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Abstract
Background: Cyclooxygenase-2 (COX-2) has been shown to be highly expressed in a broad
series of primary endometrial tumors and its expression may be closely associated with parameters
of tumor aggressiveness. In human endometrial cancer, tumor suppressor phosphatase tensin
homologue (PTEN) is frequently mutated. In the presence of a mutated PTEN protein, Akt
phosphorylation levels increase leading to the activation of this survival pathway. The nuclear
transcription factor κB (NF-κB) is a well establish regulator of genes encoding cytokines, cytokine
receptors, and cell adhesion molecules that drive immune and inflammatory responses. More
recently, NF-κB activation has been connected with multiple aspects of oncogenesis, including the
control of apoptosis, cell cycle, differentiation, and cell migration. It is known that Akt may act
through NF-κB pathway and that COX-2 gene has been shown to be regulated at the promoter
level by NF-κB. Recently, we showed that Akt regulates COX-2 gene and protein expressions in
phospho-Akt expressing endometrial cancer cells. The present study was undertaken to determine
the involvement of NF-κB pathway and IκB (an inhibitor of NF-κB) in the regulation of COX-2
expression and to determine more precisely the downstream targets of Akt involved in this
process.

Results: Three different human endometrial cancer cell lines known to have wild type PTEN (HEC
1-A) or a mutated inactive PTEN protein (RL 95-2 and Ishikawa) were used for these studies.
Expression IκB and Phospho-IκB were evaluated by Western analysis. The presence of IκB
phosphorylation was found in all cell lines studied. There was no difference between cell lines in
term of NF-κB abundance. Inhibition of PI 3-K with Wortmannin and LY294002 blocked IκB
phosphorylation, reduced NF-κB nuclear activity, reduced COX-2 expression and induced
apoptosis. Transfection studies with a dominant negative Akt vector blocked IκB phosphorylation
and reduced COX-2 expression. On the opposite, constitutively active Akt transfections resulted
in the induction of IκB phosphorylation and up-regulation of COX-2.

Conclusion: These results demonstrate that Akt signals through NF-κB/IκB pathway to induce
COX-2 expression in mutated PTEN endometrial cancer cells.
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Background
The phosphoinositide 3-kinase (PI 3-kinase) pathway has
been implicated in the activation of the proinflammatory
transcription factor nuclear factor κB (NF-κB) [1-3]. It has
been demonstrated that both the regulatory and the cata-
lytic subunit of phosphatidylinositol 3-kinase (PI 3-K)
play a role in NF-κB activation by the tyrosine phosphor-
ylation-dependent pathway [3]. The NF-κB transcription
factor is a pleiotropic activator that participates in the
induction of a wide variety of cellular genes [4]. In addi-
tion to its role in inflammation and immune response,
NF-κB has also been implicated in the suppression of
apoptosis [5], cellular survival, transformation, and onco-
genesis [6]. Predominantly a heterodimeric complex of
two polypeptides (p65/RelA and p50), NF-κB lies dor-
mant in the cytoplasm through the binding IκB inhibitory
proteins. When phosphorylated on serine 32 and serine
36, IκBα is targeted and degraded by ubiquitin/26 S pro-
teasome pathway liberating the NF-κB heterodimer so
that it may translocate to the nucleus and bind DNA. NF-
κB binds to cis-acting κB in the promoters and enhancers
of key cellular genes. Active, DNA-binding forms of NF-κB
are dimeric complexes, composed of various combina-
tions of members of the Rel/NF-κB family of polypeptides
(p50, p52, c-Rel, v-Rel, RelA (p65), and RelB). Recently, a
large-molecular weight complex was identified that is
responsible for phosphorylating IκBα and IκBβ. Two key
catalytic sub-units of the IκB kinase (IKK) complex were
identified as IKKα and IKKβ [7]. Constitutive NF-κB acti-
vation appears to have an important role in tumorigene-
sis. For example, persistent nuclear NF-κB localization
and NF-κB-dependent transcription is detected in breast
[8], ovarian [9], colon [10], thyroid [11] and prostate [12]
tumors. In breast and prostate tumor cells, constitutive
NF-κB activity is associated with reduced levels of IκBα
that appears related to increased degradation of IκB pro-
teins in these cells [13].

