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ABSTRACT

Nucleosomes play important roles in a cell beyond
their basal functionality in chromatin compaction.
Their placement affects all steps in transcriptional
regulation, from transcription factor (TF) binding to
messenger ribonucleic acid (mRNA) synthesis. Care-
ful profiling of their locations and dynamics in re-
sponse to stimuli is important to further our under-
standing of transcriptional regulation by the state of
chromatin. We measured nucleosome occupancy in
human hepatic cells before and after treatment with
transforming growth factor beta 1 (TGF�1), using
massively parallel sequencing. With a newly devel-
oped method, SuMMIt, for precise positioning of nu-
cleosomes we inferred dynamics of the nucleosomal
landscape. Distinct nucleosome positioning has pre-
viously been described at transcription start site and
flanking TF binding sites. We found that the average
pattern is present at very few sites and, in case of
TF binding, the double peak surrounding the sites
is just an artifact of averaging over many loci. We
systematically searched for depleted nucleosomes
in stimulated cells compared to unstimulated cells

and identified 24 318 loci. Depending on genomic
annotation, 44–78% of them were over-represented
in binding motifs for TFs. Changes in binding affinity
were verified for HNF4� by qPCR. Strikingly many of
these loci were associated with expression changes,
as measured by RNA sequencing.

INTRODUCTION

Nucleosomes form the basal units for condensation of
deoxyribonucleic acid (DNA) into higher order chro-
matin through inter-nucleosomal interactions of histones
(1). These interactions are, however, dependent on post-
translational modifications (PTMs) of histones (2) and high
nucleosome occupancy alone is therefore not a reliable in-
dicator of condensed chromatin. Rather, intragenic regions
are more nucleosome dense than intergenic regions (3), sug-
gesting that nucleosomes play an important role beyond
their basal functionality in chromatin compaction. In fact,
the locations of nucleosomes have been suggested to fol-
low distinct patterns around transcription start sites (TSSs)
(4,5), internal exons (6) and enhancers (7,8). At these loci,
PTMs of histones reflect the transcriptional (6,9–12) or reg-
ulatory status (9,13).
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Not only do PTMs of histones affect gene transcription,
the mere placement of nucleosomes may also play a regula-
tory role. For instance, the nucleosome-free region (NFR)
upstream of a TSS may be crucial for recruiting the tran-
scriptional machinery to a gene, while the first nucleosome
downstream of the TSS may be involved in pre-initiation
complex formation and ribonucleic acid (RNA) polymerase
II (RNAPII) promoter-proximal pausing (4,14). Along the
DNA, histones and other DNA-binding proteins, such as
transcription factors (TFs), competitively bind to the DNA.
The binding of TFs is thus affected by the placement and
stability of nucleosomes along DNA and also by enzy-
matic activities that modify, reposition, reconfigure or even
remove nucleosomes. Stably positioned nucleosomes may
block the binding of some TFs (15), while other TFs may
reposition nucleosomes with the involvement of other part-
ners, such as histone modifiers or coactivators (14). Hence,
nucleosome positioning and repositioning play important
roles in the transcriptional regulation of a cell.

Current knowledge about the nucleosomal landscapes in
humans is limited to a few cell types and their dynamics in
response to intracellular events or external stimuli are even
less explored (5,16). There is thus a great need to profile the
nucleosomal landscapes of various cell types and to system-
atically analyze the repositioning and removal of nucleo-
somes to further our understanding of chromatin regulation
of transcription.

Several methods for processing the resulting data from se-
quencing of nucleosomal or TF-bound DNA have been de-
veloped. Some early methods transformed the data either by
extending sequence reads to the average length of sequenced
DNA fragments (10,17) or through strand-directed shifts of
reads to a putative nucleosome center (18,19). Calling of in-
teraction sites was then based on peak shapes or on signifi-
cance of counts or kernel density estimates when compared
to the genomic distribution of transformed data. To remove
unreliable predictions, one method used thresholds of the
minimum number of reads from each strand (17). Strand-
specific requirements were also adopted in other methods
(20,21), yielding more reliable predictions. However, in the
majority of suggested methods only non-overlapping pre-
dictions of nucleosomes are considered. Since nucleosome
sequencing measures an average over millions of cells, such
a limitation assumes that all cells have a nucleosome at the
same or at non-conflicting locations. This is, however, not
the case for a large fraction of nucleosomes (4), calling for
careful considerations of the data and the heterogeneity of
nucleosome positioning.

Here, we introduce SuMMIt, a Bayesian strategy for po-
sitioning of nucleosomes or other protein–DNA interac-
tions that require support from both ends of sequenced
fragments for accurate positioning. For precise placement
of interaction sites unaffected by discrepancies in local-
ization between cells in the same sequenced sample, we
model their mid-positions as well as background noise in
the data. SuMMIt also allows for investigating differences
in e.g. nucleosome positioning under different conditions.
Using SuMMIt, we profile the nucleosomal landscape of
the human hepatocellular HepG2 genome before and after
1 h of stimulation with transforming growth factor beta 1
(TGF�1). The TGF� pathways have been extensively stud-

ied and several TFs have been shown to regulate the expres-
sion of specific genes in TGF� stimulated cells (22). In ad-
dition, HepG2 is one of the cell lines studied by the EN-
CODE consortium (23) and several data sets of TF bind-
ing in this cell line exist. Taken together, monitoring the nu-
cleosomal landscape in HepG2 cells in response to TGF�1
stimuli offers the opportunity to study nucleosome dynam-
ics in a well-characterized system. As a first approach, we
impose strict criteria for the identification of depleted nu-
cleosomes in response to TGF�1 treatment. We further in-
vestigate their possible relation to transcription and tran-
scriptional regulation.

