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Lumpy skin disease virus (LSDV) is an infectious disease of cattle that can have severe 
economic implications. New LSD outbreaks are currently circulating in the Middle 
East (ME). Since 2012, severe outbreaks were reported in cattle across the region. 
Characterizing the spatial and temporal dynamics of LSDV in cattle populations is 
prerequisite for guiding successful surveillance and control efforts at a regional level 
in the ME. Here, we aim to model the ecological niche of LSDV and identify epidemic 
progression patterns over the course of the epidemic. We analyzed publically available 
outbreak data from the ME for the period 2012–2015 using presence-only maximum 
entropy ecological niche modeling and the time-dependent method for the estimation 
of the effective reproductive number (R-TD). High-risk areas (probability >0.60) for 
LSDV identified by ecological niche modeling included parts of many northeastern ME 
countries, though Israel and Turkey were estimated to be the most suitable locations 
for occurrence of LSDV outbreaks. The most important environmental predictors that 
contributed to the ecological niche of LSDV included annual precipitation, land cover, 
mean diurnal range, type of livestock production system, and global livestock densities. 
Average monthly effective R-TD was equal to 2.2 (95% CI: 1.2, 3.5), whereas the largest 
R-TD was estimated in Israel (R-TD = 22.2, 95 CI: 15.2, 31.5) in September 2013, which 
indicated that the demographic and environmental conditions during this period were 
suitable to LSDV super-spreading events. The sharp drop of Isreal’s inferred R-TD in the 
following month reflected the success of their 2013 vaccination campaign in controlling 
the disease. Our results identified areas in which underreporting of LSDV outbreaks 
may have occurred. More epidemiological information related to cattle populations are 
needed to further improve the inferred spatial and temporal characteristics of currently 
circulating LSDV. However, the methodology presented here may be useful in guiding 
the design of risk-based surveillance and control programs in the region as well as aid 
in the formulation of epidemic preparedness plans in neighboring LSDV-free countries.

Keywords: lumpy skin disease virus, Middle east, ecological niche modeling, time-dependent reproductive 
number, surveillance
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inTrODUcTiOn

Lumpy Skin Disease virus (LSDV) is in the genus Capripoxvirus 
and family Poxviridae and is the causal agent of Lumpy Skin 
Disease (LSD), a transmissible disease of cattle with significant 
economic implications (1, 2). The disease is characterized by large 
skin nodules covering the entire body of the animal, emaciation, 
poor milk production, and abortion. The severity of the clinical 
symptoms varies from acute to subclinical forms (1–3). Due to its 
observed economic impacts on the global cattle industry (4, 5), 
the World Organization of Animal Health (OIE) has classified 
LSDV as a notifiable disease. LSDV is mainly transmitted via 
arthropod vectors. LSDV outbreaks are typically associated with 
wet and warm seasons (6) and mosquitoes such as Aedes aegypti 
are efficient mechanical vector for the transmission and mainte-
nance of LSDV (7). Direct and indirect contact between infected 
and susceptible animals is not considered to be a pathway for 
transmission (8). The virus can infect other small ruminants such 
as sheep and goats, but does not cause clinical disease (9, 10). 
However, contact of cattle herds with sheep and goat in grazing/
watering areas has been implicated as a potential risk factor for 
mechanical transmission of LSDV (11).

Clinical cases consistent with LSDV were first observed in 
northern Zambia in 1929 (12). In the 1940s, the disease rapidly 
spread to cattle populations of other southern African countries 
(5). Until 1984, LSDV was maintained within the countries of 
sub-Sahara Africa, where its pathogenicity increased over time 
leading to severe pandemics (5, 13). In the Middle East (ME), 
unconfirmed cases of the disease were reported in Oman and 
Kuwait between 1984 and 1988 (14–16). However, the first con-
firmed LSDV cases within ME countries were reported in Egypt 
in 1988 (15). In 1989, the first confirmed transcontinental spread 
of LSDV from African to Asian ME countries occurred when the 
disease was reported in Israel (17). This transcontinental spread 
of LSDV was attributed to wind-borne transmission via stable 
flies (Stomoxys calcitrans) from Egypt (17). During the same year, 
suspected cases of LSDV were also reported in Saudi Arabia in 
a herd of Arabian oryx (Oryx leucoryx) (18). Further outbreaks 
were also reported in Kuwait, Bahrain, Yemen, United Arab 
Emirates, and Sudan (15, 16, 18, 19). LSDV was reintroduced 
into Egypt via imported cattle from the African horn countries 
in 2006 (5, 20). Subsequently, LSDV cases were again reported in 
Israel, Bahrain, Oman, and the West Bank (20). For the first time, 
confirmed cases of LSDV were reported in Lebanon, Jordan, and 
Turkey between 2012 and 2013 (21). The Syrian Arab Republic 
has been implicated in the introduction of LSDV into Turkey 
(20). Due to the current armed conflict, the disease is believed to 
be underreported in Syria. This situation has raised major con-
cerns in the international community, as the disease may spread 
into LSDV-free European member state countries using Turkey 
as a portal of introduction (22). Most recently, new cases of LSDV 
have been reported in Iran, Azerbaijan, Iraq, Greece, and Cyprus 
between 2014 and 2015 (19, 23, 24).

