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Abstract 

Background:  Insertion and deletion (indel) is one of the major variation types in human genomes. Accurate anno‑
tation of indels is of paramount importance in genetic variation analysis and investigation of their roles in human 
diseases. Previous studies revealed a high number of false positives from existing indel calling methods, which limits 
downstream analyses of the effects of indels on both healthy and disease genomes. In this study, we evaluated seven 
commonly used general indel calling programs for germline indels and four somatic indel calling programs through 
comparative analysis to investigate their common features and differences and to explore ways to improve indel 
annotation accuracy.

Methods:  In our comparative analysis, we adopted a more stringent evaluation approach by considering both the 
indel positions and the indel types (insertion or deletion sequences) between the samples and the reference set. In 
addition, we applied an efficient way to use a benchmark for improved performance comparisons for the general 
indel calling programs

Results:  We found that germline indels in healthy genomes derived by combining several indel calling tools could 
help remove a large number of false positive indels from individual programs without compromising the number of 
true positives. The performance comparisons of somatic indel calling programs are more complicated due to the lack 
of a reliable and comprehensive benchmark. Nevertheless our results revealed large variations among the programs 
and among cancer types.

Conclusions:  While more accurate indel calling programs are needed, we found that the performance for germline 
indel annotations can be improved by combining the results from several programs. In addition, well-designed 
benchmarks for both germline and somatic indels are key in program development and evaluations.
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Background
Insertion and deletion (indel) is the second-largest 
genetic variation type in human genomes. On average, 
one healthy human genome differs from the reference 
genome at about 566,000 sites with indel lengths ranging 

from 1 to 1000 base pairs (bps) [1]. Typically, small indels 
are termed for insertions/deletions of shorter than 50 bps 
while longer ones are considered as structural variants 
(SVs) [2, 3]. Besides contributing to genetic variations in 
healthy population, deleterious indels in both coding and 
non-coding regions can lead to various types of diseases. 
For example, coding indels were identified in breast can-
cer development genes, including AKT1, BRCA1 and 
CDH1, and the fragile X syndrome is caused by a large 
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insertion in 5′UTR of the FMR1 gene [4, 5]. Several 
databases with annotated indels have been developed to 
document these variants, including dbSNP, dbVar, and 
COSMIC (the Catalogue Of Somatic Mutation In Can-
cer) [6–8].

Detection of genomic variations including indels rep-
resents one of the most important aspects in human 
genome analysis. Mills et  al. reported 2 million unique 
indels in their updated analysis of 79 genomes in 2011 [9, 
10]. The indel set from these 79 genomes is commonly 
used as a reference for indel analysis since these indels 
were annotated with Sanger sequencing data, which 
reported a 97.2% validation rate [10]. There are also stud-
ies focused on somatic indels in cancer genomes. For 
example, Niu et al. analyzed 4201 non-frame-shift indels 
and identified more than 6000 mutation clusters on pro-
tein 3-dimentional (3D) structures across 19 cancer types 
[11]. Besides somatic coding indels, non-coding indels 
also play important roles in cancer genomes. Imielinski 
et  al. found that non-coding somatic indels tend to be 
enriched in lineage-defining genes in multiple cancer 
genomes [12].

Next-generation sequencing (NGS) technology 
has reduced the sequencing cost and produced more 
genome sequence data. A number of programs have been 
developed for both germline indel and somatic indel 
identification from NGS data [25–27]. Current indel 
calling programs use different algorithms to distinguish 
sequence errors or alignment errors from real indel vari-
ations [28]. General indel calling programs are classified 
into five major groups: alignment-based methods, split 
read mapping methods, paired end mapping methods, 
haplotype based methods, and machine learning-based 
approaches [25, 28]. A list of indel calling programs with 
variant types that can be detected and the correspond-
ing algorithms are shown in Table 1 [13, 15–20, 22–24]. 

