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MicroRNAs (miRNAs) play important roles in multiple biological processes and have attracted much
scientific attention recently. Their expression can be altered by environmental factors (EFs), which are
associated with many diseases. Identification of the phenotype-genotype relationships among miRNAs, EFs,
and diseases at the network level will help us to better understand toxicology mechanisms and disease
etiologies. In this study, we developed a computational systems toxicology framework to predict new
associations among EFs, miRNAs and diseases by integrating EF structure similarity and disease phenotypic
similarity. Specifically, three comprehensive bipartite networks: EF-miRNA, EF-disease and
miRNA-disease associations, were constructed to build predictive models. The areas under the receiver
operating characteristic curves using 10-fold cross validation ranged from 0.686 to 0.910. Furthermore, we
successfully inferred novel EF-miRNA-disease networks in two case studies for breast cancer and cigarette
smoke. Collectively, our methods provide a reliable and useful tool for the study of chemical risk assessment
and disease etiology involving miRNAs.

M
icroRNA (miRNA) is a newly identified type of small non-coding RNA that downregulates gene
expression at the post-transcriptional level by inhibiting translation of mRNA or degrading
mRNA1–4. As important regulators of at least 60% of all protein-coding gene expression, miRNA net-

works have become an important research field of the systems biology5. miRNA expression profiles can be altered
by toxic environmental factors (EFs), such as radiation6, pollution7, cigarette smoke8, and others. The gene
networks targeted by miRNAs may change with altered miRNA expression. These changes ultimately cause
diverse diseases, such as cancer9, neurological diseases10 and cardiovascular diseases11. Thus, miRNA networks
bridge the toxicology mechanism gap between EFs and diseases, providing useful information for interpreting EF
toxicity and disease etiology12–15. For example, in one study, miR-31 expression in normal respiratory epithelia
and lung cancer cells was induced by cigarette smoke, resulting in lung cancer16. In another study, two well-known
endocrine disrupting compounds, bisphenol A (BPA) and dichlorodiphenyltrichloroethane (DDT), could alter
the miRNA expression profiles of MCF-7 breast cancer cells including estrogen-regulated onco-miR-21. This
displays the toxicology mechanisms of xenoestrogens and the pathology of breast cancer in a new perspective17.
Although investigations of the associations among EFs, miRNAs and diseases are gaining increasing attention
and becoming a hot research field, experimental studies are time-consuming and costly due to the huge number of
EFs available for analysis.

As the number of experimental data has increased rapidly, computational models provide useful tools for
identifying new human health hazards associated with EFs. Computational methods can be divided into classic
quantitative structure-activity relationships (QSARs) and computational systems toxicology approaches. The
latter has advantages against classic QSAR models, such as the OECD QSAR Toolbox (http://www.oecd.org/
chemicalsafety/risk-assessment/theoecdqsartoolbox.htm) and admetSAR18. In our previous study, we developed
predictive toxicogenomics-derived models (PTDMs) to predict chemical-gene-disease associations using the
network-based inference (NBI) algorithm19. Other computational systems toxicology approaches have also been
published to study the disease etiologies caused by proteins20 and chemical metabolism21. However, the toxicology
mechanisms of EF exposure and disease etiology remain a major topic of research today22. The recent appearance
of miRNAs has provided huge opportunities for the development of computational models from a systems
biology perspective, and computational methods have been developed to predict potential associations in
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miRNA related networks. Qiu et al. uncovered a number of biological
patterns of EF-miRNA interactions and proposed a computational
model to predict new EF-disease associations23. Jiang et al. con-
structed cancer specific networks to identify the biological links
between small molecules and miRNAs24. Chen et al. reported a
method named miREFScan to predict disease-related EF-miRNA
associations using a semi-supervised classifier25. Currently, there is
still a great need for feasible, effective and/or efficient models.

In this study, we developed a computational systems toxicology
framework to predict miRNA networks by systematic integration of
EF structure similarity and disease phenotypic similarity. Specially,
we constructed three high-quality bipartite networks: EF-miRNA,
EF-disease and miRNA-disease associations, to build predictive
computational systems toxicology models. High predictive perform-
ance was achieved in 10-fold cross validation. Furthermore, two case
studies were performed to illustrate the predictive capability of the

constructed framework. Collectively, the developed computational
model provides new useful tools to elucidate the mechanisms of
environmental toxicity and disease etiologies at the miRNA level.