Previous reports indicate that the transcription factor NF-
κB can function upstream of cyclooxygenase-2 (COX-2)
to control transcription of this gene through the IKK path-
way activation [14]. Cyclooxygenase (COX) is the rate-
limiting enzyme involved in the biosynthesis of prostag-
landins (PG) and exists in two isoforms: COX-1 (constitu-
tively expressed) and COX-2 (the regulated isoform).
Cyclooxygenase-2 (COX-2) up-regulation has been found
in several type of cancers such as colon carcinomas [15],
cervix [16], head and neck [17], bladder [18], pancreas
[19], stomach [20], prostate [21] and breast [22]. It is
believed that COX-2 and PGs, particularly PGE2, may be
key elements in the evolution of tumor transformation
and malignancy. Epidemiological studies showed that
nonsteroidal anti-inflammatory drugs (NSAIDs) can be
used for cancer prevention [23]. It has been shown that
COX-2 expression in colorectal carcinoma cells provides a

growth and survival advantage and increases tumor cell
invasiveness (see [22] for a review). Additionally, more
evidences suggest that COX-2 is highly express in a broad
series of primary endometrial tumors and its expression
may closely be associated with parameters of tumor
aggressiveness [24].

Akt is a serine/threonine protein kinase also known as
protein kinase B or Rac [25-27]. Akt is an inactive cytosolic
protein recruited to the plasma membrane, and activated
by phosphorylation at threonine 308 and serine 473 in
response to growth factors or cytokines [28-30] via the
product of PI 3-K, phosphatidylinositol 3,4,5-triphos-
phate (PIP3). Upon phosphorylation, Akt has been shown
to phosphorylate and to block the action of several pro-
apoptotic proteins such as Bad [29]. Akt also blocks cyto-
chrome C release from the mitochondria through the reg-
ulation of Bcl-2 [31] and regulates expression of cIAP-1
[32]. Inhibition of Akt has been shown to induce apopto-
sis [33-35] and was shown to be a downstream target of
NF-κB [36]. Recently, it has been demonstrated that Akt in
involved in IKK phosphorylation resulting in NF-κB acti-
vation [37]. In a number of different cancers, the tumor
suppressor phosphatase tensin homologue (PTEN, a lipid
phosphatase) is frequently mutated. PTEN mutations
have been found in several types of endometrial cancer
[38-41]. PTEN dephosphorylates PIP3 into inactive PIP2,
which blocks Akt activation. Moreover, we have previ-
ously shown that Akt regulates COX-2 gene and protein
expressions.

We have demonstrated recently that Akt directly regulates
COX-2 gene and protein expression in endometrial cancer
cells [42]. The present study was undertaken to determine
the involvement of NF-κB pathway and IκB in the regula-
tion of COX-2 expression and to determine more precisely
the downstream targets of Akt involved in this process. We
hypothesized that PTEN mutation increase Akt activity
which may, in turn, be involved in the activation of NF-
κB. Our results demonstrate that activity of NF-κB is up-
regulated in human endometrial cancer cells expressing
phospho-Akt and is responsible for the increase of COX-2
gene expression.

