(b, g, l, and q), 20 rain at 
37°C (c, h, m, and r), 40 min 
at 37°C (d, i, n, and s) or 12 
h at 37°C (e, j ,  o, and t) in 
the continuous presence of 
nocodazole. The cells were 
fixed in 1.9% formaldehyde 
and double stained with 
affinity purified/~spec-1 (a, b, 
c, d, and e) and the Golgi 
monoclonal antibody (f-j), or 
stained independently with a 
monoclonal antibody directed 
against B-tubulin (P-O- Dou- 
ble exposures for each of the 
double-stained cells are also 
shown (k-o). Note that the 
Bspec-1 antibody gave sig- 
nificant nuclear staining in 
this experiment (a, d, g, and 
j) .  Nuclear staining, which 
was often observed with this 
antibody, was dependent on 
fixation conditions and could 
frequently be reduced by 
treatment with DNAse I. Im- 
ages were obtained using a 
Zeiss Axiophot microscope. 
Bar, 5/~m. 
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Figure 9. /~-Spectrin distribution 
in MDBK cells treated with BFA. 
Subcouliuent cultures of MDBK 
cells were either untreated (a-c), 
treated for 10 rain with 5/~g/ml 
BFA (d-f), or treated for 10 rain 
with BFA followed by a subse- 
quent incubation for 30 rain in the 
absence of BFA (g-i). The cells 
were then fixed either in ice cold 
methanol (c, f, and i), or 1.9% 
formaldehyde followed by extrac- 
tion in 0.01% saponin (a, b, d, e, 
g, and h), and stained with the 
Golgi monoclonai antibody (c, f, 
and i), or double stained with 
affinity purified /~spec-I (a, d, 
and g) and the CI-MPR monoclo- 
nal antibody (b, e, and h). Treat- 
ment for 10 min in BFA was 
sufficient to cause extensive 
tubularization of both Golgi (f) 
and TGN membranes (e). The ar- 
rows indicate regions of the 
double-labeled cells which con- 
tain abundant TGN and Golgi 
membranes. Note that in cells 
treated for 10 min with BFA (d 
and e) there is no evidence for an 
accumulation of/~-spectrin (d) in 
these regions. Images were ob- 
tained using a Zeiss Axiophot mi- 
croscope. Bar, 5/~m. 

microtubules (Fig. 7). The Golgi localization of/3-spectrin 
was confirmed by Western blot analysis of purified rat liver 
Golgi membranes which revealed an immunoreactive, 220- 
kD species that co-purified with the Golgi membrane frac- 
tion (Fig. 5). Independent evidence for an association of 
spectrin with the Golgi was also obtained by microinjection 
of rhodamine-spectrin which accumulated as punctate peri- 
nuclear structures that co-localized with Golgi membranes 
(Fig. 6). Since our initial attempts to localize/3-spectrin by 
immuno-electron microscopy have been unsuccessful, we 
were not able to identify the precise Golgi compartment in- 
volved in/3-spectrin binding. However, it is worth noting that 
in our high magnification images of double-stained NRK 
cells (Fig. 4 d) we found regions of the Golgi complex that 
were stained with/3speed but not with the anti-mannosidase 
II antibody. Although the exact identity of these regions can 
not be specified as yet, their existence indicates that spectrin 
may not be uniformly distributed throughout the Golgi 
complex. 

While our results represent the first definitive demonstra- 
tion of Golgi-localized spectrin, earlier studies established 
the precedent for the association of spectrin isoforms with 
other intracellular membrane systems, including: chro- 
maffin granules, synaptic vesicles, endoplasmic reticulum, 
nuclear membrane, mitochondria, as well as other uniden- 
tified vesicles (Zagon et al., 1986; Aunis and Perrin, 1984). 
In lymphocytes, a large cytoplasmic aggregate of spectrin is 
located in the perinuclear region of the cytoplasm, but not 
in association with morphologically distinguishable Golgi 

cisterrme (Black et al., 1988). Finally, in rat spermatids, an 
erythroid isoform of spectrin was found in the perinuclear re- 
gion (De Cesaris et al., 1989), but double-labeling experi- 
ments were not performed to definitively establish co- 
localization of speetrin with Golgi markers. 

{3-Spectrin and Golgi Structure and Function 

Our studies indicate that ~-spectrin is likely to play a fun- 
damental role in Golgi structure and function. We have 
found that flspec-1 stains the Golgi apparatus of a variety of 
tissue culture cell lines including MDCK, MDBK, NRK, 
cos, and L cell fibroblasts (Figs. 1-4 and not shown). This 
association of fl-spectrin with the Golgi complex in different 
species and tissues is consistent with a conserved role for the 
protein in Golgi function. 