Results
Overview of the computational systems toxicology framework.
We proposed a new computational systems toxicology framework
to predict putative EF-miRNA-disease associations. As shown in
Figure 1, three bipartite networks: EF-miRNA association (EMA),
EF-disease association (EDA) and miRNA-disease association
(MDA), were constructed. The EMA network included 1,770
associations between 184 EFs and 395 miRNAs, while the MDA
network consisted of 6,466 associations connecting 569 miRNAs
and 396 diseases. The EDA network contained 320 associations
linking 171 EFs and 115 diseases (Table 1). More detailed infor-
mation is provided in Supplementary Table S1. Next, we used

Figure 1 | Diagram of the computational systems toxicology framework. (a) The original data were collected from the Human MiRNA Disease Database

and miREnvironment Database, and used to construct three bipartite networks: the EF-miRNA association (EMA), EF-disease association (EDA), and

miRNA-disease association (MDA) networks. (b) Three methods, network-based inference (NBI), EF structure similarity-based inference (ES-SBI) and

disease phenotypic similarity-based inference (DP-SBI), were developed to build the predictive model designated the predictive EF-miRNA-disease

association model (PEMDAM). (c) The PEMDAM was built using the intersection of both of the prioritized lists from NBI and SBI. (d) Network

visualization and analysis. EF: the environmental factor; ST: the Tanimoto similarity between two EFs; SS: the phenotypic similarity between two diseases.
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three network-based methods, including network-based inference
(NBI)26, EF structure similarity-based inference (ES-SBI) and
disease phenotypic similarity-based inference (DP-SBI), to build a
predictive EF-miRNA-disease association model (PEMDAM).
Finally, the PEMDAM was validated using 10-fold cross validation
and applied to two case studies on breast cancer and cigarette smoke.

Network characteristics of the known EF-miRNA-disease asso-
ciation network. The MDA network displays the miRNA
signatures of specific diseases, which is helpful for studying the
pathological mechanisms of these diseases. We identified eight
modules with sizes ranging from 31 to 6 based on the MDA
network using the Cytoscape plugin MCODE27 (Figure 2). In these
modules, the common miRNA signatures between diseases were
displayed. For example, as shown in module 1, two psychiatric
diseases, schizophrenia and autistic disorder, shared mir-15a,
which was confirmed to target genes, such as regulator of G-
protein signaling 4 (RGS4), glutamate receptor metabotropic 7
(GRM7), glutamate receptor subunit 3A (GRIN3A) and visinin-like
1 (VSNL1)28. Furthermore, the miRNAs from different families were
depicted in various colors, which illustrates that miRNAs in the same
family share the same important seed-pairing region and conse-
quently tend to have similar functions. The most obvious miRNA
family found is the let-7 family that has four members in module 1
and six members in module 2. In module 1, the four let-7 members
cooperate with each other in three diseases: myelodysplastic syn-
dromes, head & neck squamous cell carcinomas and retinoblasto-
mas. In module 2, all six of the let-7 members play important roles in
inflammation and nasopharyngeal neoplasms. In addition, the
members of the mir-193 family function together in both chronic
atrial fibrillation and myotonic dystrophy, as shown in module 6.
Other miRNA family members, mir-9, mir-19, mir-29, mir-34, and
mir-181, were also found to cooperate in specific diseases.

In addition, the three classical network parameters connectivity
(K), clustering coefficient (C) and betweenness (B) were calculated to
measure the topological features of the EMA, EDA and MDA net-
works, respectively (Supplementary Fig. S1). Most bionetworks are
scale-free networks whose connectivity follows a power-law distri-
bution29. In our bipartite networks, the minority nodes have high
degrees while the majority nodes have low degrees. The disease with
the highest connectivity is breast cancer, which is associated with 287
miRNAs in the MDA network and 26 EFs in the EMA network. The
most studied EFs are radiation, hypoxia and 17beta-estradiol. The
clustering coefficient measures the local density of links and their
tendency to form clusters or communities of nodes. The average
clustering coefficients in our study ranged from 0.087 to 0.206.
Although the EDA network is comparatively smaller than the
MDA network, the component nodes connect closely with each
other, thus their clustering coefficients are relatively high. A node’s
betweenness is defined by the fraction of all of the shortest paths
between all nodes in the network that pass through the node. In all
three networks, only a few nodes have high betweenness values while
many nodes have very low betweenness values. Collectively, the
EMA, EDA and MDA networks are similar to other bionetworks;

however, they are relatively sparse and not well defined, which leaves
plenty of room for research and reveals a need to find new methods to
predict miss-links in the networks.