Control and prevention of LSDV in ME countries is largely 
dependent on the infrastructure of their veterinary services. 
Implementation of vaccination, movement restrictions, and 
stamping out policies were successful in eradicating the disease 

in Egypt and Israel during 2006 (5, 17, 19, 25). However, in other 
ME countries, the combination of unstable political situations, 
uncontrolled animal movements, lack of laboratory diagnostic 
resources, and inadequate communication with international 
health organizations are considered major causes for the failure 
of any efforts to control or prevent the spread of highly infectious 
animal diseases like LSDV (5, 26).

Due to the important role of blood-feeding arthropods in the 
transmission of LSDV, its spread and geographical distribution are 
heavily influenced by environmental conditions (27–29). Hence, 
ecological niche models provide a tool to extract associations 
between environmental factors (e.g., climate and land cover) and 
outbreak occurrence data, use those associations to character-
ize the environmental requirements for the disease agent and 
vector, and subsequently project those associations to predict 
the geographic distribution of LSDV in underreporting regions 
(30). Modeling the temporal and spatial dynamics of LSDV will 
provide a robust platform for guiding the design of infectious dis-
ease surveillance systems in the ME, and subsequently improve 
control and prevention. Furthermore, such knowledge will shed 
further insights into the epidemiology of LSDV in the ME and 
assess the risk of introduction into disease-free countries like the 
European Union member states.

Attempts to model the spatial and temporal epidemiology of 
LSDV have been minimal globally and non-existent in regions 
like the ME. Thus, the ultimate goal of this study is to character-
ize the spatial and temporal dynamics of LSDV in ME countries. 
Here, we tested whether environmental and demographic 
variables can predict the geographic distribution of recent LSDV 
outbreaks reported in cattle populations of the ME for the period 
2012–2015 using a presence-only maximum entropy ecological 
niche modeling method (Maxent). Furthermore, we estimated 
multiple effective reproductive numbers to assess transmission 
potential and efficacy of control and prevention measures during 
the course of the epidemic in the region. Results of such method-
ologies may shed further insights into the spatial and temporal 
epidemiology of LSDV in the ME. Subsequently, these results 
may contribute to the formulation of surveillance programs that 
selectively target high-risk cattle areas with specific demographic 
and environmental factors in the ME region and guide epidemic 
preparedness efforts in neighboring LSDV-free countries.

MaTerials anD MeThODs

Data source
Middle East countries in this study include those of southwest 
Asia and northeast Africa, excluding Afghanistan, Pakistan, 
and India. Thus, the study region includes Iran, Turkey, Syria, 
Lebanon, Israel, Palestinian Territories, Jordan, Iraq, Egypt, 
Libya, Sudan, Djibouti, Eritrea, Somalia, and countries of the 
Arabian Peninsula (Saudi Arabia, Yemen, Oman, United Arab 
Emirates, Qatar, Bahrain, Kuwait). Azerbaijan and Cyprus were 
also included in this study, because they were severely impacted 
during LSDV epidemics, and they both actively exchange cattle 
with neighboring ME countries. We retrieved the outbreak data 
used for this study from the Food and Agriculture Organization 
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FigUre 1 | geographic distribution of lumpy skin disease outbreaks reported in cattle in the Middle east from July 2012 through May 2015.
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of the United Nation (FAO) Global Animal Disease Information 
System EMPRES-i (31), which included all geographic locations 
(Figure  1) and onset dates of 604 LSDV outbreaks in cattle 
populations reported by ME countries to the OIE from July 2012 
to May 2015. Due to unavailability of information regarding the 
population at risk, reported outbreaks, defined as the detection 
of one or more cases of the disease, are considered the epide-
miological units. Reported outbreaks usually included a group 
of cattle herds that were epidemiologically linked, and thus could 
be considered part of the same outbreak event. Since 3  years 
is the time frame of the present study, we choose months as a 
suitable time unit for summarizing the epidemic curve of LSDV 
outbreaks in the ME. Our temporal aggregation unit has been 
chosen to ensure that at least one outbreak was reported at any 
point on the epidemic curve and to fulfill the requirements of the 
subsequent analyses.

For environmental variables (predictors) for the ecological 
niche of LSDV in the ME, we selected climate variables, density 
of four livestock species (cattle, buffalo, sheep, and goat), global 
land cover, and global livestock production system. We obtained 
climate raster data (5  km2 resolution) from the WorldClim 
website,1 a commonly used interpolated global climate data 
resource for ecological modeling and GIS (32). WorldClim is 
a set of global climate data layers (climate grids) with a spatial 
resolution of 1, 5, 9, or 18 km2. Variables included in the analysis 
were monthly mean, minimum and maximum temperature, 

1 http://www.worldclim.org

monthly precipitation, and altitude (Table S1 in Supplementary 
Material). Those climatic data are further derived into a series of 
19 bioclimatic variables (Table S1 in Supplementary Material). 
The WorldClim variables are smoothed maps of mean monthly 
climate data obtained from a variety of sources from 1950 through 
2000. Data have been interpolated down to a 30 arc-second high-
resolution grid, which is often referred to as “1 km2” resolution. 
Due to the large geographical range of the current study, only 
bioclimatic variables with an approximate spatial resolution of 
5  km2 were used to maintain the computation intensity of the 
models and constant cell size with other environmental layers. 
Thus, the total number of climatic predictors used in the ecologi-
cal niche modeling process sums to 24 variables (32).