Alignment-based methods, including Dindel, GATK_
UG, SAMTools and Varscan, use information from the 
mapping step and identify indels with statistical models 
[25]. These alignment-based programs differ in the statis-
tical models and processing details [18]. The indel sizes 
from these alignment-based programs are constrained by 
the length of sequence reads. Consequently the medium 
sized indels and large insertions are hard to detect since 
the workflow relies on the initial alignments [28]. Split 
read mapping methods, such as Pindel, rely on the dis-
cordant reads in the alignment step and can be used to 
annotate medium sized indels. These methods usually do 
not use statistical approaches to filter variants [16]. The 
haplotype-based methods, such as GATK_HC and Platy-
pus, collect candidate haplotypes and identify the vari-
ants based on the realignment results on haplotypes [25]. 
Paired-end read mapping methods compare the real and 
expected distances between paired-end reads to iden-
tify potential indels. However the exact indel sequences 
are usually hard to annotate. They are considered more 
accurate for medium sized indels but not for small indels. 
Machine learning methods need training data to predict 
true indels [25, 28]. Due to these issues or constraints, 
paired-end read mapping and machine learning-based 
methods are not included in this study.

Besides general indel calling programs, there are tools 
designed for detecting germline/somatic variants from 
cancer genomes. Almost all somatic indel calling pro-
grams can detect single nucleotide variants, some of 
them can also detect SVs [29]. Majority of these pro-
grams use tumor-normal paired sample data to iden-
tify somatic variants, while others can predict with only 
tumor samples [30]. For programs based on the tumor-
normal paired data, the general core algorithms include 
joint genotype analysis, allele frequency analysis, heuris-
tic threshold, haplotype analysis, and machine learning 

Table 1  A list of indel calling programs

Programs General /somatic Type of variants Core algorithms Notes and references

Dindel General Indel Alignment-based Bayesian approach [13]

GATK_HC General SNP + Indel Haplotype-based Collection of candidate haplotypes [14]

GATK_UG General SNP + Indel Alignment-based Bayesian genotype likelihood model [15]

Pindel General Indel Split read mapping A pattern growth approach [16]

Platypus General SNP + Indel Haplotype-based Collection of candidate haplotypes [17]

SAMTools General SNP + Indel Alignment-based Bayesian model [18]

Varscan General SNP + Indel Alignment-based Heuristic method [19]

GATK Mutect2 Somatic SNP + Indel Allele frequency Re-assembly of haplotypes methods [20, 21]

Strelka Somatic SNP + Indel Allele frequency Bayesian approach [22]

Strelka2 Somatic SNP + Indel Allele frequency A mixture model [23]

Varscan2 Somatic SNP + Indel Heuristic methods Heuristic and statistical methods [24]
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[30]. In this study, we selected Varscan2, GATK Mutect2, 
Strelka and Strelka2 for comparative somatic indel analy-
sis based on their good performances reported by several 
groups [21, 29, 31–34] (Table 1). In general, performance 
evaluations for somatic indel identification can be done 
with simulation data and/or real sequence data [31, 33]. 
While the simulation data can help test different features 
such as variant allele fractions [33], comparison of indel 
annotation methods with real NGS data can provide 
useful guidance for their application in variant analysis 
in disease genomes. Even though currently there is no 
gold standard for evaluating somatic indel variants from 
cancer genomes, several existing databases can provide 
some useful information [31]. For instance, the annotated 
indels in GATK Resource Bundle and dbSNP can be used 
to check false positive cases and indels in COSMIC can 
be used to evaluate positive cases, respectively [7, 8, 31, 
35]. However, caution should be taken when using these 
databases for evaluation purpose as both databases con-
tain only partial data.