MATERIALS AND METHODS

Cell culture and TGF�1 treatment

HepG2 cells were cultured to confluence in RPMI 1640
medium supplemented with 10% fetal bovine serum (FBS).
Cells were serum-starved overnight (1% FBS) before stim-
ulation with TGF�1 to a final concentration of 2.5 ng/ml.
TGF�1-treated and control cells were harvested after 1 h of
treatment.

Preparation and sequencing of mononucleosomes

HepG2 control and TGF�1-treated cells were washed with
phosphate buffered saline and resuspended in ice-cold
buffer A [0.32-M sucrose, 15-mM Hepes pH 7.9, 60-mM
KCl, 2-mM ethylenediaminetetraacetic acid (EDTA), 0.5-
mM ethyleneglycoltetraaceticacid (EGTA), 0.5% bovine
serum albumin, 0.5-mM spermidine, 0.15-mM spermine
and 0.5-mM dithiothreitol (DTT)]. After a short incubation
on ice, cells were homogenized with a Dounce homogenizer.
The nuclear suspension was slowly layered on an equal vol-
ume of ice-cold buffer B (30% sucrose, 15-mM Hepes pH
7.9, 60-mM KCl, 2-mM EDTA, 0.5-mM EGTA, 0.5-mM
spermidine, 0.15-mM spermine and 0.5-mM DTT) and cen-
trifuged at 3000 revolutions per minute for 15 min to pel-
let the nuclei. Collected nuclei were washed once and resus-
pended in buffer N (0.34-mM sucrose, 15-mM HEPES pH
7.5, 60-mM KCl, 15-mM NaCl, 0.5-mM spermidine, 0.15-
mM spermine and 0.15-mM �-mercaptoethanol). Samples
were adjusted to 3-mM CaCl2 and the nuclear suspension
was adjusted to 30 million nuclei per milliliter and incu-
bated at 37◦C for 5 min. Micrococcal nuclease (MNase, 300
U) was added to each aliquot and incubated for another 5
min at 37◦C. Buffer S, containing 90-mM HEPES pH 7.9,
220-mM NaCl, 10-mM EDTA, 2% Triton X-100, 0.2% Na-
deoxycholate, 0.2% sodium dodecyl sulphate (SDS), 0.5-
mM phenylmethanesulfonylflouride (PMSF) and 2-�g/ml
aprotinin, was added to stop the reaction. The solution was
centrifuged and the supernatant was used to extract the
DNA by phenol/chloroform/ethanol precipitation. DNA
was loaded onto a 2% agarose gel and the mononucleo-
some size (147 bp) fragments were excised. DNA from ex-
cised gel pieces was purified with a Qiagen gel extraction
kit. Libraries of nucleosomal DNA were prepared from 1-
�g DNA according to the SOLiD fragment library proto-
col. After ligation and nick-translation, two emulsion poly-
merase chain reactions (PCRs) were done for each sample,
one without pre-amplification of the library and one after
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three sounds of PCR. Sequencing was done using v3 chem-
istry with one slide per emulsion PCR.

RNA-seq

Total RNA was prepared using the TRIzol-chloroform
method (Invitrogen) according to the manufacturer’s proto-
col. We used a BioAnalyzer (Agilent) to quantify the RNA
integrity (RIN 9.8) before library construction. The SOLiD
whole transcriptome library kit (Ambion) was used to pro-
duce strand-specific libraries. This procedure includes two
rounds of ribosomal RNA depletion (RiboMinus, Invit-
rogen) and ligation of adaptors to RNAse-III fragmented
RNA before reverse transcription and library amplification
(AmpliTaq, 18 cycles). Each library was split after emulsion
PCR and sequenced on two slides (SOLiD v3 chemistry)
with TGF�1 and control libraries sequenced in parallel on
the same instruments to avoid instrument-related biases.

Validation of RNA-seq using Taqman real-time quantitative
reverse transcriptase-PCR

RNA from HepG2 cells with and without TGF�1-
stimulation was isolated as described above. The RNA was
treated with DNase I (Qiagen) to degrade any genomic
DNA. Reverse transcription was performed with 1.0 �g of
RNA per 20-�l reaction using the iScript complementary
DNA (cDNA) Synthesis Kit (Bio-Rad). Triplicate 25-�l re-
actions were prepared containing 1.0 �l of cDNA, Taq-
Man Gene Expression Master Mix (Applied Biosystems)
and TaqMan Gene Expression Assay Mix (Applied Biosys-
tems) specific for the transcript investigated according to the
instructions of the manufacturer. PCR was performed on an
Applied Biosystems 7000 Real-Time PCR System (Applied
Biosystems) with SDS software 1.2.3, using the following
conditions: 50◦C for 2 min, 95◦C for 10 min, followed by
40 cycles of 95◦C for 15 s and 60◦C for 1 min. Control re-
actions to demonstrate the specificity of the reactions were
for each gene expression assay: use of cDNA synthesized
without reverse transcriptase and without template RNA,
respectively, and replacing the cDNA with water altogether.
All controls passed and are not included in the figure. Ex-
pression levels were determined with the comparative Ct
method using GAPDH as reference, related to the RNA se-
quencing expression levels and presented in Figure 8C.