We retrieved estimated livestock density raster data for cattle, 
buffalo, sheep, and goats with an approximate spatial resolution 
of 5  km2 (Table S1 in Supplementary Material) from the FAO 
GeoNetwork webpage (33). These livestock density rasters were 
estimated based on observed livestock statistics (number of 
animals/km2) at different administrative levels and their relation-
ship with various environmental variables such as land suitable 
for livestock production (excluding water surfaces and protected 
areas) (33). Similarly, we retrieved the global livestock production 
systems grid from the above data source (34) to provide an indi-
rect estimate of the geographic distribution of each production 
system, which are defined based on livestock animal densities 
within a premise in a given geographical region of specific climatic 
conditions and intensification level (Table S1 in Supplementary 
Material). This data grid classifies those production systems into 
14 different geographic features (Table S2 in Supplementary 
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Material). Finally, we obtained an estimate of the geographical 
distribution of 16 different land cover features in the ME (Table S1 
in Supplementary Material), including forests, croplands, grass-
lands, urban, etc., by using the high spatial resolution (0.5 km2) 
land cover data grid (Table S2 in Supplementary Material), known 
as MODIS-based global land cover climatology, from the United 
States geographical survey (USGS) webpage2 (35). Thus, our 
final raster dataset compromised of 30 environmental covariates 
(Table S2 in Supplementary Material).

We converted all of the above environmental data layers into 
a common projection and map extent using the Raster package 
(36) implemented in R statistical software version 3 (37). We 
cropped each raster so that the geographical extent of the subse-
quent spatial analyses covered only the ME region. Furthermore, 
because the land cover data were at different spatial scale (0.5 km2) 
from other environmental variables (5 km2), we aggregated and 
resampled raster data to create a uniform grid size, which resulted 
in a scale of approximately 6 km2. Furthermore, we examined the 
environmental data for collinearity by visually inspecting the 
relation between pairs of variables in scatter-plots. Finally, we 
transformed the locations of LSDV outbreaks into a smoothed 
kernel density grid raster with 5  km2 spatial resolution and a 
search radius of 10 km2, and calculated the pairwise Spearman’s 
correlation coefficients between each environmental variable 
(with exception of land cover and livestock production system, 
as these are not continuous variables) and the geographical 
distribution of LSDV outbreaks for the Maxent model. All LSDV 
outbreaks reported in the ME were included in the subsequent 
analyses.

ecological niche Modeling
We predicted the risk of LSDV in the ME using the presence-only 
maximum entropy ecological niche modeling technique (Maxent) 
(38), where risk is defined as the probability that a geographic 
location is suitable for the occurrence of LSDV. The Maxent 
program version 3.3.3 was implemented as a function in Dismo 
package in R. A detailed description of the Maxent algorithm is 
available elsewhere (38). Briefly, Maxent builds ecological niche 
models by extracting associations between presence data (e.g., 
LSDV outbreaks) and environmental variables, using those asso-
ciations to characterize the environmental requirements for the 
disease agent, and subsequently deploying those associations to 
predict suitable geographical locations in non-sampled areas. In 
this study, we used the default convergence threshold, regulariza-
tion, and number of iterations. In addition, we used the default 
logistic model to ensure that predictions gave estimates between 
0 and 1 for the risk of outbreak per map cell. Initially, we fitted 
separate Maxent models for each of the climatic variables and their 
association with LSDV outbreaks, a procedure that resembles 
a bivariate analysis. We then selected variables that had greater 
than 10% relative contribution in the prediction (improvement 
in predictive power relative to a null model) and included them 
in the subsequent multivariable models, along with the above 

2 http://landcover.usgs.gov

non-climatic demographic variables. Cattle density was used as 
an indirect estimate of the distribution of the population at risk, 
which we included as background sampling data, while other 
environmental variables were included as direct predictors for 
the risk of LSDV (39). We set the Maxent program to randomly 
sample 10,000 locations within the ME to form background 
data (i.e., weights) for LSDV outbreaks in cattle. The established 
background data do not attempt to guess at the absence of LSDV 
locations (i.e., negative LSDV locations) but rather characterizes 
the nature of the cattle density distribution in the ME. In this 
sense, the background data establish the environmental domain 
of the study region, while LSDV outbreak presence data establish 
under which conditions an outbreak is more likely to be present 
than on average.