Results
Inhibition of PI 3-K induces apoptosis
We have showed previously that Akt inhibition in
mutated PTEN endometrial cancer cells results in inhibi-
tion of Akt phosphorylation, downregulation of COX-2
gene and protein expression and stimulation of apoptosis
[42]. The present results confirm that PI 3-K inhibition
with Wortmannin and LY294002 induce apoptosis (Fig.
1). Furthermore, these results demonstrate that apoptosis
is induced in a time-dependent manner in mutated PTEN
cells (RL 95-2 and Ishikawa) as demonstrated by Hoechst
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Effect of PI 3-K inhibitors on apoptosis in HEC 1-A, RL 95-2 and Ishikawa cells. Control (■ ), LY294002 (❍ ) and Wortmannin (▲)Figure 1
Effect of PI 3-K inhibitors on apoptosis in HEC 1-A, RL 95-2 and Ishikawa cells. Control (■ ), LY294002 (❍ ) and 
Wortmannin (▲). 2 × 106 cells were plated for 0, 6, 12, 24 h and cultured in the presence of medium and LY294402 or 
Wortmannin. Cells were trypsinized, pooled with floating cells and collected for Hoechst nuclear staining (right panel) or 
TUNEL analysis (left panel) to count apoptotic cells. Data represent the mean ± SEM of 4 independent experiments.
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and TUNEL analyses (Fig. 1). However, PI 3-K inhibitors
had no effect in non mutated PTEN HEC 1-A cells suggest-
ing that PI 3-K activity is important in the control and
inhibition of apoptosis.

Inhibition of the PI 3-kinase/Akt signaling pathway reduces 
phosphorylation of IκB and activates NF-κB translocation 
into the nucleus
As we showed previously, mutated PTEN endometrial
cancer cell lines (RL 95-2 and Ishikawa) expressed high
levels of Akt phosphorylation which was concomitant
with the presence of high levels of COX-2 mRNA and pro-
tein [42]. In the latter study, there was no Akt phosphor-
ylation found and nearly undetectable COX-2 protein in
the wild-type cell line (HEC 1-A). PI 3-K inhibition in RL
95-2 and Ishikawa cells directly blocked Akt phosphoryla-
tion and caused a reduction of COX-2 mRNA and protein
[42]. We wanted to further investigate the involvement
NF-κB/IκB pathway in the regulation of COX-2 by Akt. As
hypothesized, the results demonstrate that PI 3-K inhibi-
tion results in the reduction IκB phosphorylation in
mutated PTEN RL 95-2 and Ishikawa cells (Fig. 2). There
was no effect of PI 3-K inhibitors in IκB phosphorylation
in HEC 1-A wild-type cells. To further confirm that inhibi-
tion of IκB phosphorylation leads to the activation and
translocation of NF-κB to the nucleus, a NF-κB Chemilu-
minescent Assay was used to measure NF-κB activity in the
nucleus (Fig. 3). The activity of NF-κB was high in
mutated-PTEN human endometrial cancer cells compared
to wild-type PTEN HEC 1-A cancer cell line. PI 3-K/Akt
inhibition with Wortmannin significantly decreased NF-
κB activity in both RL 95-2 and Ishikawa and inhibition
had no effect in NEC 1-A cells.

Constitutively active Akt transfections resulted in the 
induction of IκB phosphorylation and up-regulation of 
COX-2 expression
To prove further the relationship between Akt, IκB and
COX-2 expression, a "gain-of-function" experiment was
conducted using a constitutively active (CA) Akt expres-
sion vector, which was transfected in the RL 95-2 cell line
(Fig. 4). CA-Akt transfection induced Akt and IκB phos-
phorylation and activity, and decreased total IκB protein.
As shown previously [42], CA-Akt transfection induced
COX-2 expression.

Dominant negative Akt vector blocked IkB 
phosphorylation, which leads to the activation of 
apoptosis
Finally, to confirm that Akt regulates COX-2 gene expres-
sion through the NF-κB/IκB pathway, a dominant nega-
tive (DN) Akt expression vector was used and transfected
in the mutated-PTEN RL95-2 cell line expressing phos-
pho-Akt (Fig. 5). As demonstrated previously, transfection
of RL95-2 cells with the DN-Akt decreased Akt phosphor-

ylation and caused a reduction of COX-2 expression [42].
The current study further confirms these observations and
demonstrates that transfection with DN-Akt increased
total IκB protein and decreased IκB phosphorylation (Fig.
5). In addition, DN-Akt transfection caused an induction
of apoptosis in RL 95-2 as observed with the PI 3-K inhi-
bition experiments.