Accurate annotation of indels is of paramount impor-
tance in studying genetic variations and in identifying 
disease associated indels [36–38]. To test the consistency 
or differences among the general indel calling programs, 
Hasan et  al. performed a comparative analysis by using 
the sequences of chromosome 11 from 78 samples of the 
1000 Genomes Project and showed that 78–89% of the 
benchmark indels are not identified in a sample by any 
program and only a very small number of indels are iden-
tified by all seven programs [25]. However, the results 
do not accurately reflect the performance of each pro-
gram as well as the common indels predicted from dif-
ferent programs. First, they compared the indels from 
individual genome samples to the pooled indel dataset 
of 79 genomes. Rare and low frequency variants account 

for a large proportion of indels and the pooled indel set 
includes all of them, but an individual sample may con-
tain only a small subset of the pooled indel set [1, 39, 
40]. Figure 1a shows a schematic example to explain the 
potential pitfalls of comparing individual samples with a 
pooled reference set from multiple samples. In this study 
we applied a pooled-sample based method for more 
accurate comparative analysis since indels from mul-
tiple samples from one program are pooled together to 
compare with the pooled benchmark indels (Fig. 1b). In 
addition, we expanded the comparison with the whole 
genome sequences instead of only one chromosome.

Unlike SNPs, indels are more complicated in that there 
are two different indel types, insertion and deletion. 
Moreover, for a coding indel, it can be a frame-shift (FS) 
or non-frame-shift (NFS) indel. Consequently, the way to 
compare the indels can affect the number of true posi-
tives and false positives. Previous studies used a position 
range of i ± 5 (where i is the indel position) to determine 
if an indel is the same one as that in the reference set [41]. 
However, this approach has several disadvantages. First, 
the indel types, insertion or deletion, are not consid-
ered separately. An insertion and a deletion at the same 
genome position are two different indels, not the same 
indel. Secondly, for coding indels, 1  bp difference in a 
position may result in a totally different protein sequence 
due to an open reading frame shift. In light of these 
issues, we adopted a modified approach by considering 
indel types (insertion or deletion) as well as positions, 
which is especially important in germline indel analysis.

Methods
Datasets
We used the same dataset as Hasan et al., which consists 
of 78 samples from the 1000 Genomes Project (https​

Fig. 1  Comparison of different methods regarding false negative indels. A schematic comparison between single-sample based method (a) and 
pooled-sample based method (b) with a pooled reference benchmark. FN: false negative

https://www.internationalgenome.org/
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://www.inter​natio​nalge​nome.org/) covering five super 
populations (EUR, EAS, SAS, AMR, and ARF) and 26 
sub-populations (three from each sub-populations) to 
evaluate general indel calling programs [25]. The bench-
mark is a set of small indels identified by Mills et al. [10]. 
For somatic indel program evaluation, we used a total of 
30 tumor-normal paired data, including 10 colon can-
cer, 10 breast cancer, and 10 bladder cancer samples. The 
cancer genome sequencing data were downloaded from 
TCGA with dbGap ID phs000178.v11.p8. A total of 4970 
indels from the latest version of COSMIC (v90) were 
downloaded for somatic indel evaluations [8].

Evaluation methods
For germline indels from healthy genomes, they are 
mainly genetic variants with the type and position of 
the indels presumably conserved in sub-populations or 
super populations. In other words, they are less random 
compared with somatic variants and usually do not lead 
to diseases. Therefore, when evaluating germline indels 
from healthy genomes, we only counted the indels that 
are located at the same positions with the same insertion 
or deletion sequences between the samples and the refer-
ence as positive identifications. Since somatic indels from 
cancer genomes are less conserved than the germline 
indels, we used the typical range of i ± 5 in positions 
along with the indel types, either insertion or deletion, 
for comparative evaluation.

Recall, precision and F measure are calculated for per-
formance evaluations (Eqs. 1–3):

 where TP represents true positive, FP represents false 
positive, and FN represents false negative. As mentioned 
in the Background section, for germline indels, the TP, FP 
and FN are identified by a pooled sample-based method 
(Fig.  1b). For somatic indel evaluation, the predicted 
indels are compared with the annotated indels in the 
COSMIC database as potential somatic indels (the indel 
types are classified using the indel labels downloaded 
from COSMIC). To identify potential false somatic 
indels, we compared the predictions with the indel set 
from the GATK Resource Bundle, which is considered 
as a standard germline indel set for human reference 
GRCh38 [35].

