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Abstract: Selenium as a nutrient has a narrow margin between safe and toxic limits. Hence, wastewa-
ter discharges from selenium-containing sources require appropriate treatment that considers health
concerns and stringent selenium-related water treatment standards. This work examined the use of
a photocatalysis-cum-adsorption system based on a layered double hydroxide coupled with TiO2

(LDH-TiO2) to remove aqueous phase selenocyanate (SeCN−), which is difficult to treat and requires
specific treatment procedures. The synthesized LDH and LDH-TiO2 composite samples were charac-
terized using the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and
thermogravimetry analysis (TGA) methods. The XRD results for the uncalcined LDH indicated a
hydrotalcite mass with a rhombohedral structure, whereas increasing the calcination temperature
indicated transition to an amorphous state. FESEM results for the LDH-TiO2 matrix indicated round
titanium dioxide particles and LDH hexagonal layers. The TGA findings for uncalcined LDH showed
a gradual decrease in weight up to 250 ◦C, followed by a short plateau and then a sharp decrease
in LDH weight from 320 ◦C, with a net weight loss around 47%. Based on the characterization and
initial selenocyanate adsorption results, the 250 ◦C calcined LDH-TiO2 matrix was used for the se-
lenocyanate photocatalysis. A ~100% selenium removal was observed using LDH:TiO2 at a 1.5:1 w/w
ratio with a 2 g/L dose, whereas up to 80% selenium removal was noted for LDH:TiO2 at a 0.5:1 w/w
ratio. The respective difference in the efficiency of selenium treatment was attributed to enhanced
LDH-based adsorption sites in the enhanced LDH:TiO2 w/w ratio. Furthermore, the selenite and
selenate that occurred during SeCN− photocatalytic degradation (PCD) were also nearly completely
removed via adsorption. An optimization exercise using response surface methodology (RSM) for
total selenium removal showed R2 values of more than 0.95, with a prediction accuracy of more
than 90%. In summary, the present findings show that the use of a photocatalysis-cum-adsorption
system based on LDH-TiO2 is a promising technique to treat industrial wastewater discharges for
selenocyanate and also remove the resulting intermediates.

Keywords: selenocyanate; layered double hydroxide (LDH); TiO2; photocatalysis; RSM

1. Introduction

Ever-growing water pollution is a serious concern requiring appropriate environmen-
tal protection plans [1,2]. To this end, selenium-based water pollution is also a growing
concern that requires innovative solutions because selenium as a nutrient has a narrow mar-
gin between safe and toxic limits [3]. Some significant selenium discharge sources include
major hydrocarbon use and processing facilities, natural geo-resources extraction sites,
refineries, the pigment industry, semiconductor manufacturing, and glass production [4–6].
Wastewater discharges from such sources require an appropriate treatment that considers
health concerns and stringent selenium-related water treatment standards. For example,
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the USEPA standard mandates the maximum limit of 50 ppb for selenium in natural water
supplies [7]. Hence, different technologies have been employed for selenium removal,
including membrane modules [8], biosorption [9], adsorption [10], phytoremediation [6],
electrocoagulation [11], chemical reduction [12], coagulation and flocculation [13], and ion
exchange [14]. However, because of various operational issues, better methodologies for
the treatment of selenium-contaminated water bodies are needed. Furthermore, aqueous
phase selenocyanate (SeCN−), found in several industrial effluents, is typically difficult
to treat and requires specific treatment procedures. Some specific selenocyanate sources
include mining facilities, large fossil fuel-based setups, and petroleum refineries [4–6].