Performance of the computational systems toxicology model.
miRNA-disease association prediction. The prediction of new
candidate MDAs is the basis for studying individual miRNA roles
in disease pathogenesis. A comprehensive MDA network supported
by experimental evidence was collected from the HMDD and
miREnvironment databases. In the PEMDAM, the predicted list of
new candidate diseases linked to miRNAs was obtained using NBI
algorithm, while the prediction of new candidate miRNAs linked to
diseases was found by combining NBI with DP-SBI. The prediction
of putative diseases linked to miRNAs (NBI_Dis2miR) achieved an
AUC of 0.910. A high AUC of 0.875 was also achieved when
prioritizing new candidate miRNAs linked to diseases using NBI
(NBI_miR2Dis) versus 0.810 by DP-SBI (SBI_miR2Dis). These
results showed the high predictive accuracy of our PEMDAM
toward the prediction of new candidate MDAs.

EF-disease association prediction. New EDA predictions could
enhance our knowledge about how EFs affect our health. To this
end, known EDA data were extracted from the miREnvironment
database. Prediction of EDAs involved prioritizing new candidate
EFs linked to diseases and also prioritizing new candidate diseases
linked to EFs. When prioritizing new candidate EFs linked to dis-
eases, NBI and DP-SBI were applied (NBI_EF2Dis, SBI_EF2Dis). In
addition, NBI and ES-SBI were used to predict new candidate dis-
eases linked to EFs (NBI_Dis2EF, SBI_Dis2EF). Heat maps of EF
structure similarity and disease phenotypic similarity are given in
Supplementary Figure S2. AUC values of 0.789, 0.686, 0.827, and
0.787 were obtained for NBI_EF2Dis, NBI_Dis2EF, SBI_EF2Dis,
and SBI_Dis2EF, respectively. As shown in Figure 3, integrating EF
structure similarity and disease phenotypic similarity with the NBI
algorithm would greatly improve the performance of the PEMDAM.

EF-miRNA association prediction. Carcinogens and drugs are two
major types of EFs. Prediction of new EMAs will help to understand
the underlying mechanisms of xenobiotic toxicity. The PEMDAM
was built based on a known EF-miRNA bipartite network collected
from the miREnvironment database. The prioritization of new can-
didate EFs linked to miRNAs was obtained by NBI (NBI_EF2miR),
while the prediction of new candidate miRNAs linked to EFs was
found by combining NBI (NBI_miR2EF) and ES-SBI (SBI_miR2EF).
NBI_EF2miR achieved an AUC of 0.886, and the prioritization of
new candidate miRNAs linked to EFs obtained an AUC of 0.787 by
NBI, and an AUC of 0.705 by SBI. Collectively, our PEMDAM was
verified to be reliable for predicting new candidate EMAs.

Case study 1: discovery of new risks for breast cancer. Breast cancer
is the most common neoplasm in women and caused 458,503 deaths
worldwide in 200830. Moreover, the breast cancer phenotype is the
most studied disease on the miRNA level31, having the highest
degrees in both the EMA and MDA networks. The dataset used to
build this predictive model contained .300 associations related to
breast cancer supported by ,300 experimental documents.
Prioritizing new potent EFs and miRNAs linked to breast cancer
would improve our knowledge of breast cancer etiology. Thus, the
predicted lists for breast cancer were extracted from the final
prioritized lists from our PEMDAM as a case study, and a sub-
network was constructed with Cytoscape for network analysis.