(1)Recall =
TP

TP + FN

(2)Precision =
TP

TP + FP

(3)F =
2× Recall × Precision

Recall + Precision

Results
General indel calling programs
Overall analysis of the predicted indels
The number of true positive and false positive indels 
from healthy genomes by different programs is listed in 
Table  2. SAMTools calls the largest number of indels, 
with Platypus ranks the second. The number of the TP 
indels varies by programs. Dindel has the highest recall 
(0.78) but with a low precision (0.24). Varscan, which 
calls the least number of indels, has the highest precision 
(0.56) as well as the best F value (0.48). GATK_UG and 
GATK_HC have the second-best F value with relatively 
good recall and precision.

Among all the programs, GATK_HC calls the long-
est indel with 616 bps. The length distribution is shown 
in Fig.  2a (percentages) and Additional file  1: Table  S1 
(counts) with the benchmark as a reference. SAMTools 
has the largest number of short indels for length between 
1 and 20 bps, which is not surprising since it calls much 
more indels than any other programs (Table 2 and Addi-
tional file 1: Table S1). Pindel predicts the largest number 
of indels longer than 50 bps, largely because Pindel uses 
an algorithm that tends to call longer indels. In terms of 
mid-length indels between 20 and 50 bps, GATK_HC has 
the largest number in each category. Percentage-wise, 
Platypus, Varscan, GATK_UG and SAMTools predict 
relatively more short indels compared to other three pro-
grams. We also compared the programs in terms of indel 
types, insertion and deletion (Fig.  2b and Additional 
file  1: Table  S2). SAMTools has a higher percentage of 
deletion types while GATK_UG has more insertion types 
in terms of the ratio when compared with the bench-
mark. Dindel has the most similar insertion/deletion 
ratio (56.2%/43.8%) to the benchmark (57.6%/42.4%) and 
it has the highest TP rate for both insertion and deletion 
types (Additional file 1: Table S2).

In coding regions, indels can be grouped into FS and 
NFS types. An NFS indel consists of a multiple of three 
base pairs, introducing an insertion or deletion of one 

Table 2  Performance of different general indel annotation 
programs

The bold represents the highest value in each column

Tool TP indels FP indels Recall Precision F

Varscan 533,101 424,740 0.42 0.56 0.48
GATK_UG 884,763 1,802,477 0.69 0.33 0.45

GATK_HC 948,738 2,026,903 0.74 0.32 0.45

Pindel 446,622 619,846 0.35 0.42 0.38

Dindel 994,947 3,097,117 0.78 0.24 0.37

Platypus 941,046 3,403,565 0.74 0.22 0.33

SAMTools 930,860 15,083,658 0.73 0.06 0.11

https://www.internationalgenome.org/
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or more amino acids while keeping the other part of 
the protein sequence unchanged. In contrast, an FS 
indel changes the reading frame starting from the site of 
insertion/deletion, which can produce different protein 
sequences from the indel position. FS indels can also lead 
to premature termination and the mRNA molecules can 
be subjected to a surveillance pathway called non-sense-
mediated mRNA decay (NMD) [42]. The proportion of 
NFS and FS coding indels from each program is shown 
in Fig. 2c and Additional file 1: Table S3. GATK_UG, Pin-
del and Varscan show similar FS/NFS ratios to that of the 
benchmark while Pindel, SAMTools, and Platypus have a 
much higher percentage of FS coding indels.

Pare‑wise comparisons
To check the similarity or difference of indels predicted 
by two different programs, the overlapped indels from 
two programs are compared with the benchmark indels. 
The recall and precision values are presented in Table 3, 
showing a trade-off between recall and precision. When 
a program is paired with Varscan or Pindel, it usually 
achieves high precision with smaller number of FPs while 
having low recall at the same time since these are the two 
programs that call the lowest number of total indels. The 
indels from Varscan, GATK_UG and Dindel are highly 

similar. About 94% of indels from Varscan are also anno-
tated by GATK_UG (898,482 out of 957,841) or Dindel 
(903,756 out of 957,841).