The use of layered double hydroxides (LDHs) has been reported for several environ-
mental pollutant treatments, including arsenic [15], heavy metals [16–18], organic dyes [19],
radionuclides [20], organic anions [21], and inorganic anions [22]. Among the various
processes used for treating wastewaters, the use of photocatalysis offers a green and simple
technology [23–25] that has been successfully employed for the degradation of various toxic
compounds [26,27]. Furthermore, TiO2-initiated photocatalytic degradation (PCD) systems
are also reported to be efficient for aquatic pollution control [28–32]. Interestingly, efficient
performance of an LDH-TiO2 matrix has also been demonstrated for aqueous pollution con-
trol. Seftel et al. (2010) [33] report higher photocatalytic activity of the LDH-TiO2 matrix as
compared to that of TiO2 alone for the photocatalytic removal of methylene blue. Carja et al.
(2010) [21] report the successful application of TiO2/ZnLDH for treating aqueous phenol.
Furthermore, Paredes et al. (2011) [34] report that a TiO2/LDH matrix produced a syn-
ergistic effect causing both higher ·OH radical production and higher degradation of
phenol than TiO2 alone. Similarly, the application of an LDH-TiO2 matrix for dimethyl
phthalate and methylene blue pollutant removal has also been reported [35,36], as well
as the use of an LDH-TiO2 matrix for the removal of 2,4-dichlorophenoxyacetic acid and
orange II [37,38]. This clearly indicates improvement in both adsorption and photocatalysis
of several aqueous pollutants when using a combined LDH-TiO2 system. Furthermore,
though the use of LDH for selenite and selenate treatment is reported [7,39–42], to the
best of our knowledge, there has been no study reporting the use of an LDH-TiO2 matrix
for the removal of selenocyanate (SeCN−) and associated selenite/selenate oxyanions.
In addition, as mentioned earlier, aqueous phase selenocyanate (SeCN−) found in several
industrial effluents is typically difficult to treat and requires specific treatment procedures.
Hence, considering the recalcitrant nature of selenocyanate and the respective treatment
challenges [5], the present work investigates the application of the combined LDH-TiO2
matrix for selenocyanate removal along with the effect of different operational variables
on process efficiency. This application offers a unique solution where the photocatalysis
oxidizes selenocyanate to selenite and selenate followed by their uptake by the LDH-TiO2
matrix. Thus, the combined “photocatalysis-cum-adsorption” system offers a two-in-one
solution. This study will also explore the possible reaction intermediates along with process
optimization using response surface methodology (RSM)-based modeling.

2. Materials and Methods
2.1. Materials

High-purity chemicals used were aluminum nitrate nonahydrate (Sigma Aldrich,
Stuttgart, Germany), titanium dioxide (DEGUSSA P25, Stuttgart, Germany), magnesium ni-
trate hexahydrate (Sigma Aldrich, Stuttgart, Germany), potassium selenocyanate (Aldrich,
Burlington, MA, USA), sodium selenite (Aldrich, Burlington, MA, USA), and potassium
selenate (Aldrich, Burlington, MA, USA).

2.2. Synthesis and Characterization

The MgAl-LDH (hereupon referred to as LDH) was synthesized using a co-precipitation
technique. Magnesium nitrate hexahydrate and aluminum nitrate nonahydrate at a molar
ratio of 3:1 (M2+:M3+) were transferred to 50 mL of distilled water and then stirred in an
oil bath at 60 ◦C for about 15 min at 600 rpm, with pH adjusted to 10 ± 0.5 using NaOH
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(1 M). This was followed by stirring at 900 rpm with a temperature adjustment to 90 ◦C,
and later on refluxing the suspension for 24 h and then aging it for 4 days at 80 ◦C [43,44].
A subsequent water-and-ethanol-based washing and 1–2 days of drying at 80 ◦C delivered
the desired LDH that was then appropriately stored. In addition, the LDH:TiO2 matrix was
prepared as reported earlier [45]. A 10 g/L LDH suspension was gradually introduced
into a 10 g/L TiO2 suspension at LDH:TiO2 ratios of 1.5:1, 1:1, and 0.5:1. This was first
followed by mixing for 48 h at room temperature and then centrifuging and drying at 80 ◦C.
The resulting LDH:TiO2 matrix was then calcined at 250 ◦C for 5 h and appropriately stored.
The synthesized adsorbents were characterized using X-ray diffraction (XRD—mini-X-ray
diffraction, Rigaku Miniflex-II, Tokyo, Japan), field emission scanning electron microscopy
(FESEM, Tescan Lyra-3, Brno – Kohoutovice, Czech Republic), and thermogravimetry anal-
ysis (TGA, Perkin Elmer TGA 4000 analyzer, Waltham, MA, USA). The XRD 2θ analyses
were completed at a scanning rate of 3◦/min from 5◦ to 70◦. For the FESEM analyses,
the respective materials to be analyzed were first coated with gold to make the surfaces
conductive. The TGA analyses were completed in a nitrogen atmosphere from 50 to 800 ◦C
at a step rate of 15 ◦C/min.