Six new candidate EFs associated with breast cancer were pre-
dicted based on the common top 10 candidates using both NBI
and DP-SBI methods. Interestingly, all of the predicted EFs (6/6,
100%) related to breast cancer were found to be supported by experi-
mental evidence in the literature (Supplementary Table S2). Due to
research bias, these EFs haven’t been studied with respect to miRNA

Table 1 | Datasets of the known EMAs, MDAs and EDAs used in
this study

Numbers EMAs MDAs EDAs

NE 184 / 171
Nm 395 569 /
ND / 396 115
NA 1770 6466 320

EMAs: EF-miRNA associations; MDAs: miRNA-disease associations; EDAs: EF-disease
associations; NE: the number of EFs; Nm: the number of miRNAs; ND: the number of diseases; NA:
the number of associations.
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expression changes related to breast cancer. However, this informa-
tion can be discovered using the PEMDAM. Information about the
associated miRNAs of the six new candidate EFs prioritized for
breast cancer were extracted from known networks. In total, 40
potential miRNAs for breast cancer were obtained through utilizing
the common candidates of the top 50 lists by both NBI and DP-SBI.
Among the 40 new candidate miRNAs prioritized for breast cancer,

39 (97.5%) miRNAs were validated by databases or newly published
literature (Supplementary Table S3). For these validated miRNAs,
the EFs that can alter their expression were also extracted from the
entire network. The putative lists shown in Supplementary Tables S2
and S3 are very promising for further study. For example, radiation
may alter the expression of 32 breast cancer related miRNAs, and
mir-181b may be another miRNA that plays an important role in the

Figure 2 | Modules obtained from the miRNA-disease association (MDA) network. The first number behind a module code denotes the node number in

that module, while the latter number denotes the edge number, for example, there are 24 nodes and 46 edges in Module 1.
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tobacco related pathology of breast cancer. Figure 4 shows a global
breast cancer network constructed with known and predicted EMAs,
MDAs and EDAs. The network includes 32 EFs and 327 miRNAs
related to breast cancer. In the center of the network, 219 miRNAs
are specific for EFs, thus, these miRNAs may be developed as bio-
markers of breast cancer for people who are exposed to these toxic
EFs. Although the miRNAs in the periphery are not defined to be
associated with specific EFs, they are quite important for understand-
ing the pathology of breast cancer.

Interestingly, some of the EFs are drugs. Studies about associations
among drugs, miRNAs and diseases will help to increase our know-
ledge about polypharmacology and personalized medicine. Breast
cancers were classified into two major subtypes: luminal and basal
subtypes. Here, we tried to make predictions for drug-disease asso-
ciations based on the above two breast cancer subtypes. 5 known
associations among subtypes and specific drugs were collected from
published literatures32,33 and added into our computational frame-
work. Predicted lists were obtained by the top 10 lists using the NBI
algorithm (Supplementary Table S4). As there are not enough known
data about subtypes, predicted lists here need more experiments for
validation. With sufficient compound-disease associations based on
specific disease subtypes collected, our computational approaches
will perform better.

Collectively, the predictive computational systems toxicology
model developed here is valuable and can reliably predict potential
new EF exposure risks and miRNA biomarkers to help increase our
understanding of breast cancer etiology. Moreover, our computa-
tional program showed predictive capability for subtype specific
drug-disease associations.

Case study 2: discovery of new hazards from cigarette smoke.
Approximately 1.3 billion people smoke cigarettes, which results in
5 million preventable deaths per year34. Cigarette smoke contains
many toxic components and has been found to alter a number of
genetic factors, including miRNAs. These miRNAs may be used as
biomarkers for the diagnosis and progression of the diseases of
tobacco smokers35 and help to elucidate the biological mechanisms
of tobacco toxicity. In this study, two of the major carcinogens in
cigarettes: nicotine and benzo(a)pyrene (BaP), were included in
addition to tobacco. In total, 58 miRNAs were found to be
experimentally altered by cigarette smoke and contributed to the

pathology of seven smoking-related diseases. Among them, mir-
128 was strongly affected by cigarette smoke and played an
important role in the host response by regulating the target gene
MAFG36. miR-31 was verified as an oncomiR during lung cancer
progression and its expression can be induced by cigarette
smoke16. miRNA expression changes were also related to maternal
cigarette use during pregnancy and poor fetal outcome37. An
increasing amount of research has been focused on the changes in
miRNA expression caused by tobacco smoke.