Discussion
The ability of NF-κB to promote cell proliferation, to sup-
press apoptosis, to promote cell migration, and to sup-
press differentiation apparently have been co-opted by
cellular and viral oncoproteins to promote oncogenesis. It
is known that Akt may act through NF-κB pathway [43]
and that COX-2 gene has been shown to be regulated at
the promoter level by NF-κB [44]. The activity of NF-κB is
tightly controlled by inhibitory IκB proteins that bind to
NF-κB complexes and thus sequester NF-κB in the cyto-
plasm. Stimuli such as cytokines promote the serine phos-
phorylation of IκB and its polyubiquitination and
proteosome-mediated degradation and thereby induce
NF-κB translocation to the nucleus. Since Akt phosphor-
ylation has been shown to activate NF-κB in other sys-
tems, a similar sequence of events might be involved in
phospho-Akt expressing RL 95-2 and Ishikawa human
endometrial cancer cell lines used in the present study.
PTEN is a crucial phosphatase involved in the regulation
of Akt phosphorylation: the presence of an active PTEN
protein blocks Akt phosphorylation by the dephosphor-
ylation of PI 3-K product, PIP3 [45]. In the presence of a
mutated-PTEN protein, activation of Akt generally occurs
constitutively. We have demonstrated previously that Akt
is constitutively phosphorylated/activated in two
mutated-PTEN human endometrial cancer cell lines that
have been used in the present study (RL 95-2 and
Ishikawa) [32,42]. Whereas, phosphorylation of Akt was
absent in one wild-type PTEN cell line (HEC 1-A).

Indeed, our results demonstrate that the presence of IκB
phosphorylation was found in all cell lines studied. There
was no difference between cell lines in term of NF-κB
abundance indicating that NF-κB expression is not
involved in the regulation of COX-2 gene expression.
However, NF-κB was shown to be activated and present in
the nucleus of the two mutated-PTEN endometrial cancer
cells (RL 95-2 and Ishikawa) expressing phospho-Akt.
Thus, the presence of a wild-type PTEN protein results in
the reduction of Akt activity/phosphorylation leading to
the inhibition of IκB phosphorylation and the sequestra-
tion of NF-κB. On the opposite, the presence of a mutated
PTEN protein enables Akt phosphorylation, which in turn
may phosphorylate IκB allowing NF-κB to be translocated
to the nucleus to induce transcription of genes involved in
cell survival. These results demonstrate that the ability of
PTEN to negatively regulate the PI 3-K/Akt/NF-κB
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Effect of PI 3-K inhibitors on IκB expression and phosphorylation in HEC-1-A, RL-95-2 and Ishikawa cellsFigure 2
Effect of PI 3-K inhibitors on IκB expression and phosphorylation in HEC-1-A, RL-95-2 and Ishikawa cells. West-
ern analysis was performed on cell protein lysates from pooled attached and floating cells. β-actin was used as control to cor-
rect for loading. Densitometric analyses were performed using BIO RAD gel doc system and are presented as a ratio (value/β-
actin). 2 × 106 cells were plated for 24 h and cultured in medium in the presence or absence of LY294402 or Wortmannin. 
Data represent the mean ± SEM of 4 independent experiments. * p < 0.05 compared to control.
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pathway may be important to its role of tumor suppressor
protein.

In the present study, we have investigated the role of PI 3-
kinase in NF-κB activation. Various PI 3-kinase inhibitors
such as Wortmannin, LY294002 and dominant-negative

Akt expression vector were used to fully prove the involve-
ment of PI 3-K/Akt pathway in the regulation of NF-κB
activity. Inhibition of PI 3-K with Wortmannin and
LY294002 blocked Akt and IκB phosphorylation and
reduced COX-2 expression in RL 95-2 and Ishikawa cells.
However, PI 3-K inhibitors had no effect in HEC 1-A cells
(a cell line with non detected Akt phosphorylation and no
detectable level of COX-2) confirming that COX-2 is a tar-
geted gene downstream of Akt. Transfection studies with a
dominant negative Akt vector in mutated-PTEN RL 95-2
cells blocked IκB phosphorylation, increased IκB expres-
sion and leaded to the activation of apoptosis. These PI 3-
K/Akt inhibition studies demonstrate that PI 3-K and Akt
are required for NF-κB activation.