We evaluated the performance of the candidate Maxent 
models by partitioning the outbreak data into training and test-
ing sets and using the threshold independent method on each 
partitioned set, which characterizes the performance of the 
model across the full range of possible probability thresholds 
for presence/absence predictions (38). We used k-fold method 
as a partitioning scheme (40), which randomly samples the data 
with replacement and creates k partitions, where each candi-
date Maxent model was tested five times (k =  5 in this study) 
against 1000 randomly generated background points (pseudo-
absences). For the threshold independent method, we calculated 
the area under the curve (AUC) through a receiver operator 
characteristic (ROC) plot of the sensitivity (the proportion of 
true predicted known presences, known as omission error) vs. 
1  –  specificity (proportion of false predicted known absences, 
known as commission error) over the whole range of threshold 
values between 0 and 1. The training set (training AUC) was used 
for model building, and the test set (testing AUC) was used to 
evaluate model accuracy using the value of the AUC. The AUC 
value ranges from 0.5 (entirely random predictive model) to a 
maximum value of 1 (perfectly discriminating predictive model). 
Maxent models with AUC >0.75 for both training and testing 
data are usually considered accurate (41). We used the jackknife 
tests to calculate the contribution of each environmental variable 
to the final model’s prediction. Because of the large geographic 
area analyzed in this study, we used a calibrated AUC (cAUC) 
for the final Maxent model to evaluate the presence of the spatial 
sorting bias (SSB) as suggested elsewhere (42). If the cAUC value 
was close to 1, then one can conclude the absence of SSB (i.e., 
countries with high reported outbreak incidences have small 
impact on the resulted Maxent model), whereas if the value was 
close to zero, then SSB is present in the data (i.e., countries with 
high reported outbreak incidences have large impact on the 
resulted Maxent model). cAUC is commonly smaller than train-
ing or testing AUCs because it uses a randomly selected smaller 
subset of the presence data (42).

Because presence data were largely skewed toward Israel and 
Turkey, we repeated the above analyses three times to validate 
the adequacy of the selected environmental data in predicting 
the probability of the spatial distribution of LSDV in the ME. 
Model I was fit with all reported outbreaks in the ME; Data for 
Model II comprised only of outbreaks reported in Israel and 
the West Bank; Model III was fit only with outbreaks reported 
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in Turkey; Model IV was fit with outbreaks reported in the 
ME excluding Israel, West Bank and Turkey. We compared 
the magnitude of change in the AUC values described above 
to further assess the sensitivity of the Maxent model to the 
reporting bias in the presence data (38, 39, 41, 42). We used 
the same approach to inspect for confounding of one environ-
mental variable to another in the each ecological niche model 
by removing variables that contribute more than 10% in the 
prediction of probability for the spatial distribution of LSDV. 
Thus, if the AUC values changed by more than 5%, it would 
indicate that the variable is an important confounding factor. 
Finally, we tested the adequacy of the risk map generated by 
model II (Maxent model predicted by the observed Israeli 
outbreaks) in predicting the spatial distribution of LSDV in 
Turkey (i.e., predicted probabilities based on the observed 
outbreaks reported in Turkey). Hence, we created a “validation 
Maxent” model that compromised of the observed Turkish 
outbreaks, as independent presence-only data, and the risk 
map generated by Model II (Israeli Maxent model) as a single 
predictor to test whether the AUC values (training and testing 
AUC values) were less than 0.75. If the AUC values were less 
than 0.75, then the Israeli model is an inaccurate predictor of 
LSDV risk in Turkey.

estimation of the Time-Dependent 
reproductive numbers
We used a likelihood-based procedure to estimate effective time-
dependent reproductive numbers (R-TDs) for each outbreak 
from the observed epidemic curve of LSDV, as suggested else-
where (43). The method has been implemented in the R package 
“R0” within the software environment (44). First, we aggregated 
the outbreak data by month to ensure that at least one outbreak 
was reported per time unit. Second, we identified the serial 
interval distribution of the generation time from the time lag 
between consecutive reported outbreaks and estimated its mean 
and SD from the observed epidemic curve. Third, we estimated 
the R-TD for each outbreak as the sum of the probabilities that 
a given outbreak was the source of infection for subsequent 
outbreaks based on elapsed time (44). Essentially, this method 
is based on averaging over all transmission networks compatible 
with the epidemic curve during the course of the epidemic. 95% 
confidence intervals (CI) were obtained through simulations, as 
described elsewhere (44).

resUlTs

lsDV Occurrence and epidemic curve
Only 12 ME countries reported LSDV outbreaks in cattle between 
2012 and 2015. The proportion of LSDV outbreaks occurring in 
Turkey and Israel (including West Bank) and Lebanon and Iraq 
was substantially greater than in other locations, whereas in 
Cyprus, Egypt, Iran, Saudi Arabia, Lebanon, Kuwait, and Jordan 
did not exceed 3% of reported outbreaks (Figure  2A). During 
the course of the epidemic, the highest numbers of detected 
outbreaks in the ME countries were reported in September 2013 
in Israel followed by July 2014 in Turkey (Figure 2B, Figure S1 in 
Supplementary Material).

ecological niche Model
Pairwise Spearman correlations indicated that our selected 
environmental predictors were significantly associated with the 
geographical distribution of LSDV in the ME (Table  1). The 
least significant correlation (r = 0.015) was observed with buf-
falo density (Table  1). Our final Maxent model indicated that 
only five of the selected environmental variables were needed to 
adequately predict the geographical risk of LSDV outbreaks in the 
ME with an AUC higher than 0.75, and a cAUC closer to 1 than 0 
(Table 2). The final Maxent model included annual precipitation 
and mean diurnal temperature range as climatic predictors, type 
of livestock production system, land cover, and goat, sheep, and 
buffalo densities as demographic variables (Table  2; Model I). 
Land cover and annual precipitation were found to be the most 
important environmental predictors for LSDV in Israel and West 
Bank (Model II), while annual precipitation and mean diurnal 
temperature range were found to be the most important envi-
ronmental predictors for LSDV in Turkey (Model III). However, 
Livestock production system and goat density were found to be 
the most important environmental predictors for LSDV in other 
ME countries (Model IV). As expected, removing variables that 
contributed more than 10% to the prediction resulted in more 
than 5% change in the AUC estimates for each ecological niche 
model, which suggests that those variables were indeed important 
confounders.