In order to further examine how tobacco influences human health
at the miRNA level, predicting new candidate miRNAs and new
disease risks for tobacco use were performed using the PEMDAM.
Because tobacco is a mixture without a specific structure, the pre-
dicted lists were obtained only by NBI. Predicted lists for nicotine
and benzo(a)pyrene were generated by both the NBI and ES-SBI
methods. Supplementary Tables S5 and S6 list the top 5 miRNAs
and top 5 diseases for tobacco prioritized by NBI. In addition, 5
potential miRNAs and 5 potential diseases were prioritized for nic-
otine, while 4 new candidate miRNAs and 4 new candidate diseases
were predicted for benzo(a)pyrene by the common top 10 lists in the
NBI and ES-SBI methods. Related diseases were extracted from the
whole network for the potential miRNAs that were predicted to be
altered by cigarette smoke. Meanwhile, the known MDAs were also
extracted from our model for the candidate diseases prioritized for
cigarette use. Collectively, inferring new miRNA biomarkers could
improve our understanding of the relationships between cigarette
smoke and smoking-related diseases. The predicted associations
among tobacco smoke, miRNAs and diseases (Supplementary
Tables S5 and S6) provide potential candidates for further experi-
mental validation. For example, tobacco was predicted to alter the
expression of mir-155, mir-221, let-7a-1 and mir-126, which play
important roles in lung neoplasm pathology. Although there are
some newly published8,38 studies for tobacco smoke, there are still
not enough data to validate the performance of the PEMDAM. The
entire network of tobacco smoke (Figure 5) was constructed with the
known and predicted EMAs, MDAs and EDAs. This network con-
tains 58 miRNAs and 7 diseases, which were confirmed to be assoc-
iated with cigarette smoke by experimental studies. 14 predicted
EMAs and 14 prioritized EDAs related to cigarette smoke were also
included.

Discussion
miRNA network analysis will open up new avenues for the under-
standing of environmental toxicity and disease etiology. In addition,
miRNA networks have several advantages over other types of bionet-
works. miRNAs are located upstream of gene signal transduction,
thus changes in miRNA expression are more sensitive and occur
before changes in proteins. Furthermore, because miRNAs can be
easily detected in circulation, they are suitable as sensitive indicators
of toxic exposure or novel biomarkers for the prevention, diagnosis
and progression of EF-related diseases39.

Our predictive computational systems toxicity model obtained a
high accuracy in prioritizing the potential associations among EFs,
miRNAs and diseases. This high performance is likely due to three
factors: the data quality, the design of the algorithm and the workflow
strategy. Firstly, the data used to build the predictive model were
obtained from highly reliable databases and supported by experi-
mental data40,41. In network analysis, including topological features
and modules, it is necessary not only to have an overall understand-
ing of the dataset used but also to ensure that these known networks
conform to the inherent nature of bionetworks, which are small
world42, scale-free29. These network topological characteristics are
of great importance for the algorithms we used. Secondly, the NBI
and SBI algorithms used in this paper were well defined and have
already been proven to be successful for predicting drug-target inter-
actions26,43 and chemical-gene-disease associations19. Only two mod-

Figure 3 | The receiver operating characteristic (ROC) curves of NBI and
SBI. ROC curves were generated by 100 simulations of 10-fold cross

validation. miR2Dis is the abbreviation for the predicting putative

miRNAs to diseases, and the other abbreviations can be deduced similarly.

NBI: network-based inference; SBI: similarity-based inference, including

ES-SBI (miR2EF and Dis2EF) and DP-SBI (miR2Dis and EF2Dis).
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els were needed to predict the associations in one bipartite bionet-
work, thus the computational workload was greatly reduced. Last but
not least, the PEMDAM has the advantages of both NBI and SBI
because the final prediction results were obtained by utilizing the
common lists of both NBI and SBI. For NBI, only the network topo-
logy structure similarity was needed, which was easily obtained,
while SBI was only applied when specific similarities like structural
similarity and phenotypic similarity are available. However, SBI per-
formed better than NBI in small networks, such as the EDA network.

Thus, using the common prioritized lists made the predicted results
more reliable than using a single algorithm.

There are some limitations and room for improvement in our
current methods. First, the present model can only predict new asso-
ciations among known EFs, miRNAs and diseases. Our current
model is unable to predict brand new EFs, miRNAs and diseases
without having known association information in the training set.
This could be improved by adding similarities to homogeneous
nodes in a bipartite network. Based on its similarity to other nodes,