Examination of the behavior of Golgi fl-spectrin under 
conditions where Golgi structure and function was perturbed 
(mitosis, BFA, nocodazole) demonstrated a correlation be- 
tween spectrin dissociation from the Golgi and disruption of 
Golgi structure and function. When both steady state Golgi 
structure and function were abolished (mitotic ceils and ceils 
treated with BFA), we found that ~-spectrin was dissociated 
from Golgi membranes and appeared to be diffusely dis- 
tributed in the cytoplasm. In contrast, when the Golgi was 
fragmented without a loss of function (nocodazole), ~-spec- 
trin association with Golgi membranes was ultimately main- 
tained. These results imply that the interaction of/~-spectrin 
with the Golgi is tightly coupled to normal Golgi structure 
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Figure 10. Time course of fl-spec- 
trin and/5-COP redistribution fol- 
lowing BFA treatment. MDBK 
cells were treated with 5 /zg/ml 
BFA for 0 min (a, e, i, and m), 
2 nfin (b,f,j, and n), 5 min (c, g, 
k, and o), or 30 min (d, h, l, and 
p). Following fixation in 1.9% 
formaldehyde and permeabiliza- 
tion in 0.01% saponin, the cells 
were double stained either with 
affinity-purified /3spec-1 (a-d) 
and CI-MPR antibody (e-h), or 
with anti-/3-COP (i-l) and anti- 
CI-MPR (m-p). Note that as early 
as 2 min following BFA treatment 
there is evidence for dissociation 
of both /~-spectrin and B-COP 
from Golgi membranes revealed 
by a decrease in the intensity of 
Golgi staining relative to an in- 
crease in diffuse cytoplasmic 
staining. The images were ob- 
tained with a scanning laser con- 
focal microscope. Bar, 5/~m. 

and function. While this correlation is consistent with sev- 
eral roles for/3-spectrin at the level of the Golgi, consid- 
eration of our present understanding of functions already 
proposed for the plasma membrane-localized membrane 
skeleton can help to specify which of these are likely. 

In erythrocytes, spectrin self-associates and binds to 
specific soluble and integral membrane proteins to form an 
extensive cytoskeletal meshwork that is tightly associated 
with the plasma membrane (Bennett, 1990a,b). Based upon 
these properties, it has been proposed that a major function 
of spectrin is to provide structure integrity to the plasma 
membrane. Evidence in support of a structural role for spec- 
trin at the level of the Golgi apparatus is supported by our 
observations of spectrin distribution in mitotic MDCK cells. 
We found that/3-Spectrin dissociated from Golgi membranes 
at the time when the Golgi complex is extensively frag- 
mented and dispersed (Fig. 7). Similarly, treatment with 
BFA, which also resulted in an extensive alteration in Golgi 
morphology, was accompanied by the dissociation of Golgi 
/3-spectrin (Figs. 9 and 10). These results support the view 
that under steady state conditions /3-spectrin may form a 
cytoskeletal meshwork, analogous to the one found on the 
erythrocyte plasma membrane, which associates with Golgi 
membranes and serves to maintain the structural integrity of 
the Golgi complex. Thus, dissociation of this meshwork, re- 

vealed by the accumulation of spectrin in the cytoplasm, 
would be expected to coincide with the loss of morphological 
integrity of the Golgi complex and subsequent fragmentation 
as observed in our experiments. 

In the erythrocyte, the spectrin-based membrane skeleton 
has also been shown to restrict the mobility of membrane 
proteins in the plane of the membrane (Sheetz et al., 1980; 
Tsuji and Ohnishi, 1986; Tsuji et al., 1988). In nonerythroid 
ceils, this function serves to restrict membrane protein dis- 
tribution resulting in the formation of membrane domains 
(Hammerton, 1991; Seimers et al., 1993). It is possible, 
therefore, that Golgi/3-spectrin may serve a similar function 
within the Golgi stacks by selectively binding to resident 
Golgi membrane proteins and restricting their mobility and 
hence their access to the vesicular transport apparatus. In the 
context of this function, it is interesting that BFA treatment 
results in a loss of retention of resident Golgi and TGN 
marker proteins (Lippincott-Schwartz et al., 1990; Wood et 
al., 1991; Reaves and Banting, 1992). There is also evidence 
for a loss of Golgi membrane protein retention during mito- 
sis, where Golgi markers have been found to accumulate in 
fragments of the endoplasmic reticulum (Thyberg and Mos- 
kalewski, 1992). Our results demonstrate that under two 
different conditions, the dissociation of /3-spectrin from 
Golgi membranes is accompanied by loss of retention of resi- 
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dent Golgi proteins, suggesting a role for B-spectrin as a 
Golgi membrane protein retention system. 

It is also possible that/~-spectrin may play a role in direct 
sorting of proteins into the vesicular transport pathway. After 
very short incubations in BFA (2 min), we found a tem- 
porally and spatially coordinate net loss of B-spectrin and 
B-COP from Golgi membranes. B-COP is a constituent of the 
coatomer protein complex that mediates vesicular transport 
between the ER and Golgi, and within the Golgi stack 
(Serafini et al., 1991). Although the molecular mechanism 
of coatamer function has not been completely defined, it is 
likely that it functions in a way analogous to clathrin-coated 
pits of the plasma membrane and the TGN (Rothman and 
Orci, 1992). Interestingly, the clathrin-associated protein 
AP-1, which localizes to coated pits of the TGN (Ahle et al., 
1988), is also dissociated from the Golgi complex in the 
presence of BFA (Wong and Brodsky, 1992). Clathrin and 
associated proteins bind to specific membrane proteins and 
oligomerization of the clathrin lattice results in the formation 
of a discrete membrane domain enriched in proteins destined 
for transport (Brodsky, 1988; Keen, 1990). Coat proteins, 
therefore, appear to direct the sorting of membrane proteins 
through their ability to perform two key functions: selective 
membrane protein binding and coat protein oligomerization. 
Both of these functions are characteristic of the spectrin- 
based membrane skeleton. Hence, the spectrin membrane 
skeleton, Golgi coatamers and clathrin-coated pits all share, 
in addition to a sensitivity to BFA, basic structural features 
characteristic of membrane protein sorting machines. 
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