HNF4� ChIP and quantiative polymerase chain reaction

ChIP on control and TGF�1-stimulated cells was per-
formed as described in (24) using anti HNF4� (SC-6556)
antibody. qPCR was then performed in triplicates at 10 (10)
candidate sites where HNF4� binding was predicted to have
changed due to nucleosomal relocation. The qPCR was per-
formed using SYBR green and fold enrichment between
TGF� stimulated and control cells was calculated with av-
erage qPCR values obtained from three (3) negative sites.
Locations and primer sequences are available from Supple-
mentary Table S4.

SuMMIT rationale

To accurately position sequenced nucleosomes, we devel-
oped a Bayesian method that requires support from both

ends of sequenced DNA fragments (see Supplementary
Methods for details). In summary, SuMMIt (Strand-based
Mixture Modeling of protein–DNA Interactions) infers the
a posteriori most probable model from the data describing
nucleosome mid-positions and background noise. Informa-
tion about size selection of sequenced DNA fragments is
incorporated in the model, determining the expected dis-
tance from the boundaries to the mid-position of a nucleo-
some. The a priori expected distance between reads defining
a nucleosome is 147 bp (25). Hence, in theory, start posi-
tions of sequenced reads are expected to be located 73 bp
from a nucleosome mid-position, i.e. from the translational
setting of a nucleosome. However, due to heterogeneity in
nucleosome positioning among cells and biased cleavage of
nucleosomal DNA, the positions may vary. To deal with
such positional variation, SuMMIt considers a size range
of sequenced fragments, 130–180 bp for nucleosomal DNA,
when determining where start positions of reads support-
ing a nucleosome mid-position will be located (Supplemen-
tary Figure S1). The lower and upper boundaries of the size
range are used to determine the size of two flanking win-
dows. In these windows, we use the counts of reads, in fa-
vorable direction only, for training Poisson mixture models
to separate true positioning data from background noise.
Using these models, log-odds of nucleosome mid-position
against the background are calculated for each position in
the genome separately for each strand. Nucleosome mid-
positions are called whenever support (positive log-odds)
is given from both strands. The necessary parameters for
the Poisson mixture models are learnt from the data using
a Gibbs sampling approach. The fuzziness, i.e. level of con-
cordance among cells, for each called mid-position is also
determined and calculated as the positional spread (stan-
dard deviation) of surrounding reads.

Training and prediction using sequencing data

SuMMIt was trained separately on HepG2 TGF� unstim-
ulated and stimulated nucleosome sequencing data. Size se-
lection of sequenced DNA fragments determined the mini-
mum (mind) and maximum (maxd) fragment lengths to 130
and 180, respectively, which were used in the model. Gibbs
sampling was run with 1000 iterations after 100 burn-in
iterations. Manual inspection of the parameter values af-
ter training ensured convergence after 1000 iterations. Each
predicted nucleosome mid-position with support from both
sense and antisense read data was assigned the sum of log-
odds values LO+ and LO−. The predicted locations were
combined into regions with consecutive positive log-odds
values allowing no gaps. Regions were subsequently merged
with adjacent ones if the center-to-center distance was less
than 65 bp.

Fuzziness of nucleosomes

The fuzziness of nucleosome positions was calculated from
the average of standard deviations of sense and antisense
reads falling into windows [i−(�f,1+�f,2), i−1] and [i+1,
i+�r,1+�r,2] of a nucleosome mid-position i, respectively.
Using these windows, no reads defining adjacent non-
overlapping nucleosomes will affect the fuzziness score. Nu-
cleosomes with a fuzziness score less than or equal to 60,
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between 60 and 80, and greater than 80 were considered
phased, intermediate and fuzzy, respectively. These numbers
were motivated by the distribution of fuzziness scores (Sup-
plementary Figure S3).

Nucleosomal depletions

The models of nucleosome mid-positions and background
noise allowed us to calculate log-odds of nucleosomal
changes between samples. For each putative position in the
genome, we calculated the odds of having a nucleosome
mid-position in one sample and no mid-position in the
other sample against all other combinations, separately for
sense read data and antisense read data. Summation over
strands yielded the resulting change log-odds score.

To systematically identify nucleosomes present in unstim-
ulated cells that were depleted in TGF� stimulated cells and
to avoid any biases in sequencing depth between samples
possibly not dealt with by SuMMIt modeling of data, we
imposed strict filters on identified nucleosomes with non-
overlapping positions between samples. Firstly, we required
that the regions called in unstimulated cells did not overlap
any region called in TGF� stimulated cells with LO+ > 0 or
LO− > 0 within flanking regions of 65 bp from the interior
mid-positions. Secondly, we required log-odds of change
above 10 to pass the filtering. Finally, we required that the
flanking 65-bp regions of unstimulated mid-positions did
not overlap any nucleosome interior regions.

Annotations

Gene and exon annotations were extracted from the EN-
SMBL database (26) (release 54, NCBI 36). Only known
protein-coding genes were considered. For partitioning of
loci, we applied a sequential approach similar to a previous
partitioning scheme of ENCODE data (27) in which loci
were associated with the following characteristics, in prior-
itized order:

Exonic Overlapping with an exon
Intronic proximal Intronic and no more than 5 kb

away from an exon
Intergenic proximal Intergenic and no more than 5 kb

away from an exon
Intronic distal Intronic and more than 5 kb away

from an exon
Intergenic distal Intergenic and more than 5 kb away

from an exon

Partitioning of loci into these categories was done using
BEDTools (28).