Figure 4 | The discovered EF-miRNA-disease association network for breast cancer. Breast cancer is shown as a hexagon. The network includes the

associations between breast cancer and 287 known miRNAs, 26 known EFs, 40 predicted miRNAs and 6 predicted EFs as well as the known associations

between these miRNAs and EFs.
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the initial resource could be defined to include nodes without known
links. Furthermore, our methods focused on nodes and their rela-
tionships in bipartite networks. Thus, it was a simplified model that
ignored detailed mechanisms of interaction, which differs from real
and complicated biological systems. EFs alter miRNA expression in
directional ways, positively or negatively. There have also been
inconsistencies in miRNA expression changes under the same
experimental conditions. For example, in MCF-7 (ER1) breast can-
cer cells, oncomiR-21 was found to be down-regulated by estra-
diol44,45 in one study, but was found to be up-regulated by estradiol
in another46. Expression profiles of the same miRNA can also vary
across different samples of the same disease. As the underlying
mechanisms are revealed, a directional network of interactions
among EFs, miRNAs and diseases will be up for consideration.
Finally, there is also room to improve our algorithm in handling
small networks or sub-networks. The similarity of miRNAs, for
example, their functional similarity47, could be integrated into SBI.

All of the methods applied in this paper are data-driven
approaches that depend on the quantity and quality of the evalu-
ation datasets48 for good performance. Currently, the known
information about miRNA networks, especially involving envir-
onmental toxicity, is notably sparser than other networks. As more
experiments are carried out, there will be enough data for the
external validation and literature verification of further case stud-
ies. It will then be possible to compare different predicted miRNA
results using various computational programs49. As the experi-
mental dataset becomes enriched, computational systems toxico-
logy programs will perform better, resulting in the development of
experimental studies. We generated a comprehensive prediction
list, the ‘PEMDAM lists’, that includes all of the potential
MDAs, EDAs and MDAs found by our computational program.
Researchers interested in EF-miRNA-disease associations can
download the profile for further experimental validation (www.
lmmd.org/database/pemdam).

Figure 5 | The discovered EF-miRNA-disease association network for Tobacco, nicotine and benzo(a)pyrene (BaP). Tobacco, nicotine and BaP are

shown as magenta hexagons. The network contains 58 known miRNAs, 7 known diseases, 12 predicted miRNAs, 8 predicted diseases, and the known

associations between these miRNAs and diseases.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5576 | DOI: 10.1038/srep05576 7

www.lmmd.org/database/pemdam
www.lmmd.org/database/pemdam


Methods
Construction of the miRNA networks. Data preparation. Three association datasets,
EMA, EDA and MDA, were collected from the miREnvironment database40

(September, 2012) and the Human MicroRNA Disease Database (HMDD)41

(September, 2012). Only data tested on humans was kept. Because the same EFs,
diseases or miRNAs might have different names in the databases, all of the EF and
disease terms were annotated with the most commonly used vocabularies of the
Unified Medical Subject Headings (MeSH)50, and the miRNAs were named according
to miRBase51. After removing duplicated data, the remaining data were integrated to
construct the network.

Network construction. The complete network of EFs, miRNAs and diseases was
transformed into three bipartite networks: EMA, EDA and MDA. The three networks
were further transformed into quantitatively descriptive matrices. The EF set was
denoted as E 5 {e1,e2,…,en}, while M 5 {m1,m2,…,mn} and D 5 {d1,d2,…,dn}
represented the miRNA and disease sets, respectively. The EMA bipartite pairs were
then represented as N(E,M,A), where A 5 {aij: eigE, mjgM}, the EDA network pairs
were represented as N(E,D,A), where A 5 {aij: eigE, djgD}, and the MDA network
pairs were represented as N(M,D,A), where A 5 {aij: migM, djgD}. In this way, the
EMA, EDA and MDA bipartite networks were represented as n 3 m adjacent mat-
rices, where aij 5 1 if direct experimental data exists in the above two databases, and 0
otherwise.

Measurement of the network topology. In order to gain a full understanding of the
constructed networks, the Cytoscape plugin MCODE27 was applied to define the
modules in the MDA network, and NetworkX (http://networkx.lanl.gov/, version
1.8.1) was used to calculate three classical topological features, connectivity (k),
clustering coefficient (C) and betweenness (B), for the EMA, EDA and MDA
networks.