The predicted spatial distribution for suitable areas for LSDV 
in cattle (i.e., areas with high probability of having conditions 
promoting transmission) in the ME is shown in Figure 3. Results 
of all four Maxent models indicate that the selected environmen-
tal variables were adequate predictors for the risk of LSDV in the 
ME (i.e., suitable areas for the introduction of LSDV based on 
AUC values), with no substantial changes in the magnitude of 
the estimated AUCs across models. High-risk areas (probability 
>0.6) for all Maxent models (Models I–IV, Figures 3A–D) were 
consistently identified in northern and central Israel, Cyprus, 
Lebanon, northwest Syria, the southern border of Turkey, and 
northern Iraq. Furthermore, additional risk areas with less 
consistent magnitudes of risk across Maxent models (probability 
between 0.3 and 0.6) were identified in Azerbaijan, Georgia, 
Kuwait, Egyptian Nile Valley, and northern Iran. However, sub-
stantial discrepancies were observed in the identified risk areas 
between Maxent models I–III and Maxent Model IV. Unlike the 
first three Maxent models (Models I–III, Figures 3A–C), Maxent 
Model IV identified the eastern Iraq and western Iran as high 
risk-areas (probability >0.6) for LSDV outbreaks (Figure 3D). 
In addition, Maxent Models I–III (Figures  3A–C) inferred 
more widespread risk of LSDV across Turkey when compared 
to the findings of Maxent Model IV (Figure 3D). The observed 
outbreaks reported in Turkey were completely encompassed by 
the high-risk areas predicted by Model II (Figure 4), where the 
AUC values of the model were equal to 0.79 and 0.78 (±0.09 
SD) for training and testing sets (Turkish observed outbreaks), 
respectively.

Generally, the range of annual precipitation for the ME 
region, estimated by the bioclimatic variables, was between 0 and 
235 mm, while the mean diurnal temperature range was between 
5.5 and 18°C. Results of the final Maxent models (Model I–VI) 
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FigUre 2 | (a) Number of reported lumpy skin disease outbreaks (per country) in cattle in the Middle East from July 2012 through May 2015. (B) Temporal 
distribution of lumpy skin disease outbreaks (per month) in cattle in the Middle East from July 2012 through May 2015.
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indicated that geographical regions with approximate annual 
precipitation between 50 and 100 mm were found most suitable 
for the risk of LSDV in cattle (probability >0.6), and geographic 
regions with mean temperature variations of approximately 
12°C between day and night were found most suitable for the 
risk of LSDV. Geographic regions with croplands were found 
most suitable for LSDV. Urban and mixed rain-fed arid livestock 
production areas were also found to be suitable for the disease. 
Finally, geographical regions with low goat density were found 
to be suitable for the risk of LSDV. However, discrepancies in the 
magnitude of relative contributions of the environmental predic-
tors were observed across Maxent models (Table 2). Annual pre-
cipitation was consistently an important predictor for Models I, II 
and III (relative contribution >29%), while the type of Livestock 

production system was consistently an important predictor for 
models I and IV (relative contribution >14%; Table  2). Land 
cover, mean diurnal temperature range, and Goat Density were 
also within the top two most important predictors for Model II, 
III, and IV, respectively (Table 2).

epidemic Time-Dependent reproductive 
number
Our data covered 36 months of outbreaks for the currently cir-
culating LSDV (Figure  2B). We converted the epidemic curve 
into the time course of effective R-TDs. No seasonal patterns were 
observed in our epidemic curve. Instead, LSDV outbreaks followed 
were erratic in ME countries (Figure 2B). Our estimates indicate 
that the average monthly effective R-TD was 2.2, indicating a 

http://www.frontiersin.org/Veterinary_Science/archive
http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org


TaBle 1 | spearman correlation coefficients (r) between each 
environmental variable and geographical distribution of lumpy skin 
disease outbreaks in cattle in the Middle east.

geographical distribution  
of lsDV in cattle (r)

P-value

Annual precipitation 0.53 <0.001

Mean diurnal temperature range −0.36 0.012

Goat density −0.52 0.031

Buffalo density 0.015 0.243

Sheep density 0.35 0.052

Cattle density 0.45 <0.001

TaBle 2 | estimates of relative contributions of the environmental variables to each Maxent model and their validation aUcs values.