2.3. Photocatalytic Degradation (PCD) Experiments

The layout of Pyrex glass reactor used for the PCD studies is given in Figure 1.
The shown UV lamp (FT15T8-BLB 15 W, Sankyo Denki, Hiratsuka, Japan) emitted light at
315–400 nm with a peak maximum of ~352 nm. The synthetic wastewater samples for all
the experiments were prepared using SeCN− 1000 mg/L standard. A blank sample was
always collected for each experiment before adding LDH-TiO2, and, then, the photocata-
lyst/adsorbent was mixed with the remaining synthetic wastewater batch followed by a
sample collection at 30 min to assess any initial adsorption. After this, the UV lamp was
turned on, with several samples taken till 6 h, which were then tested for the selenium and
other ionic species using an advanced ion chromatography setup (Metrohm). The column
used for the IC analyses was “Anion Dual 2” and the eluents used were 1.3 mM Na2CO3
and 2 mM NaHCO3.
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Figure 1. UV reactor setup layout as used for the LDH-TiO2 PCD work.

2.4. Response Surface Methodology (RSM)

As shown in the Table 1, a three-level face-centered central composite design (FC-CCD)
with a single center point was employed for the response surface methodology (RSM)-based
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design of experiments for the photocatalysis work. The respective design of experiments is
provided in Table 2.

Table 1. Levels and factors for photocatalysis experiments using RSM modeling.

Factors Level −1 Level 0 Level 1

A (w/w ratio of LDH:TiO2 matrix) 0.5 1 1.5

B (dosage of LDH:TiO2 matrix (g/L)) 1.0 1.50 2.0

C (selenocyanate (mg/L)) 2.50 5.0 7.50

Table 2. The RSM based design of experiments for the photocatalysis work.

Exp No. LDH:TiO2
Ratio

Dosage
(g/L)

SeCN−
(mg/L)

Residual SeO42−

(mg/L)
Total Selenium Removal
(%)