Combination of indels from different programs
The results from individual programs have shown that 
there are a large number of false positive indel pre-
dictions from the NGS data (Table  2). While false 
negatives may represent missed opportunities, false 
positives can result in wrong conclusions and are costly 
in real applications. We hypothesize that by selecting 
the consistent indel annotations from different pro-
grams, we may be able to remove majority of the false 
positives while retaining most of the true positives. The 
underlying idea is that in general, unlike false positives, 
true indels can be identified by different prediction 
algorithms. The ones that are program specific have 
a higher probability to be false positives. In a previ-
ous study, Hasan et  al. showed that only a very small 
number of indels were called by all seven programs 
[25]. But as discussed in Background, that conclusion 
is a result from their approach by comparing the indels 
from individual samples to the pooled benchmark data-
set, which may produce a large number of false nega-
tives. We adopted a pooled sample method for a more 

Fig. 2  Comparisons of indels from seven general indel calling programs. a Indel size distribution. b Indel type distribution. c Coding indel type 
distribution. FS frame shift, NFS non-frame shift

Table 3  Pair-wise comparison between general indel calling programs

Recall Varscan GATK_UG GATK_HC Pindel Dindel Platypus SAMTools

Precision

Varscan – 0.40 0.41 0.30 0.41 0.39 0.36

GATK_UG 0.57 - 0.65 0.33 0.66 0.64 0.60

GATK_HC 0.59 0.43 – 0.34 0.72 0.68 0.65

Pindel 0.62 0.59 0.57 – 0.34 0.33 0.31

Dindel 0.58 0.41 0.38 0.56 – 0.70 0.68

Platypus 0.57 0.34 0.38 0.59 0.35 – 0.66

SAMTools 0.55 0.40 0.40 0.60 0.27 0.29 –
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meaningful comparison in this study. Figure 3 shows a 
schematic example to explain the differences by count-
ing the overlaps or consistent indels between the two 
approaches. Among the seven indels called by both 
caller 1 and caller 2 with the pooled sample method, 
five of them are true positive indels. However, the sin-
gle sample approach only identifies two true positives, 

resulting a very low TP rate from the overlapped indels 
(Fig. 3).

Table  4 shows the averages of TP indels, FP indels, 
recall, precision and F values for all possible combina-
tions including individual programs. The results from 
Hasan et  al.  show that only a small proportion of TP 
indels (1.51%) are called by all seven programs [25]. With 
our pooled sample approach, we found that 476,253 
indels are called by all seven programs. Among these 
indels, 326,184 can be found in the reference set, repre-
senting a TP rate of 25.6%.

Among all the possible combinations, including the 
individual programs, a five tool combination of GATK_
UG, GATK_HC, Pindel, SAMTools and Dindel has the 
highest F value (0.53). Dindel has the highest recall (0.78, 
Table  2) and a combination of three tools (GATK UG, 
Pindel and SAMTools) has the highest precision (0.69). 
On average, a combination of 2 or 3 programs has the 
highest average F values (Table 4). Table 5 lists top three 
combinations of two and three programs ranked by F val-
ues. As shown in Tables 4 and 5, adding more programs 
can remove more false positives than true positives and a 

Fig. 3  Comparison of different methods for common indels from different programs. A schematic comparison between single-sample based 
method (a) and pooled-sample based method (b) with a pooled reference benchmark. Green represents true positives. Red represents false 
positive predictions. Blue blocks are the benchmark indels

Table 4  Performance comparison of  different program 
combinations (showing average values)

# of Tools TP indels FP indels Recall Precision F

1 811,440 3,779,758 0.64 0.31 0.37

2 639,772 899,660 0.51 0.48 0.45

3 528,467 496,588 0.41 0.56 0.45

4 450,280 322,289 0.37 0.60 0.44

5 394,064 230,561 0.31 0.64 0.41

6 354,111 179,699 0.28 0.67 0.38

7 326,184 150,069 0.26 0.68 0.37

Table 5  Top 3 indel annotation program combinations (2 programs and 3 programs)