Variable % contribution Training data aUca Test data aUc ± sDb caUcc ± sD

Model i = all Me countries

Annual precipitation 36.1 0.92 0.91 ± 0.18 0.81 ± 0.22

Livestock production system 14.9

Mean diurnal temperature range 14.2

Goat density 14.1

Land cover 13.3

Sheep density 4.3

Buffalo density 3.1

Model ii = israel

Land cover 51.3 0.95 0.93 ± 0.09 0.68 ± 0.08

Annual precipitation 33.9

Livestock production system 7.7

Goat density 5.9

Mean diurnal temperature range 3.1

Sheep density 0.6

Buffalo density 0.6

Model iii = Turkey

0.90 0.88 ± 0.04 0.73 ± 0.11

Annual precipitation 29.5

Mean diurnal temperature range 21

Sheep density 19.1

Goat density 15.7

Buffalo density 7.5

Land cover 4

Livestock production system 3.3

Model iV = Other Me countries excluding israel and Turkey

Livestock production system 44.5 0.93 0.93 ± 0.13 0.75 ± 0.17

Goat density 22.3

Mean diurnal temperature range 12.3

Sheep density 11.5

Annual precipitation 4.0

Buffalo density 3.8

Land cover 1.6

Model I includes all reported outbreaks in the Middle East; Model II includes only reported outbreaks in Israel and West Bank; Model III includes only reported outbreaks in Turkey; 
Model IV includes reported outbreaks in the Middle East with the exception of Israel, West Bank and Turkey.
aArea under the curve.
bSD for the test and calibrated AUC.
cCalibrated AUC for test data.
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more than twofold increase in the epidemic size during the course 
of epidemic between 2012 and 2015 (RT-D = 2.2; 95% CI: 1.2, 
3.5) (Figure 5). However, the largest R-TD was estimated in Israel 
(R-TD = 22.2, 95% CI: 15.2, 31.5) in September 2013, followed 

by a substantial drop in the estimate (0.4, 95% CI: 0.3, 0.5) the 
following month (Figure 5).

DiscUssiOn

This study represents a novel approach to model the spatial and 
temporal dynamics of LSDV in ME countries. First, we used eco-
logical niche modeling, based on presence-only outbreak data, 
to reveal spatial variation in risk of LSDV and the environmental 
factors underlying this pattern. Second, we estimated multiple 
effective reproductive numbers during the course of the epidemic 
to assess spread and transmission potential of LSDV within ME 
countries.

We investigated the role of environmental variables in the 
development of an ecological niche model for LSDV in cattle 
independently of country boundaries to gain a regional picture 
of LSDV risk across the ME. During the course of the current 
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FigUre 3 | Probability of spatial distribution of lumpy skin disease virus (lsDV) in cattle in the Middle east from July 2012 through May 2015. 
[(a) = Model I] includes all reported outbreaks in the Middle East; [(B) = Model II] includes only reported outbreaks in Israel and West Bank; [(c) = Model III] includes 
only reported outbreaks in Turkey; [(D) = Model IV] includes reported outbreaks in the Middle East with the exception of Israel, West Bank, and Turkey. The legend 
on the bottom right represents the probability distribution for the most suitable locations for LSDV in cattle (red >0.8 and white <0.2).
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epidemic, the highest reported incidence of LSDV outbreaks was 
observed in Turkey and Israel (including the West Bank), and 
therefore, both countries were predicted as the highest risk areas 
for the disease (Figure 3). By using Maxent models to understand 
environmental factors underpinning high-risk areas, our results 
predict that high-risk areas also occur in northeastern and north-
western Syria, Cyprus, Lebanon, and the whole northern region of 
Iraq based on sharing similar environmental characteristics with 
areas of high reported incidence (Figure  3A). These high-risk 
areas have conditions suitable for transmission and circulation 
of LSDV in cattle populations, even if LSDV has not yet been 
reported. Hence, our results suggest that the identified geographic 
regions or countries with few reported LSDV outbreaks are still 
at high risk. Our AUC values suggest that the selected environ-
mental variables of our ecological niche modeling approach were 
adequate predictors for the LSDV outbreaks in cattle in the ME 
between 2012 and 2015 (Table 2).

Our ecological niche modeling approach identified annual 
precipitation and mean diurnal range (out of 24 climatic variables) 

as the most important climatic predictors for LSDV risk in cattle 
in the ME during the course of the current epidemic (Tables 1 
and 2). Indeed, such weather conditions, which often occur in early 
and late summer and spring seasons, are characteristic of northern 
ME countries located in the Eurasian continent as compared to 
countries of the Arabian Peninsula. This result agrees with the 
notion that regions with wet and warm climatic conditions are 
prime habitat for blood-feeding arthropods, which are the main 
vectors for LSDV transmission and spread (5, 19, 20, 29, 45).

Types of land cover and livestock production system are 
important predictors of risk for circulation of LSDV (Tables  1 
and 2). Croplands and urban and mixed rain-fed arid livestock 
production systems are quite common in northern parts of the 
ME countries, especially in Egypt and Israel, where LSDV out-
breaks frequently occurred (34, 45). These findings agree with 
past LSDV studies in Ethiopia, in which the characteristics of cat-
tle farms, grazing system, and land cover features were important 
risk factors for LSDV in the country (4, 11, 28, 46). Furthermore, 
cattle farms with close geographic proximity to urban areas 
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FigUre 5 | estimates of the time-dependent reproductive numbers 
and their 95% confidence internals (ci) over the course of the 
lumpy skin disease epidemic in the Middle east from July 2012 
through May 2015.