Motif finding

For the identification of over-represented TF motifs in se-
quences of loci with depleted nucleosomes, we ran the pro-
gram clover (29) on 130-bp sequences centered at center po-
sitions of nucleosome interior regions in TGF�− cells as-
sociated with depleted nucleosomes in TGF�+ cells. This
was performed separately for each annotation category (de-
scribed above). Twice as many DNA sequences were ran-
domly selected from nucleosome loci falling into the same
partitioning category and with no associated depletion in

TGF� stimulated cells as background. TF motifs with raw
scores above 6 and P-values less than 0.05 were consid-
ered for further analyses, as recommended by the authors
of the program Clover. Position weight matrices were col-
lected from the JASPAR database (30), clade vertebrates.

Data handling

All sequencing data were represented using a binary file for-
mat (31). The nucleosome data were represented by the po-
sition of the 5′ end of the aligned reads for nucleosome mid-
position predictions by SuMMIt. Full-length alignments,
147-bp extended sense and antisense reads and combined
signal, were used for plotting purposes and comparison
with log-odds values. All footprints were produced using the
SICTIN software suite (31).

Implementation

SuMMIt was implemented in C++ relying on functions
from the GNU Scientific Library (http://www.gnu.org/
software/gsl/) (32) and is platform independent. The source
code has been successfully compiled and run on single Mac
OSX Server (leopard) computational node with only 2 GB
of RAM. The current implementation of SuMMIt traverses
one chromosome at a time in large chunks, resulting in low
memory requirements.

RESULTS

Data

We used massively parallel sequencing-by-ligation (SOLiD
System, Applied Biosystems, Foster City, CA, USA) to
sequence size-selected mono-nucleosomal MNaseI cleaved
DNA fragments from HepG2 cells before and after stim-
ulation with TGF�1 (see the Materials and Methods sec-
tion for details). In brief, 396M 50-bp reads were uniquely
aligned to the reference genome in the unstimulated cells
and 301M reads in the TGF� stimulated sample. In addi-
tion, we also performed strand-specific RNA sequencing
(see Materials and Methods section for details) resulting
in 195.3M uniquely aligned reads for the unstimulated cells
and 146.5M reads for TGF� stimulated cells (Supplemen-
tary Table S1).

Nucleosome positioning revealed in detail

We applied SuMMIt on nucleosome data from unstimu-
lated cells and the resulting log-odds scores provided clear
indications of which positions had good support from both
strands. The positioning was made at a very high resolution
since only nucleosome mid-positions were called. Plotting
these values gave a crisp view of the nucleosome landscape
revealing details that were hidden using mere counts of read
alignments. This is apparent around the TSS of gene HEY2
(Figure 1A) where log-odds values indicate several nucleo-
somes positioned at loci where peak shapes of read counts
indicate only one nucleosome. Exploiting the 5′ ends of
read alignments rather than their genome coverage proved
very useful in detecting differences in positioning among
cell populations in the same sample. This is clearly visible

http://www.gnu.org/software/gsl/
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Figure 1. (A) Log-odds values around the TSS of gene HEY2 for nucleosome mid-positions in HepG2 unstimulated (labeled TGFB−) cells (Nucl Inte-
rior log-odds TGF�−) and TGF� stimulated (labeled TGFB+) cells (Nucl Interior log-odds TGF�+). For comparison, counts of reads extended to the
average fragment length of sequenced DNA, combined signal, are shown (Nucleosome TGF�− and Nucleosome TGF�+). Locations of inferred nucleo-
some interior regions in TGF�− cells (Nucleosome interiors TGF�−) and TGF�+ cells (Nucleosome interiors TGF�+) as well as locations of inferred
nucleosome depletions in TGF�+ cells (Nucleosome depletion TGF�+) are depicted in the bottom panels. Data were uploaded as custom tracks to the
UCSC Genome Browser where the graphics were produced. (B) and (C) Average signal footprints of log-odds (black lines, left vertical axes), counts of
strand-directed fragment-length extended reads (gray lines, right vertical axes) and DNaseI hypersensitivity (blue dashed lines, scaled to fit) around TSSs
of the top 5000 high-expressed protein-coding genes (B) and 25 651 JUND binding sites (C) .

downstream of the TSS of gene HEY2 (Figure 1A), where
seemingly three different proximal preferential positions of
a nucleosome were detected.

We then created average footprints (31), centered on the
TSSs of known protein coding genes with high expression
(top 5000) as determined by gene RPKM counts from our
RNA-seq data (Figure 1B) (see the Materials and Meth-
ods section for details). The log-odds values were compared
with the combined counts of strand-directed extensions of
reads to the average length of sequenced fragments (31),
hereafter referred to as the combined signal. We observed
the classical nucleosome pattern around the TSS, e.g. a well-
positioned nucleosome downstream of the TSS, preceded
by an NFR and yet another well-positioned nucleosome up-
stream of the TSS. The peaks are more defined using the log-
odds values than the combined signal. The results of clus-
tering the inferred nucleosome mid-positions derived from
the log-odds values around these loci did, however, display
a much more fragmented pattern than the suggested pattern
from averaging over many loci (Figure 2). These patterns are
clearly visible both from the log-odds representation and
from the combined signal. Only a small minority of TSS
regions agreed with the average pattern. Rather, preferen-
tial nucleosome positioning around TSSs was rarely accom-
panied by other well-positioned nucleosomes. Surprisingly
many TSSs (∼33%) lacked flanking nucleosomes. This is in
agreement with similar analysis performed on nucleosomal
sequencing data from human CD4+ T-cells (31), K562 and
GM12878 (16).