F rank Combination of 2 tools TP FP Recall Precision F

1 GATK_UG + GATK_HC 822,516 1,107,610 0.65 0.43 0.51

2 GATK_UG + Dindel 839,132 1,226,226 0.66 0.41 0.50

3 GATK_HC + Platypus 871,596 1,403,334 0.68 0.38 0.49

F rank Combination of 3 tools TP FP Recall Precision F

1 GATK_UG + GATK_HC + Dindel 804,060 978,793 0.63 0.45 0.53

2 GATK_UG + GATK_HC + SAMTools 725,419 768,246 0.57 0.49 0.52

3 GATK_UG + GATK_HC + Platypus 778,439 991,540 0.61 0.44 0.51
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combination of three programs seems to have a good bal-
ance of recall and precision. Figure 4 shows an example 
of indels called by 3 programs: GATK_UG, GATK_HC 
and Dindel. There are large overlaps among the TP indels 
either for all indels (Fig.  4a) or for coding indels only 
(Fig. 4b), while the disagreement among the FP indels are 
much bigger. Therefore, if a low number of false positives 
is preferred in an application, results from more pro-
grams can be used and combined.

Somatic indel calling programs
Unlike general indel calling approaches, the majority of 
somatic indel annotations need both normal and dis-
eases genome samples and thus are more complicated. 
Different methods or algorithms have been developed 
for somatic indel identifications (Table  1). In this study, 
we applied four somatic indel calling programs to three 
types of cancers. As discussed in Background, there are 
no benchmark sets available to assess the true positive 
or false positives for cancer somatic genome indels. But 
for comparison purposes between programs and can-
cer types, we can use the COSMIC database with anno-
tated somatic cancer indels and GATK Resource Bundle 
as potential false positives (or germline indels) to see 
how much they agree or differ with each other. Since the 
COSMIC indel set represents only a small portion of real 
cancer population indels, a small number of indels in 
COSMIC does not necessarily indicate a large number of 
false positives from a program. Similarly, an indel found 
in the germline indel set does not necessarily mean it is 
a true false positive since there is a single cancer sample 
vs. pooled germline samples problem. Nevertheless, the 
comparative analysis can provide some insights about 
these somatic indel calling programs and the similarity or 
differences among different cancer types.

The number of potential true positive and false posi-
tive indels called by four programs are shown in Table 6. 
GATK Mutect2 calls the largest number of indels 

independent of cancer types and it has the largest over-
lap with the COSMIC indels and relatively low number 
of potential germline indels among the four programs. 
Strelka2 has the smallest numbers of indels for bladder 
and breast cancer types while Varscan2 calls the low-
est number of indels in colon cancer. In terms of cancer 
types, colon cancer has more indels than the other two 
cancer types. The number of indels in bladder cancer 
is much less than the other two types. Taken together, 
GATK Mutect2 has a better coverage of somatic indels 
in all three cancer types with relatively low number of 
germline indels, or potential false positives. Strelka has 
the second largest number of total indels and COSMIC 
indels, however, the number of potential germline indels 
is also high.

As for the length distribution of the somatic indels, 
GATK Mutect2 calls the longest somatic indel (245 bps) 
in a cancer genome and identifies more longer indels 
(Fig. 5a and Additional file 1: Table S4). It has 202 indels 

Fig. 4  Overlapped indels by GATK_UG, GATK_HC and Dindel. a All indels; b coding indels only

Table 6  Performance comparison of  different somatic 
indel annotation programs

Tools Total indels Cancer type COSMIC 
indels

Potential 
germline indels 
and rate

Strelka 2,186 Bladder 5 884 (0.40)

5,521 Breast 5 2536 (0.46)

14,174 Colon 11 5227 (0.37)

Strelka2 867 Bladder 0 225 (0.26)

2162 Breast 0 768 (0.36)

9920 Colon 2 3583 (0.36)

Varscan2 1804 Bladder 2 438 (0.24)

3796 Breast 4 879 (0.23)

6286 Colon 8 831 (0.13)

Mutect2 19,124 Bladder 10 761 (0.04)

44,373 Breast 16 1708 (0.04)

30,503 Colon 31 4971 (0.16)
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longer than 50 bps. However, no other programs iden-
tify any indels of length 50 or more. The length distri-
butions in terms of cancer types also vary. Even though 
colon cancer has the largest number of indels, breast can-
cer has more longer indels (Fig. 5b and Additional file 1: 
Table S4).