1 1 1.5 5 0.63 90.2

2 1 2 5 0.15 98

3 1 1 5 1.94 71.4

4 1 1.5 7.5 1.86 82.7

5 1.5 2 7.5 0.07 99.3

6 1.5 2 2.5 0 ~100

7 0.5 1.5 5 2.6 63

8 1.5 1 7.5 0.96 90.8

9 0.5 1 7.5 5.69 46.8

10 1.5 1 2.5 0 ~100

11 0.5 1 2.5 1.11 67.7

12 1 1.5 2.5 0 ~100

13 1.5 1.5 5 0 ~100

14 0.5 2 7.5 3.43 67.6

15 0.5 2 2.5 0.25 92.8

3. Results
3.1. LDH and LDH-TiO2 Matrix Characterization

Initially, the synthesized LDH and LDH-TiO2 matrix samples were characterized
using several advanced techniques. The XRD profiles of uncalcined TiO2, uncalcined
LDH, and calcined LDH-TiO2 (250 ◦C), are shown in Figure 2A. The XRD profile of
TiO2 (Figure 2A-(a)) shows both anatase and rutile phases as also reported earlier [46].
The presence of both rutile and anatase phases is reported to yield better photocatalysis
efficiency [47]. Furthermore, the XRD results for the uncalcined LDH (Figure 2A-(b)) indi-
cate a hydrotalcite mass with a rhombohedral structure (3R poly-type) based on the basal
(003, 006, 009, 015, and 018), and non-basal (110 and 113) reflections [48,49]. The corre-
sponding cell parameters i.e., a, c, and d003 for uncalcined LDH were found to be 0.307,
2.407 and 0.807 nm, respectively ((c is equal to ((6d006 + 3d003)/2) and a is equal to 2d110).
The basal spacing (d003) of 0.807 nm indicates nitrate in LDH as revealed by the presence of
nitrogen in the EDX spectra analysis (Table 3) [49,50]. Moreover, theses cell values along
with the sharp XRD peaks in Figure 2A-(b) for LDH (003, 006, 110, and 113) represent a
well-crystallized LDH structure [48]. Furthermore, for the LDH-TiO2 matrix, the respective
XRD results (Figure 2A-(c)) show both LDH and TiO2 peaks that suggests incorporation of
TiO2 into the LDH phase. On the other hand, the XRD findings for LDH (Figure 2B) show
that increasing the calcination temperature decreases the intensity of the peaks, indicating
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transition to an amorphous state [51,52], and the two new peaks (at 43.1 and 62.7) for the
calcined LDH at 500 ◦C correspond to the periclase (MgO) phase [22].
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The aforementioned trends for the LDH are also supported by the FESEM findings as
given in Figure 3a–c for several LDH samples. Figure 3a reveals hexagonal LDH crystals
in the nm range. Nevertheless, with an increase in calcination temperature to 250 ◦C
(Figure 3b), the hexagonal LDH plates become somewhat rougher, and, at 500 ◦C (Figure 3c),
they disappear. This is in accordance with the respective XRD results (Figure 2B) revealing
that an increase in temperature renders the LDH amorphous [51]. Furthermore, the FESEM
results in Figure 3e and Table 3 for the uncalcined LDH reveal that the Mg:Al ratio is 3.4,
whereas C (carbon) results from the CO3

2− ion induction in LDH [53]. The morphology of
Degussa P25 TiO2 nanoparticles with a particle size of approx. 30 nm (Figure 3d) is also
in accordance with the literature [54,55], whereas the FESEM results in Figure 4a–c for the
calcined LDH-TiO2 matrix indicate round titanium dioxide particles and LDH hexagonal
layers with the former showing a diminishing trend from “a” to “c”.
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The TGA findings for uncalcined LDH (Figure 5) show a gradual decrease in weight
up to 250 ◦C, indicating the loss of adsorbed and interlayer water. This is followed by a
short plateau and then a sharp decrease in LDH weight from 320 ◦C, which corresponds to
the removal of LDH-matrix-bound NO3

−, CO3
2−, and OH− molecules [56–59]. The net

weight loss for the uncalcined sample is around 47%. These findings are qualitatively in
accordance with the aforementioned XRD (Figure 2B) and FESEM findings (Figure 3a–c),
starting from the uncalcined to calcined LDH samples, where the LDH samples at elevated
calcination temperatures were noted to have an amorphous phase state. The above surface
characterization findings indicate that a moderate calcination temperature of 250 ◦C could
potentially synthesize a better LDH-TiO2 matrix, as also noted from the photocatalysis
results for the selenocyanate species reported below.
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3.2. Selenocyanate Photocatalytic Degradation Using LDH:TiO2 Matrix

Initially, a preliminary set of adsorption experiments was completed to evaluate the
selenocyanate adsorption capacity of synthesized LDH:TiO2 samples, and the 250 ◦C LDH
sample delivered the maximum selenocyanate retention. It was noted that a maximum
removal efficiency of only ~40% for SeCN− was achieved using LDH:TiO2 calcined at 250 ◦C
without using UV (SeCN− initial concentration = 9 ppm, dose = 1 g/L). Furthermore, it was
also noted that using only TiO2 without UV had negligible effect on the SeCN− removal.
Moreover, using UV with TiO2 led to the complete transformation of SeCN− into SeO4

2−

within 6 h of UV irradiation, but no removal of SeO4
2− occurred. Hence based on this,

along with the findings from the surface characterization exercise (Section 3.1), the 250 ◦C
calcined LDH-TiO2 matrix was further employed for detailed work on the photocatalytic
degradation (PCD) of selenocyanate species. It is also important to note that immediately
upon LDH-TiO2 sample addition before PCD, the pH increased approximately to 9 as
also noted earlier [60,61], which is attributed to the release of hydroxide groups from
LDH [62–65], as summarized in Equations (1) and (2) [42,66]:

Mg(1−x)Alx(OH)2(CO3)x/2 → Mg(1−x)AlxO(1+x/2) +
x
2

CO2 + H2O (1)

Mg(1−x)AlxO(1+x/2) +
x
n An− + (1 + x/2)H2O → Mg(1−x)Alx(OH)2A(x/n) + xOH− (2)

Furthermore, during photocatalysis, because of active species including ·OH radicals
and hole (h+) species [32,67], the selenocyanate initially breaks down to selenium and
cyanide species; the selenium is then oxidized to selenite and then to selenate (SeCN−

→SeO3
2−→SeO4

2−), while CN−, due to oxidation carried out by photogenerated holes
(h+), converts to OCN−, as given below in Equations (3)—(5) [67,68]:

SeCN− + 3H2O
TiO2→ SeO2−

3 + HCN + 5H+ + 4e− (3)

SeO2−
3 + H2O

TiO2→ SeO2−
4 + 2H+ + 2e− (4)

CN− + 2h+ + 2OH− → OCN− + H2O (5)

These transformations were also noted in the present work (Figure 6A) with the forma-
tion of cyanide, cyanate, selenite, and selenate as the reaction by products. The respective
OCN− results (Figure 6A) also show a hump-type trend that can be attributed to the uptake
of OCN− by the LDH:TiO2 matrix. A similar trend is also noted for selenium removal with
selenite converting to selenate (Figure 6A). These findings show that the LDH:TiO2 matrix
effectively removes both selenocyanate and the resulting reaction byproducts.

Figure 6B,C show no significant presence of aqueous selenite or selenate species. This
could have resulted from respective selenium species being adsorbed at the LDH surface.
To ascertain this, the pH of system in Figure 6C (after 6 h photocatalysis) was increased to
12 to cause the release of adsorbed selenium species. As shown in Figure 6E, this resulted
in the release of adsorbed selenate species (the red line in Figure 6E), as also noted in other
LDH-based studies [41,69]. This could be explained by LDH’s pHzpc ~9 and the resulting
electrostatic repulsion occurring between the anionic selenate species and adsorbent surface
sites [70]. Nevertheless, these findings confirm the oxidation of SeCN− first to selenite
and then to selenate. A similar trend was also noted for the system shown in Figure 6D,
wherein significant SeO4

2− of approx. 76% desorbed in the aqueous phase (the violet line
in Figure 6E). These results thus confirm the uptake of SeO4

2− by the adsorbent matrix.
The adsorption of selenate (onto the LDH-TiO2 matrix) was also noted to fit to the classical
Langmuir model (Figure 7; compared to the Freundlich model), as per Equation (6):

Ceq

Qeq
=

1
Qmb

+
Ceq

Qm
(6)
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where Ceq (mg/L), Qeq (mg/g), Qm (mg/g), and b (L/mg) are the standard Langmuir
isotherm parameters. The Qm for selenate was 14 mg/g, with similar values also reported
earlier (Constantino et al., 2017 and Tian et al., 2017), indicating monolayer coverage for
selenate adsorption onto LDH (Paikaray et al., 2013). The respective values of the slope,
intercept, b, and adjusted R2 were found to be 0.07, 0.04, 1.8 L/mg, and 0.8946, respectively.
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The above findings show that the LDH-TiO2 matrix can remove both the selenocyanate
complex and the resulting selenium species during the combined photocatalytic treatment.

3.3. RSM Modeling of Photocatalytic Degradation Process

The present work was expanded to further realize the effect of respective operational
variables on selenium removal efficiency utilizing the response surface methodology (RSM)-
based experimental design approach (Table 2). To this end, initially two RSM models,
namely, the residual selenate model (RS; Equation (7)) and total selenium removal model
(TS; Equation (8)), were developed (based on the results from Table 2) for predicting the
remaining selenium after selenocyanate photocatalysis. The respective results as given in
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(Table 4) show that the reduced quadratic equation yields a good model for SeO4
2- residual,

whereas for total selenium removal, the logit-transformed full quadratic model showed
the best results. For the RS model (Equation (7)), the significance of the model terms with
p-values < 0.05 shows that the respective terms significantly contribute toward improving
the model results [68]; however, for the TS model (Equation (8)), only the term B2 has a
p-value slightly higher than 0.05.