We further examined the average log-odds values around
25 651 ENCODE JUND binding sites (23,33) (Figure 1C).
Several peaks were visible around the JUND binding sites in
the log-odds footprint with a sharp double peak surround-
ing the binding sites. This fits well with previously described

patterns of nucleosomes around functional binding sites for
TFs (34–36). The average peaks were, however, at log-odds
levels below zero indicating positioned nucleosomes only at
a subset of JUND locations. These peaks did not stand out
using the combined signal alone, demonstrating that SuM-
MIt leads to detection of important, although weak, pat-
terns that are largely hidden due to background enrichment.
Further inspection of individual binding sites did, in fact,
show that only a small minority (5.7%) of sites had flanking
nucleosomes at the same distance from the central position
of interaction (Figure 3) and 39.9% (10 234 of 25 651) did
not have any indication of nucleosomes at all. Notably, the
double peak surrounding the sites of interaction was rarely
present but merely an artifact of averaging over many loci.

Due to positional heterogeneity among cells, a nucleo-
some is rarely indicated by only one position with positive
log-odds, apparent around the TSS of HEY2 (Figure 1A).
Rather, stretches of consecutively called positions of nu-
cleosome mid-positions will be detected. We denoted such
regions as nucleosome interiors. Here, we identified 5 231
084 regions of nucleosome interiors in unstimulated HepG2
cells. Since the aim of SuMMIt was to identify the genomic
locations of nucleosome mid-positions, no consideration
of adjacent nucleosomes is made. Interiors may thus lo-
cate closely if the data support a mixture of positions, e.g.
overlapping nucleosome locations. Consequently, for sub-
sequent analyses, we merged proximal nucleosome interi-
ors (center distance <65 bp) to ease interpretation of results
(see the Materials and Methods section for details).

This resulted in 3 335 364 merged regions of nucleosome
interiors. Out of these, ∼44% represented non-conflicting
adjacent nucleosome positions, i.e. with interior center posi-
tions separated by more than 130 bp. The majority (∼56%)
of inferred nucleosome positions were thus not separated
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Figure 2. Heat maps of log-odds values (left column) and counts of fragment-length extended reads, combined signal, (right column) in 2-kb windows
around TSS of highly expressed genes (top 5000). Their average values are also shown (middle column) in 10 K-means clusters (rows) inferred from
discretized (0 or 1) log-odds data. The clusters were inferred using the data within the gray-marked regions in the bottom panel, leftmost figure. The middle
figure in the bottom panel shows the combined average of all 10 clusters. Black lines (left vertical axes) and gray lines (right vertical axes) in the middle
column depict the average of log-odds values and the combined signals, respectively, within each cluster. Yellow colors indicate high values while blue
colors indicate low values.



Nucleic Acids Research, 2014, Vol. 42, No. 11 6927

Figure 3. Heat maps of log-odds values (left column) and counts of fragment-length extended reads, combined signal, (right column) in 2-kb windows
around 25 651 JunD binding sites. Their average values are also shown (middle column) in 10 K-means clusters (rows) inferred from discretized (0 or 1)
log-odds data. The clusters were inferred using the data within the gray-marked regions in the bottom panel, leftmost figure. The middle figure in the
bottom panel shows the combined average of all 10 clusters. within the gray-marked regions in the bottom panel. Black lines (left vertical axes) and gray
lines (right vertical axes) in the middle column depict the average of log-odds values and the combined signals, respectively, within each cluster. Yellow
colors indicate high values while blue colors indicate low values.
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Figure 4. Annotations of nucleosomes in HepG2 unstimulated cells. Left
pie chart shows the distribution of nucleosomes in exonic, intronic and
intergenic regions. For comparison (right pie chart), the genomic sequence
coverage of these regions is shown.

Figure 5. (A) Distribution of phased, intermediate and fuzzy nucleosomes
in unstimulated cells in exonic, intronic and intergenic regions. (B) The
fraction of phased, intermediate and fuzzy nucleosomes in exons of lengths
within intervals ranging between 0 and 1000 bp. Length intervals of 20 bp
in size were used.

far enough to be considered as distinct nucleosomes, but
rather as indications of discrepancies in localizations be-
tween cells in the same sample.

In accordance with our previous findings in CD4+ T-cells
(6), a clear preference for exonic positioning was observed
(Figure 4) when comparing the inferred nucleosomal loca-
tions to the genomic sequence coverage. We also found a
preference for intragenic over intergenic positioning (51%
of regions in 37% of sequence). In fact, the center-to-center
distance between adjacent non-conflicting nucleosome inte-
riors in exons, introns and intergenic regions (median values
of 194 bp, 253 bp and 292 bp, respectively) indicated higher
density of well-supported nucleosomes in exons than in in-
trons and in intragenic than in intergenic regions (Supple-
mentary Figure S2).

We next investigated the level of positional discordance
by means of positional spread of nucleosome-supporting

reads and calculated a fuzziness score for each inferred
nucleosome (Supplementary Figure S4; see Methods for
details). We separated nucleosomes into those with low,
medium and high fuzziness score, yielding groups of
phased, intermediate and fuzzy nucleosomes, respectively.
Notably, exonic regions contained a much higher fraction
of fuzzy nucleosomes than phased ones (Figure 5A). In
contrast, intergenic regions contained an equal fraction
of phased, intermediate and fuzzy nucleosomes. Although
marginal, we found a higher fraction of fuzzy nucleosomes
at exons shorter than 200 bp compared to nucleosomes at
longer exons (Figure 5B). The observed discrepancy be-
tween exonic and intergenic nucleosomes may be explained
by a higher guanine/cytocine (GC)-content in exons, since
adenine/thymine (AT)-content has nucleosome-disfavoring
properties (8,37). At boundary regions of phased nucleo-
somes, we observed lower AT-content in exonic regions than
in intronic or intergenic regions (Supplementary Figure
S5). The difference in boundary AT-content was, however,
prominent between phased and fuzzy nucleosomes (Sup-
plementary Figure S5A and C), further strengthening the
importance of nucleosome-disfavoring sequences in nucle-
osome positioning. We also examined if the fuzziness could
be explained by transcriptional activity but found no differ-
ence (P > 0.1, Mann–Whitney) in distribution of RPKM
values between the low, medium and high fuzziness score
classes.