Method development. Network-based inference (NBI). Network-based inference is
an algorithm that allocates known initial resources to obtain predictive lists. Figure 1
shows a simple EMA example to illustrate how to use this network-based inference
algorithm to prioritize unknown miRNAs linked to EFs. The initial resources for a
given EF ei in the bipartite network N (EMA) are located in the miRNAs, which are
associated with ei. Each miRNA averages its resources to all of its neighbors, and they
immediately redistribute these resources to every neighboring miRNA. Finally, the
miRNAs that are not connected with ei are assigned the end resources, which is their
score. In theory, the higher score a candidate miRNA gets, the more likely it is to be
associated with ei. The initial resources of aij between ei (the yellow triangle) and mj

(the green circle) was found as follows: by denoting F0n3 m as the initial resource and
setting F0ij 5 aij, Rn3 n as the total resources (degrees) of each miRNA and
R~diag(

Xm

j~1
a1j,
Xm

j~1
a2j, . . . ,

Xm

j~1
anj), Hm3 m as the total resources of each

EF and H~diag(
Xn

i~1
ai1,
Xn

i~1
ai2, . . . ,

Xn

i~1
aim), the resource matrix was

obtained as F1n3 m, and F1 5 F0Wm3 m or FT
1 ~FT

0 Wn|n , where the transfer matrix
Wm3 m 5 (F0H21)T(R21F0) or Wn3 n 5 (R21F0)(F0H21)T

.

Mathematically, an algorithm to predict other associations among the EFs,
miRNAs and diseases in the EF-miRNA, EF-disease and miRNA-disease partite
networks can be similarly deduced.

EF structure similarity-based inference (ES-SBI). The hypothesis underlying this
method is that if an EF ei associates with miRNAs or diseases by experimental
evidence, then other EFs similar to ei tend to be linked with these ei-associating
miRNAs or diseases. For an unknown EMA, the linkage between ei and mj is deter-
mined by the predictive scoring function in formula (1). The association-predicting
score for unknown EDAs is shown in formula (2).

ME
ij ~

Pn

l~1,l=i
ST (ei,el)alj

Pn

l~1,l=i
ST (ei,el)

ð1Þ

DE
ij~

Pn

l~1,l=i
ST (ei,el)alj

Pn

l~1,l=i
ST (ei,el)

ð2Þ

ST(ei,el) indicates the Tanimoto similarity of the 2D chemical structures between
EFs ei and el. Detailed information about Tanimoto similarity can be found in
Willett’s work52. aij is adjacency matrix of N(E,M,A) in ME

ij , and N(E,D,A) in DE
ij . The

structures of the EFs were transformed to MACCS keys using the OpenBabel soft-
ware53. However, a small portion of the EFs could not be identified with structures, for
example, pathogens, radiation and pollutants. The prediction lists for these cases were
generated only by NBI.

Disease phenotypic similarity-based inference (DP-SBI). This method was designed
based on the hypothesis that diseases in the same phenotypic classification tend to be
associated with similar EFs and miRNAs. The phenotypic similarity of two diseases
was measured by finding their relative positions in the MeSH disease directed acyclic

graph (more details are given in Wang et al.47) Formulas (3) and (4) describe the
predicted scores of the unknown EDAs and MDAs, respectively, where Ss(di,dl)
denotes the phenotypic similarity between two diseases di & dl and aij represents the
adjacency matrix of N(E,D,A) in ED

ij , and N(M,D,A) in MD
ij .

ED
ij ~

Pn

l~1,l=i
Ss(di,dl)alj

Pn

l~1,l=i
Ss(di,dl)

ð3Þ

MD
ij ~

Pn

l~1,l=i
Ss(di,dl)alj

Pn

l~1,l=i
Ss(di,dl)

ð4Þ

Performance assessment. Performance of all the models was evaluated by 10-fold
cross validation. For each dataset, all links in the EMA, EDA and MDA networks were
randomly divided into 10 parts of equal size. Each part was used as the validation set
in turn, while the remaining nine parts served as the training set. To eliminate the
error caused by separating datasets, all of the results were produced by a simulation of
100 independent tests, and the receiver operating characteristic (ROC) curves were
used. Due to random partitioning of the data, some EFs, miRNAs or diseases only
existed in the test set without seed information in the training set. Links among these
nodes were not considered in the performance assessment.

Network visualization and analysis. The final predicted associations among EFs,
miRNAs and diseases were obtained by the common prioritized lists of NBI and SBI.
To visualize the relationships among the EFs, miRNAs and diseases, networks were
constructed using Cytoscape 3.054 with the known associations generated by data
integration and the predicted links found by the PEMDAM. The associations
regarding breast cancer and cigarette smoke were then extracted to build the
subnetworks during the case study analysis.
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