FigUre 4 | Probability of spatial distribution of lumpy skin disease 
virus (lsDV) in cattle in Turkey predicted by the israeli Maxent model 
(ii). The figure is a magnified snap shot for Turkey in Figure 3B. The blue 
dots represent the observed geographical distribution of LSDV in Turkey.
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are quite common in ME countries including countries of the 
Arabian Peninsula, where severe LSDV outbreaks were recently 
reported (24, 45). This could be attributed to multiple risk fac-
tors including: favorable climatic conditions for vectors, low 
biosecurity measures, introduction of new animals and mixing 
of different livestock species, as suggested elsewhere (5, 13, 20, 
26). In addition, cattle farms with close proximity to urban areas 
are under intensive human surveillance, and thus the number 
of detected outbreaks is expected to be higher than non-urban 
production systems.

Interestingly, our final Maxent model suggests that areas 
with low-density sheep and goat populations were suitable for 
the transmission of LSDV (Table 2). This is not surprising, since 
nomadic and free grazing sheep and goat herds are common in 
ME countries. Contact with small cattle farms and/or herds is 
frequent. Furthermore, small-scale farms with mixed livestock 
species are also common in ME countries (26). Frequent contact 
of cattle herds with small nomadic sheep and goat herds has 
been considered as a risk factor for the transmission of LSDV, 
as described elsewhere (11, 46). Therefore, obtaining detailed 

information related to farm characteristics, such as vaccination 
status, biosecurity level, size, type of production, and species, 
might substantially improve the prediction of our presented 
ecological niche model.

Although our selected environmental variables were adequate 
predictors (based on AUC values) of LSDV outbreaks in the 
ME, dissimilarities were observed in the spatial distributions 
of risk (Figure  3) and relative contribution of each predictor 
(Table 2). Indeed, this is expected due the diverse nature of each 
environmental predictor in each country or geographical areas 
within the ME. For example, Maxent model II suggested that 
the combination of land cover and livestock production system 
represented by proximity to croplands and mixed rain-fed arid 
livestock production areas, respectively, constituted ideal envi-
ronments for the spread and maintenance of LSDV during wet 
seasons in Israel and other counties with similar environmental 
conditions. However, model III strongly suggested that climate 
and densities of sheep and goat populations played significant 
roles in the spread and maintenance of LSDV in Turkey and 
countries with similar environmental conditions (Table 2), which 
explains the expansion of the high-risk areas across that country 
(Figures  3A,C). Finally, the complex combination of climatic 
conditions, livestock densities, land cover, and production system 
features played a significant role in the transmission and spread 
of LSDV in the Egyptian Nile valley, eastern and central Iraq, and 
western Iran (Figure 3D).

It is important to note that the dissimilarities between the risk 
maps for the four scenarios (Figures 3A–D) are mainly attributed 
to the magnitude of correlation between the selected environmen-
tal predictors and the outbreak data used for each scenario. This 
highlights the influence and potential biases of the input dataset in 
determining environmental risk factors in Maxent models. When 
using such approaches to infer spatial patterns of infection risk, 
it is important to remember that there is no single “true” model 
predicting risk across all contexts. Indeed, environmental factors 
contributing to risk may differ across space and time. However, 
our approach of using multiple input datasets both acknowledges 
that results may differ according to the input dataset and also 
allows for the identification of spatial and environmental patterns 
that are consistent regardless of the input dataset. This provides 
a robust way to address issues emerging from reporting biases 
across countries.

Our inferred average effective R-TD, on a regional scale, sug-
gested a fairly large epidemic size with a 2.2-fold increase (RT-D 
>1) in the number of outbreaks during its course between 2012 
and 2015 in the ME. Furthermore, estimates of the R-TD before 
September 2013 were on average larger than those estimated 
after that month (Figure  5). Although severe outbreaks were 
reported after September 2013, this is most likely attributed to 
the continuous increase in the political instability of the region 
after the Arab Spring. Thus, apparent reductions in numbers 
of outbreaks may be due to substantial underreporting rather 
than successful implementation of control measures, with the 
exception of Israel. Underreporting of cases and lack of informa-
tion on the time of implementation of control measures might 
substantially bias the estimates of the effective R-TD, which is a 
major limitation described elsewhere (43). We believe that the 
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largest R-TD estimated for the epidemic in Israel is indicative 
of a super-spreading event that occurred during that period. 
Following this, Israel rigorously implemented control activities, 
including a massive national vaccination campaign implement in 
2013 (47), which led to the sharp drop in R-TD in the following 
month. Our study confirms that the demographic and environ-
mental characteristics of Israel made it a suitable geographic area 
for super-spreading events of LSDV (inferred by large R-TD 
values), and the sharp drop of R-TD after its initial spike may 
reflect that their strong veterinary infrastructure and the 2013 
vaccination campaign had successfully controlled this severe out-
break (47). Similar conclusions can be inferred in Turkey, where 
a large number of outbreaks were also reported after September 
2013. Indeed, despite being environmentally suitable for LSDV, 
Turkey’s low R-TDs could be attributed to effective control and 
prevention measures (24).