SuMMIt performance

We compared the performance of SuMMIt to two previ-
ously published nucleosome positioning methods: PING
2.0 (38) and NORMAL (39). As a test case, we analyzed
all 37.3M reads aligned to chromosome 1 in unstimu-
lated cells. In brief, SuMMIt required less computing time
and less memory compared to the other methods and re-
sulted in more predicted nucleosome positions. The posi-
tions uniquely predicted by SuMMIt showed a more bal-
anced support with reads from both stands as compared to
the positions unique to the other methods. A detailed ac-
count of the comparisons can be found in Supplementary
Figure S7 and Supplementary Tables S6 and S7.

Nucleosome dynamics in response to TGF�1 stimuli

To investigate the regulatory role of TGF�1 and its im-
pact on nucleosome dynamics, we applied and trained SuM-
MIt on our data from TGF� stimulated cells resulting in
4 679 107 predicted nucleosome interior regions of consec-
utive positive log-odds values. Merging of interior regions,
as with the regions called in the unstimulated sample, re-
sulted in 2 964 738 regions. As expected, the distribution
of nucleosomes falling into exonic, intronic and intergenic
regions (Supplementary Figure S6) was very similar to the
distribution in unstimulated cells.

We calculated the shortest distance between the center
position of each inferred nucleosome interior in unstim-
ulated cells to those in TGF� stimulated cells. This indi-
cated that a large majority of nucleosomes (∼81%) had
matching TGF� stimulated nucleosomes (center-to-center
distance <65 bp). A stunning 11% of nucleosomes called
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Figure 6. Average signal footprints of log-odds values [(A) and (B)] and counts of reads extended to the average fragment length of sequenced DNA [(C)
and (D)] around loci of nucleosome depletion in TGF� stimulated cells using data from unstimulated [(A) and (C)] and TGF� stimulated cells [(B) and
(D)]. Combined signals refer to the summation of signals from both ends of sequenced fragments (Start and End for log-odds and Sense and Antisense for
counts of extended reads).

in the unstimulated sample were not called in TGF� stim-
ulated HepG2 cells. A fraction of those sites may, however,
be unreliable indications of depleted nucleosomes in TGF�
stimulated cells due to e.g. uneven sequencing depths be-
tween samples.

To systematically identify nucleosomes present in un-
stimulated cells that were reliably depleted in TGF� stim-
ulated cells, we imposed strict filtering of the above identi-
fied nucleosomes with non-overlapping positions between
samples (see the Materials and Methods section for de-
tails). Firstly, only non-conflicting nucleosomes were con-
sidered. Secondly, we required that the nucleosome interi-
ors in unstimulated cells did not have any proximal strand
call of TGF� stimulated nucleosome interiors. Finally, we
imposed strict cutoffs on log-odds of nucleosomal depletion
in TGF� stimulated cells. As a result, 24 318 nucleosomes
were found to be depleted in TGF� stimulated cells. One of
the loci is visible 3.5 kb upstream of the TSS of gene HEY2
(Figure 1A). The average profiles of log-odds and the com-
bined signal over all identified loci of nucleosome depletions
are shown in Figure 6. The reverse analysis, aimed at iden-
tifying nucleosomes enriched in TGF� stimulated cells but
not present in the unstimulated cells, resulted in 8595 re-
gions.

Nearly 50% of depleted nucleosome loci were located
within or in close proximity to genes (Figure 7A). RNA-
seq of unstimulated and TGF� stimulated HepG2 cells pro-
vided information regarding changed expression levels (log2
fold change > 1 or < −1) of genes and exons in response to
TGF� treatment. Out of all gene-associated loci, with nu-
cleosome signal removed, nearly 20% were associated with
changed gene expression (Table 1). A third of the exon-
associated loci were coupled with exon expression changes
suggesting either positions of importance in regulating exon
usage or RNAPII-directed eviction for passage.

To further explore the role of nucleosome positioning
or repositioning in the regulation of TGF� signaling, we
searched the DNA sequences of loci with depleted nucleo-
somes for TF motifs, as defined by the JASPAR database
(30). The program Clover (29) was used to search for over-
represented TF motifs in those sequences with sampled nu-
cleosome loci as background (see the Materials and Meth-
ods section for details). The same analysis was conducted
in the DNA sequences of loci with gained nucleosomes. As
many as 78% (depleted intergenic distal) of the loci con-
tained an over-representation of TF motifs (Table 2 and
Supplementary Tables S2 and S5). The highest proportion
was found in depleted intergenic distal regions (one of more
motifs found in 78% of the regions, Table 2) and the lowest
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Figure 7. (A) Distribution of loci with nucleosome depletion in TGF� stimulated cells according to genomic annotation. (B) qPCR validation in unstim-
ulated (TGFB−) and TGF� stimulated (TGFB+) cells of HNF4� binding in regions with ejected nucleosomes.