To further confirm the involvement of Akt and NF-κB /IκB
pathway in the control of COX-2 expression, transfections
with a constitutively active (CA) Akt expression vector
were carried out using RL 95-2 cells. As hypothesized, CA-
Akt transfection induced COX-2 expression and con-
firmed the results obtained with DN-Akt inhibition and PI
3-K inhibition studies. Moreover, these transfections
resulted in the induction of IκB phosphorylation. The
subsequent degradation of IκB allows the release and
translocation of NF-κB to the nucleus. Recent evidences
also suggest that CCAAT/enhancer-binding protein beta
(C/EBPβ), a transcription factor, is involved downstream
Akt activation pathway [46-48]. Studies have demon-
strated that C/EBPβ is an essential transcription factor for
COX-2 gene regulation [49,50] indicating that activation
of C/EBPβ by Akt may be in part responsible for COX-2
gene expression. Another study showed that inactivation
of GSK-3β through activation of Akt plays an important
role in the UVB induction of COX-2 transcription [51].
Thereby, C/EBPβ and GSK-3β may be other different tar-
gets following Akt phosphorylation to activate cell sur-
vival through COX-2 gene expression and PGE2 secretion.

COX-2 has been shown to contribute to tumorigenesis
and the malignant phenotype of tumor cells by different
mechanisms, including: (1) inhibition of apoptosis; (2)
increased angiogenesis; (3) increased invasiveness; (4)
modulation of inflammation/immuno-suppression; and
(5) conversion of procarcinogens to carcinogens (see [52]
for a review). An evident correlation between COX-2
expression and inhibition of apoptosis has been estab-
lished, associated with increased PGE2 levels resulting in
modulation of pro- and anti-apoptotic factors such as Bcl-
2 [53]. We have showed previously that COX-2 inhibition
with NS-398 in RL 95-2 and Ishikawa cells results in the
inhibition of Akt phosphorylation and induction of apop-
tosis suggesting that the Akt/NF-κB/COX-2 pathway is an
important point of control of cell survival.

NF-κB activity in response to WortmanninFigure 3
NF-κB activity in response to Wortmannin. HEC 1-A, 
RL 95-2 and Ishikawa cells were treated with Wortmannin 
for 24 hours and cells were recovered and lysed. Nuclear cell 
lysates were recovered and NF-κB activity was measured 
using the Chemiluminescent NF-κB Assay. Data represent 
the mean ± SEM of 4 independent experiments. * p < 0.05 
compared to control.
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Constitutively active Akt action on IκB activity and COX-2 protein expressionFigure 4
Constitutively active Akt action on IκB activity and COX-2 protein expression. RL 95-2 cells were transfected with 
constitutively active (CA) Akt expression vector or control vector and (A) Akt protein, (B) phospho-Akt, (C) COX-2, (D) 
Phospho-IκB et (E) IκB protein levels were measured by Western analysis. β-actin was used as control to correct for loading. 
Densitometric analyses were performed using BIO-RAD gel doc system and are presented as a ratio (value/β-actin). Data rep-
resent the mean ± SEM of 4 independent experiments. * p < 0.05 compared to control.
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Dominant negative Akt action on IκB activityFigure 5
Dominant negative Akt action on IκB activity. RL 95-2 expressing phospho-Akt cells were transfected with Akt domi-
nant negative (DN) vector or control vector and (A) phospho-IκB and (B) IκB protein levels were measured by Western anal-
ysis. β-actin was used as control to correct for loading. Densitometric analyses were performed using BIO-RAD gel doc 
system and are presented as a ratio (value/β-actin). (C) Cells were trypsinized, pooled with floating cells and collected for 
Hoechst nuclear staining to count apoptotic cells. Data represent the mean ± SEM of 4 independent experiments. * p < 0.05 
compared to control
Page 8 of 11
(page number not for citation purposes)