Reporting bias may not only bias the estimates of the effective 
R-TD, but it can also substantially bias the results of ecological 
niche analysis. For example, it has been shown that report-
ing bias has implications for the selection of a representative 
ecological niche model (42). In this study, reporting bias had 
a significant role in the discrepancies between the four Maxent 
models in terms of the distribution of spatial risk (Figure  3) 
and relative contribution of each environmental predictor 
(Table 2). Although reporting of LSDV is mandatory for OIE-
member countries, this mandate does not necessarily imply that 
every case or outbreak has been reported, arguably, because of 
substantial difference in the surveillance capabilities between 
different ME countries. For that reason, outbreak data used in 
our study may have been biased toward countries with higher 
surveillance capabilities, leading to predictions skewed toward 
these countries, as in the case of Israel and Turkey. To address 
this, we also constructed a Maxent model that excluded data 
from high-reporting regions (Turkey, Isreal, and the West Bank). 
A visual inspection of Figures 3A–D (model excluding data from 
high-reporting regions) reveals that the distribution of high-risk 
areas are similarly predicted by models built with or without data 
from high-reporting countries, though the absolute magnitude 
of risk differs somewhat. This gives us confidence that the overall 
Maxent model and predicted risk distributions are not skewed 
toward high-reporting countries.

Accuracy of the environmental variables in predicting the 
presence of the outbreaks might be substantially improved with 
more representative environmental data. In this study, we used 
the predicted global densities of different livestock species as a 
proxy for real current densities. Therefore, using representative 
livestock densities specifically for our study region might substan-
tially alter the results Maxent models and/or might affect the value 
of the percent contribution of each environmental predicator in 
each Maxent model (41). Unfortunately, getting representative 
accurate outbreak occurrence (including a standard definition of 
an outbreak) and environmental data is almost impossible due 
to political unrest in the region and the discrete nature of ME 
countries in sharing their information.

That said, the use of ecological niche models might compen-
sate for under reporting bias because predictions are based on 
the correlation between environmental predictors and disease in 

mostly areas where high concentrations of data available. These 
associations between environmental factors and disease occur-
rence can then be used to predict risk in areas where data maybe 
scarce. For example, it has been speculated that Syria may be a 
source of LSDV for the rest of the region, as described elsewhere 
(20), and that cases in Syria may be severely underreported due 
to armed conflicts. Despite the paucity of data from Syria, our 
analysis confirms that areas within Syria are suitable for the 
spread of LSDV (Figures  3A–D). Furthermore, our rigorous 
validation methods, including the use of the Israeli risk map to 
directly and independently predict the risk of LSDV in Turkey, 
indicated that the Israeli model is an accurate predictor of risk 
outside Isreal’s borders (Figure  4). Thus, we suggest that the 
selected environmental layers identified in countries with high 
reporting can be used to adequately predict the risk of LSDV 
throughout the ME and can compensate for the reporting bias 
suffered by the observed data.

Although, our identified environmental predictors match 
those identified in the past published literature, as described 
above, the resulting risk maps for LSDV occurrence are not 
definitive and need to be updated periodically as new data 
emerges. Thus, in the event of future epidemics, these analyses 
need to be repeated and refined in order to be subsequently used 
in surveillance, control, and prevention strategies. Furthermore, 
the model predictions suggest that the reason why some ME 
countries did not report cases of LSDV might not be due to 
underreporting, but simply because they did not exhibit suit-
able environmental conditions for the spread of LSDV in cattle. 
Therefore, an additional use of ecological modeling here may 
be to distinguish between geographic areas in which absence of 
reporting was likely due to a true absence of disease and those in 
which disease may be underreported but present. It is important 
to note that our analytical approach neither attempts to predict 
future epidemics, in terms of where and when the next LSDV 
outbreak will likely occur, nor provide definitive risk estimates 
for the introduction or occurrence of the outbreaks. Instead, our 
inferences are mainly useful in providing further insights into the 
current epidemiological situation of LSDV in the ME based on 
available data. Such knowledge might be useful in guiding the 
design of risk-based surveillance activities, in which sampling 
schemes can be targeted toward high-risk geographical areas 
and periods of time, identified by our analytical approach, and 
accordingly mobilize control, and prevention resources for the 
current LSDV epidemic.

cOnclUsiOn

We modeled the spatial and temporal dynamics of LSDV in 
the ME in 2012–2015 using publically available outbreak data. 
We inferred significant epidemic transmission patterns in time 
for LSDV, and identified environmental factors that shape the 
ecological niche of the disease in cattle in the ME between 2012 
and 2015. Furthermore, most of the significant R-TDs (>1), 
which have reached up to 22.2-fold increase, indicated that the 
identified environmental conditions in Israel and the Palestinian 
territories were conducive for region-level super-spreading 
events of LSDV outbreaks and that Isreal’s 2013 vaccination 
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campaign was indeed successful in controlling the disease. 
While our results identified areas in which underreporting 
of LSDV outbreaks may have occurred, they also suggest that 
more epidemiological information related to cattle populations 
is needed to further improve the inferred spatial and temporal 
characteristics of currently circulating LSDV. However, the 
methodology presented here may contribute to the formulation 
of risk-based surveillance programs, with targeted sampling 
schemes, that selectively target high-risk cattle areas with 
specific demographic and environmental factors in the ME 
region and guide epidemic preparedness efforts in neighboring 
LSDV-free countries.
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