Figure 8. (A) Coverage plots of RNA-seq data over the SMAD7 gene. The TGF� stimulated (TGFB+) data have been normalized to the same sequencing
depth as the unstimulated (TGFB−). (B) Scatter plot of RPKM-counts over genes for TGFB+ and TGFB−. The genes selected for Taqman validation
are marked with black triangles. (C) Taqman validation results for 25 selected genes. The RNA-seq is represented as log2 of sequence depth normalized
fold change between TGFB+ and TGFB−, and the Taqman values are also log2 of fold change between TGFB+ and TGFB−.
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Table 1. Genomic distribution of inferred loci with nucleosomal depletion in TGF� stimulated cells and their association with genes and expression
changes

Exonic Intronic proximal Intronic distal Intergenic proximal Intergenic distal

Number of loci 454 5157 4290 1725 12692
Number of
associated genes

437 4158 2235 1811

Number of loci
associated with gene
expression change

68 599 976 242

Number of
associated genes with
expression change

108 1737 397 239

Number of
associated exons

553 16883

Number of loci
associated with exon
expression change

84 1772

Number of
associated exons with
expression change

99 2659

in depleted intergenic proximal (14%). Apart from the in-
tergenic proximal category (14% versus 34%), the depleted
regions contained consistently higher proportion of regions
with an over-representation of TFG motifs; exonic regions
(44% versus 22%), intronic proximal (54%, 46%) and in-
tronic distal (58%, 41%). Mere occurrence of a TF motif
in the sequence of an identified region does not guarantee
actual binding of that TF, but is still an indicator of its ag-
gregate relevance for nucleosomal depletion.

Among the suggested TFs in the depleted regions we
found the transcriptional activator and splicing regulator
SPI1 (also known as PU.1), which is regulated by TGF�1
(40), its related factor SPIB as well as MAFB, which may
interact with SPI1 (41). In addition to SPI1, we also found
motifs for other factors belonging to the TF family with
ETS domains, namely ETS1 that acts as a cofactor with
SMAD2/3/4 (22), key players in TGF� signaling, FEV and
ELF5. RUNX1, BRCA1 and HNF4�, all which may inter-
act or cooperate with SMADs (22,42,43), also had over-
represented binding motifs in the sequences of loci with
depleted nucleosomes in TGF� stimulated cells. Coupling
these results with expression changes observed by RNA-
seq after TGF�1 treatment revealed that many displaced
nucleosomes associated with TF motifs were also related
to gene or exon expression changes (Table 2). A striking
61% of intronic proximal depleted nucleosomes with over-
represented TF motifs were associated with exon expres-
sion changes. Surprisingly, as many as 1173 out of 2469 de-
pleted intronic distal loci were associated with gene expres-
sion changes in 306 genes. These loci may reflect temporary
ejection of nucleosomes due to RNAPII passage. We can-
not, however, rule out that these loci are related to alterna-
tive TSSs not considered in our analysis.

Nucleosome depletion allows for HNF4� binding

We have previously generated ChIP-seq data for HNF4� in
unstimulated HepG2-cells (44). Starting from regions where
we had evidence of nucleosome depletion in unstimulated
cells compared to TGF� stimulated cells, we identified 37
candidate regions of HNF4� binding based on the HNF4�

ChIP-seq signal and the presence of the canonical HNF4�
binding motif. For 10 of these regions we validated the
change in HNF4� occupancy using qPCR (Methods; Fig-
ure 7B). This validates not only the nucleosomal changes
at these sites, but also that the rapidly evicted TF is subse-
quently replaced by a nucleosome.

Differentially expressed genes after TGF� stimulation

We calculated RPKM values and fold change after 1 h of
TGF�1 treatment and defined a list of 590 up-regulated
and 195 down-regulated genes (Supplementary Table S3).
Fewer down-regulated genes than up-regulated are in agree-
ment with previous data from genome-wide microarray-
based studies and reflect the fact that the gene repression is
a relatively late response to TGF�1 that peaks after longer
time than 1 h. The up-regulated genes include many with a
neuronal function, including 31 ion channels and ion trans-
porters, 25 olfactory receptors, 12 neurotransmitters and 17
G-protein coupled receptors. Many TFs previously known
to be in the TGF� pathway were among the most up-
regulated genes with the highest fold change observed for
JUND. Our total-RNA approach also allowed us to detect
significant changes for genes without poly-A tails, includ-
ing those for four histone proteins, and significant changes
outside of exons as is shown for SMAD7 in Figure 8A. We
found that in many cases a large number of members of
different protein families were co-regulated. Examples are
three members of the Inhibitors of differentiation family
(ID1/2/3) and 21 secreted polypeptides including members
of the Wnt, FGF, EGF and GDF families of growth factors
previously linked to TGF�.

We selected 25 genes with different levels of change in
expression for TaqMan qPCR validations (Figure 8B). All
up-regulated genes had a positive fold change also in the
qPCR, but some genes with a relatively low level of down-
regulation according to the RNA-seq data did not replicate
(Figure 8C).
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Table 2. Genomic distribution of inferred loci with nucleosomal depletion in TGF� stimulated cells with associated over-represented TF binding motifs
in defined categories according to distance from exons and genes and their association with genes and expression changes

Exonic Intronic proximal Intronic distal Intergenic proximal Intergenic distal

Number of loci 199 2802 2469 245 9859
Percentage of total
loci

43.8 54.3 57.6 14.2 77.7

TFs SPI1, ELF5, FEV,
CTCF, ETS1, Hltf

Hand1::Tcfe2a, SPI1,
NFE2L2, SOX10,
NFATC2, FEV,
Mafb, EBF1, CTCF

MZF1 1–4, PLAG1,
MZF1 5–13, SPI1,
RUNX1, NFATC2,
EBF1, SOX10, FEV,
BRCA1

SPI1, FEV NFATC2, EBF1, Myf,
SPIB, SOX10,
PPARG::RXRA,
Hand1::Tcfe2a, NR2F1,
Gfi, INSM1, SPI1, FEV,
MZF1 1–4, Mafb,
HNF4A, RREB1, En1,
BRCA1