Molecular Cancer 2004, 3 http://www.molecular-cancer.com/content/3/1/7
Conclusion
In summary, the present study demonstrates a crucial role
for Akt in the regulation of NF-κB expression through the
phosphorylation of IκB in human endometrial cancer
cells. The results demonstrate that Akt signals through NF-
κB/IκB pathway to induce COX-2 gene and protein
expression. There is compelling evidence that NF-κB is
deregulated in many forms of cancer and its inhibition is
a logical therapy for certain cancers and for adjuvant
approaches to cancer therapy. Indeed, this study shows
that NF-κB/IκB pathway could be a good target for gene
therapy in endometrial cancers. Further studies on other
signaling factors/transcription factors such as GSK-3β and
C/EBPβ activation/phosphorylation will provide more
insight into the complex mechanisms by which Akt
regulates COX-2 gene expression in human endometrial
cancer cells.

Methods
Reagents
Wortmannin, LY294002, MTT (3-(4, 5-dimethylthiazolyl-
2)-2, 5-diphenyltetrazolium bromide) and Hoechst
33258 were obtained from Sigma (St. Louis, MO).
DMEM-F12, Mc Coy's 5A medieum, FBS serum and PCR
primers were purchased from Invitrogen (Burlington,
ON). Anti-human PhosphoPlus Akt (Ser473), Akt, IκBα
and Phospho-IκBα antibodies were obtained from Cell
Signaling Technology and anti-human COX-2 were
obtained from Cedarlane Laboratories (Hornby, ON).
Secondary horse radish peroxidase (HRP)-conjugated
anti-rabbit antibody was purchased from BioRad (Missis-
sauga, ON). Dominant negative (DN) and constitutively
active (CA) Akt vectors were generously provided by Dr
Zhenguo Wu, Hong Kong University of Science and
Technology.

Cell culture
Human endometrial cancer cells (HEC 1-A and RL 95-2)
were obtained from ATCC. Ishikawa cells were generously
provided by Dr Sylvie Mader, Université de Montréal,
Canada. Cells were cultured in 75 cm2 bottles at 37°C in
an atmosphere of 5% CO2. Ishikawa cells were main-
tained in DMEM-F12 supplemented with 2.438 g/L of
NaHCO3, FBS (10%) and gentamycin (50 µg/ml). HEC 1-
A cells were grown in Mc Coy's 5A medium supplemented
with 2.2 g/L of NaHCO3, FBS (10%) and gentamycin (50
µg/ml). RL 95-2 were cultured in DMEM-F12 supple-
mented with 1.75 g/L of NaHCO3, HEPES (5 µM), insulin
(2.5 µg/ml), FBS (10%) and gentamycin (50 µg/ml). 1 ×
106 cells were plated in log growth phase into 6 wells
plates for 24 hrs in the above culture medium prior to ini-
tiation of treatment. Wortmannin dose (50 µg/ml) and 24
hours time were chosen following dose-responses and
time-course preliminary studies.

Transfections
Cells were plated at a density of 4 × 105 cells/well in six-
well plates 24 hours before transfection. RL 95-2 cells
were transfected with DN-Akt and CA-Akt vectors. Tran-
sient transfection of the cells was carried out with 1 µg of
DNA/well using Effectene (Qiagen, Mississauga, ON),
according to the protocol suggested by the manufacturer.
Empty vector was used as the transfection control. Trans-
fection efficiencies were determined by Western analysis
using an anti-Akt antibody.

NF-κB cheluminescent assay
The BIOXYTECH NF-κB Chemiluminescent Assay (Medi-
corp, Montreal, QC) employs an oligonucleotide contain-
ing the DNA binding NF-κB consensus sequence bound to
a 96-well plate. NF-κB present in the sample binds specif-
ically to the oligonucleotide coated on the plate. The DNA
bound NF-κB is selectively recognized by the primary
antibody (p50 and p105 specific). A secondary antibody-
alkaline phosphatase conjugate binds to the primary anti-
body. Then, the Relative Light Units (RLU) is measured
using a chemiluminescence detector after addition of the
alkaline phosphatase substrate.