Table 4. RSM modeling parameters for the RS and TS models.

Models
Significance Values for the Model Terms

Model A: L:T Ratio B: Dosage C: SeCN− AB AC BC A2 B2 C2

RS <0.0001 <0.0001 0.0002 <0.0001 0.021 <0.0001 0.0187 0.0115 – –

TS <0.0001 <0.0001 <0.0001 <0.0001 0.001 0.0017 0.0035 0.0468 0.0512 –

Both the RS (Equation (7)) and TS (Equation (8)) models show high R2 values (Table 5),
and the differences between the adjusted R2 and predicted R2 values is less than 0.2, which
is also indicative of good prediction accuracy, as shown in Figure 8A,B. This suggests that
the model predictions closely follow the experimental values. Furthermore, the adequate
precision values (ratio of signal to noise) of 29.99 and 34.46 for the RS and TS models,
respectively, which are >4, are also indicative of good model fit.

Residual SeO2−
4 = 1.506− 4.6775A− 1.13B + 1.4425C + 1.115AB−

0.673AC− 0.229BC + 1.98A2 (7)

Logit(TSR) = Ln
[

RE SeO4−46.5
102.5−RE SeO4

]
= −7.639 + 9.09742A + 8.24054B− 1.55023C− 2.65370AB
+0.480254AC + 0.413407BC− 1.87331A2 − 1.82388B2

(8)

where
A = LDH:TiO2 ratio (0.5:1.5);
B = adsorbent dosage (1:2 g/L);
C = selenocyanate concentration (2.5 to 7.5 mg/L);

Residual SeO4
2− =

residual concentration of selenate in solution after 6 h of UV irradiation
(mg/L);

TSR =
selenocyanate removal efficiency expressed as total selenium removed
(%).

Table 5. Residual SeO4
2− (RS) and total selenium removal (TS) model fitting for selenocyanate

treatment.

Statistic RS Model TS Model

R2 0.9868 0.9917

Adjusted R2 0.9736 0.9806

Predicted R2 0.9265 0.9188

Adequate Precision 29.99 34.46

The other statistical factors, including the normal plot of residuals (Figure 8C,D)
and the residual vs. predicted results (Figure 8E,F), show randomness with no specific
pattern, providing additional model suitability information. For both the RS and TS
results, the respective outcomes show that the assumptions of normality (Figure 8C,D)
and randomness (Figure 8E,F) are valid, which further supports the proposed RS and
TS models.

The selenium removal results from the respective RSM studies are summarized in
Figure 9. In general, for SeCN− 5 mg/L, enhanced LDH:TiO2 (L:T) initiates enhanced
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SeO4
2− removal with L:T 1.5 at 2 g/L delivering near-complete SeO4

2− removal (Figure 9A,D).
The respective increase in SeO4

2− treatment efficiency can be attributed to enhanced LDH-
based sites at an enhanced LDH:TiO2 (L:T) ratio. This is further corroborated by the fact
that the variation in residual selenate and total selenium removal with the adsorbent
dosage is reduced at the LDH:TiO2 1.5 ratio rather than at 0.5 (Figure 9A,D). In general,
near-complete selenium removal (~100%, ~0 mg/L residual selenate) can be observed at op-
timum process conditions. Furthermore, starting with selenocyanate at 5 mg/L (Figure 9D),
the total selenium removal varies from 47 to 80% for the LDH:TiO2 0.5 ratio, whereas for
the LDH:TiO2 ratio of 1.5, approx. 95% near-complete treatment is noted. Furthermore,
the remaining SeO4