Number of
associated genes

182 2503 1539 279

Number of loci
associated with gene
expression change

45 607 1173 56

TFs associated with
gene expression
change

SPI1, Hltf, ELF5,
FEV, CTCF, ETS1

FEV, SPI1,
Hand1::Tcfe2a,
Mafb, EBF1,
NFE2L2, SOX10,
NFATC2, CTCF

MZF1 5–13,
MZF1 1–4, PLAG1,
EBF1, SPI1, FEV,
NFATC2, RUNX1,
SOX10, BRCA1

SPI1, FEV

Number of
associated genes with
expression change

21 290 306 38

Number of
associated exons

225 9229

Number of loci
associated with exon
expression change

64 1711

TFs associated with
exon expression
change

SPI1, ELF5, ETS1,
CTCF, FEV, Hltf

NFE2L2, FEV,
SOX10,
Hand1::Tcfe2a, SPI1,
Mafb, EBF1, CTCF,
NFATC2

Number of
associated exons with
expression change

30 1498

DISCUSSION

Careful assessments of the chromatin landscape of a cell
and the dynamics of chromatin in response to external stim-
uli are essential in order to understand the involvement
of chromatin in transcriptional regulation. To this end, we
have developed SuMMIt, an accurate method for the pre-
cise placement of nucleosomes or other protein–DNA in-
teractions in a genome from large-scale sequencing data.
We observed superior capability of positioning in terms of
resolution when compared with a simpler procedure using
aggregations of strand-directed extensions of reads to ex-
pected fragment length which is commonly used when visu-
alizing ChIP-seq data and identifying interaction sites.

Assessment of nucleosomal positioning around TSSs of
highly transcribed genes in HepG2 cells showed that the
commonly presented positioning pattern was merely an ar-
tifact of averaging over many loci. Surprisingly many TSSs
lacked well-supported positioned nucleosomes at loci sug-
gested from such average profiles. These results need to be
considered in models of transcription and transcriptional
regulation that rely on nucleosome positioning.

Investigating the nucleosomal locations showed that the
majority of positions were not in agreement between cells in

the same sample indicating distinct, albeit possibly phased,
placements within different cell populations. Examination
of nucleosome phasing among cells revealed that exonic re-
gions contained a much higher fraction of fuzzy, i.e. non-
phased, nucleosomes than phased ones. This was not the
case for intronic or intergenic nucleosomes. High fuzziness
was clearly related to the absence of boundary disfavoring
sequence characteristics such as AT-content. The high GC-
content of exons may thus explain the elevated fuzziness of
contained nucleosomes.

However, exonic regions were more nucleosome dense
than intronic ones. This is in agreement with our previous
findings in resting CD4+ T-cells (6), further supporting our
observation that exonic nucleosome positioning is main-
tained across cell types as well as organisms. Our finding
that nucleosome occupancy in intergenic regions was even
less abundant may be attributed to the presence of sequenc-
ing gaps in the reference genome or to repetitive sequences,
calling for further investigations.

Treatment of HepG2 cells with TGF�1 for 1 h did not
affect the large majority of nucleosomes. Still, surprisingly
many nucleosomes were depleted after TGF�1 treatment
suggesting that chromatin remodeling is an important fac-
tor in TGF� signaling. This novel finding agrees with re-



Nucleic Acids Research, 2014, Vol. 42, No. 11 6933

cent reports on the role of chromatin remodeling factors
as regulators of Smad protein binding to regulatory se-
quences of target genes of TGF� (45). Many inferred deple-
tions were also associated with expression changes. Search-
ing the sequences at depleted nucleosomes for TF motifs
revealed many putative binding sites for TFs and changes
in HNF4� binding over such sites were demonstrated us-
ing ChIP-qPCR. The apparent release of HNF4� bind-
ing sites after nucleosomal depletion caused by TGF� sig-
naling is in full agreement with recent genome-wide ChIP
experiments that defined HNF4� sites as the major loca-
tions where Smad complexes associate with chromatin in
HepG2 cells (46). Many of the other TFs are also relevant
for TGF� signaling and were also related to changes in gene
or exon expression. A large fraction of loci were found in
intergenic regions and were thus difficult to associate with
possible target genes, but may indicate possible novel func-
tions of TGF� signaling at loci distant from RNA-coding
genes. High-throughput extensions of chromatin conforma-
tion capture will be required for assessing their functional
roles.

CONCLUSION

The nucleosome landscape of HepG2 cells has been char-
acterized and was found to display the same fundamentals
as in other cell types and organisms. In addition, we have
found that chromatin itself is very dynamic, as observed af-
ter only 1 h of stimulus, and plays a major role in transcrip-
tional regulation in general and in the interpretation of sig-
naling networks such as TGF� by the genome .

AVAILABILITY

Raw nucleosome and RNA-seq reads have been deposited
in the Array Express/European Nucleotide Archive un-
der accession numbers E-MTAB-1750 and E-MTAB-1819.
The source code for SuMMIt is available from GitHub
under project name ‘summit’ (https://github.com/rhentofs/
summit) as is the latest version of SICTIN under project
name ‘sictin’ (https://github.com/rhentofs/sictin).
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Supplementary Data are available at NAR Online, includ-
ing [1, 2].
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