Hoechst staining
Following treatment, both floating and attached cells were
resuspended in 10% formalin containing Hoechst 33258
for 24 hours at 4°C. Hoechst nuclear staining was viewed
and photographed using a Olympus BX60 fluorescence
microscope and a Coolsnap-Pro CF digital Camera
(Carsen Group, ON). Cells with typical apoptotic nuclear
morphology (nuclear shrinkage, condensation and frag-
mentation) were identified and counted, using randomly
selected fields on numbered photographic slides, of
which the "counter" was not aware of the treatment, so as
to avoid experimental bias. A minimum of 200 cells per
treatment group was counted in each experiment and
results are presented as a percentage of apoptotic cells/
non-apoptotic cells.

Terminal deoxynucleotidyl transferase-mediated nick end-
labeling (TUNEL)
Cells (floating and attached) were pooled, placed on a
positively charged microscope slide, dried and rinsed with
PBS. Slides were incubated with proteinase K (20 µg/ml)
for 30 min at room temperature. Slides were washed twice
with PBS and endogenous peroxidase was inactivated
with 0.3 % hydrogen peroxide in methanol for 30 min.
Slides were rinsed with buffer and incubated with 10 mM
citrate solution for two minutes on ice. Then, tissue sec-
tions were rinsed with PBS and incubated with TdT label-
ling reaction (In Situ Cell Death Detection, POD, Roche)
for 30 min at 37 °C in humidified environment. Slides
were washed three times in PBS and tissue sections were
blocked with BSA 3% for 20 min at room temperature.
Page 9 of 11
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Converter-POD solution was added and incubated 30
min at 37°C in humidified environment. Slides were
washed 5 min in PBS and color development was
achieved by incubation using DAB substrate. Cells were
finally counterstained with hematoxylin. Negative control
was performed using the same protocol without TdT
enzyme. TUNEL positive cells were counted as described
with the Hoechst nuclear staining assay.

Protein extraction and Western analysis
Cells (both floating and attached) were trypsinized, lysed
in lysis buffer (PBS 1 × pH 7.4; 1% Nonidet P-40; 0.5%
Sodium deoxycholate; 0.1% SDS; Protease Inhibitor
Cocktail Tablets (Roche)), frozen and thawed three times,
and centrifuged (13000 × g, 20 min at 4°C) to remove
insoluble material. Supernatant was recovered and stored
at -20°C pending analysis. Protein content was deter-
mined with the Bio-Rad DC Protein Assay according to
manufacturer instructions. Protein extracts (50 µg) were
heated (95°C, 3 min), resolved by 10% SDS-Polyacryla-
mide gel electrophoresis (PAGE) and electro-transferred
to nitrocellulose membranes (15 V, 30 min) using a semi-
dry transfer (Bio-Rad, Mississauga, ON). Membranes were
then blocked (2 hrs, RT) with PBS containing 5% milk
powder + 0.05% Tween 20, then incubated with anti-
COX-2 (1:1000), anti-Akt (1:1000), anti-Phospho-PKB/
Akt (1:250), anti-IκBα (1:1000), anti-Phospho-IκBα
(1:500) (overnight, 4°C), and subsequently with Horse
radish peroxidase (HRP)-conjugated anti-rabbit
secondary antibody (1:3000; RT, 45 min). Peroxidase
activity was visualized with the ECL kit (Amersham,
Arlington Heights, IL), according to the manufacturer's
instructions.

Statistical analysis
All experiments were repeated at least three times. Data
were subjected to one-way ANOVA or student t test
(PRISM software version 4.0; GraphPad, San Diego, CA).
Differences between experimental groups were deter-
mined by the Tukey's test.
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