2− decreases with a decrease in initial selenocyanate, yielding higher
selenium removal (Figure 9B,C,E,F). Qualitatively similar observations were made using
1.5 g/L adsorbent at initial SeCN− measurements of 2.5 and 7.5 mg/L. In summary, the
variations in the residual selenate and total selenium removal are prominent at a reduced
LDH:TiO2 ratio and reduced dose, indicating the need for a high LDH:TiO2 ratio and dose
for a higher overall selenium removal efficiency.
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3.4. Optimization of the Photocatalytic Degradation Process

Finally, an optimization study was performed with the aim of maximizing removal
while minimizing the LDH-TiO2 dosage for the highest SeCN− concentration considered
in this study, i.e., 7.5 mg/L. Table 6 provides the factor constraints employed in the current
optimization study, with the desirability (i.e., nearness of a response to the ideal quantity)
between zero and one, i.e., lowest to highest [71]. For the optimization process, the lower
and upper weights were kept as 1, and the importance value was set to 3, which are the
default values for the optimization process.

Table 6. The constraints employed for RSM modeling for the photocatalysis work.

Name Goal Lower Limit Upper Limit

A: LDH:TiO2 within range 0.5 1.5

B:Dose (g/L) Reduce 1 2

C: Selenocyanate (mg/L) 7.5 2.5 7.5

Selenate remaining (mg/L) reduce 0 5.7

Removal of selenate (percentage) increase 47 100

The PCD model optimization process generated 39 solutions for the stated objective
function, with the desirability varying from 0.890 to 0.776, out of which the optimum
removal for 7.5 mg/L SeCN− that could be achieved by employing minimum LDH-TiO2
dosage of 1 g/L was ~89% using an LDH-TiO2 ratio of 1.5:1. Thus, the LDH-TiO2 matrix
displays high removal efficiencies even at lower dosages (for LDH-TiO2 1.5:1).

The desirability function for LDH-TiO2 0.5:1 displays a parabolic variation (Figure 10)
owing to the objectives that were defined in this study, i.e., maximizing the removal of
pollutants and minimizing the dosage of the adsorbent. However, an increase in the dosage
increases the selenium removal, albeit leading to lower desirability and thus resulting in a
parabolic variation. The variation at a higher LDH-TiO2 ratio of 1.5:1 shows a peak at a dose
value of 1 g/L and is indicative of the efficient performance of LDH-TiO2 at a ratio of 1.5:1,
even at lower dosage values. For SeCN− 7.5 mg/L and employing minimum an LDH-TiO2
dosage of 1 g/L, the maximum selenate removal of ~89% can be achieved by using an
LDH-TiO2 ratio of 1.5:1. Thus, LDH-TiO2 matrix displays high removal efficiencies even at
lower dosages (for an LDH-TiO2 ratio 1.5:1).
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4. Conclusions

The present study employed the LDH-TiO2 matrix for aqueous phase selenocyanate
(SeCN−) treatment using photocatalytic degradation (PCD) and also extended the charac-
terization results for synthesized LDH and LDH-TiO2 samples along with response surface
methodology (RSM)-based modeling findings. The XRD results for the uncalcined LDH
indicate a hydrotalcite mass with a rhombohedral structure, whereas the FESEM results for
the LDH-TiO2 matrix indicate round titanium dioxide particles and LDH hexagonal layers.
Based on the characterization and initial selenocyanate adsorption results, the 250 ◦C cal-
cined LDH-TiO2 matrix was used for selenocyanate photocatalytic degradation. A ~100%
selenium removal was observed using an LDH:TiO2 ratio of 1.5:1 with 2 g/L dose, whereas
up to 80% selenium removal was noted for the LDH:TiO2 at a ratio of 0.5:1. Furthermore,
the selenite and selenate that occurred during SeCN− photocatalytic degradation (PCD)
were also almost completely removed via adsorption. In addition, both the residual sele-
nate (RS) and total selenium removal (TS) RSM models yielded high R2 values, and the
differences between the adjusted R2 and predicted R2 values were less than 0.2, which is
also indicative of good prediction accuracy. This suggests that the respective RSM model
predictions closely follow the experimental values.
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