In healthy genomes, there are more germline dele-
tions (57.75%) than germline insertions (42.25%) (Addi-
tional file  1: Table  S5) while in cancer indel database 
COSMIC, the ratios are slightly different with 34.39% of 
insertions and 52.00% of deletions, with the remaining 
cases assigned as complex indels (13.61%) (Additional 
file 1: Table S5) [39]. Except for GATK Mutect2 in blad-
der and breast cancer genomes, all other programs 
detect relatively low number of insertions. It is not 
clear if cancer genomes have relatively fewer insertions 
or the programs have difficulty in identifying somatic 
insertions. As for coding indels, germline coding indels 
has slightly more NFS indels (51.63%) than the FS indels 
(48.37%) (Additional file 1: Table S6). It is not surpris-
ing that the number of short FS coding indels is smaller 
than expected (2 to 1 ratio if there is no selection) in 
healthy genomes, as FS indels are more deleterious 
than NFS indels, which are more likely to be removed 
from the population during evolution. FS indels found 
in healthy individuals generally are less deleterious and 

contribute to phenotypic diversity through different 
ways [39]. In COSMIC cancer indel database, FS indel 
is the dominant coding indel type (81.05%). Except 
for Strelka2 in balder cancer, all other programs pre-
dict more FS indels than NFS indels in all three cancer 
types. It should be pointed out that the total numbers 
of coding indels predicted by Varscan2 and Strelka2 are 
rather small (Additional file 1: Table S6).

When the somatic indels from different programs are 
compared, the number of similar indels from different 
programs or the overlapped indels are much smaller 
especially when more programs are considered (Fig.  6 
and Table  7). This is quite different from the germline 
indels by the general indel annotation programs espe-
cially the comparison criteria are not as stringent as 
those used for germline indel comparisons (Table  4), 
in which there are a large number of indels called by 
all the programs, especially for the true positive indels. 
Table 7 and Fig. 6 show that when all four programs are 
used, there are only 22, 36, 161 indels in the bladder, 
breast, and colon cancel samples respectively. These 
results suggest that the agreement among different 
programs is low and it might not be practical to use 
multiple programs in order to remove false positives 
in cancer samples as we showed in the germline indel 
cases since it also dramatically decrease the total num-
ber of indels as well as true positives.

Fig. 5  Somatic indel size distribution. a Program based; and b cancer type based

Fig. 6  Overlapped indel annotations of different cancer types. a Bladder cancer; b breast cancer; and c colon cancer
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Discussion
Accurate annotation of indels in both healthy and cancer 
genomes is important for downstream analysis in biologi-
cal and medical applications. A number of programs have 
been developed for identifying indels from both healthy 
genomes for germline indels as well as cancer genomes 
for somatic indels with NGS data. Comparative analysis 
and evaluation can provide useful information about each 
program’s performance. The best available benchmark for 
large-scale germline indels so far is the pooled sample 
indels [10]. One previous comparative study applied this 
pooled benchmark set and evaluated seven general indel 
calling programs using chromosome 11 of 78 samples. 
However, the comparison was carried out between a sin-
gle sample and the pooled benchmark, which is problem-
atic as shown in Figs. 1 and 3. It may also explain why the 
study finds little overlap when the indels from all seven 
tools are combined [25]. In this study we carried out 
an improved approach to assess the general indel call-
ing programs using the whole genome NGS sequences 
instead of using one chromosome sequences. More 
importantly, we adopted a pooled sample vs. pooled 
benchmark comparison, which provides more accurate 
assessment of programs’ performances. The new method 
greatly reduced the number of false negative cases by cor-
rectly recognizing the true positives (Figs. 1, 3). Last but 
not the least, we adopted a stringent indel comparison 
approach by considering the exact indel position as well 
as the indel types, which was not considered in previous 
studies. It should be noted that even though we applied 
a pooled sample approach, the comparison is not error 
free since the samples and the genomes in the benchmark 

set are different. There are some sample specific indels in 
both the test set and the benchmark set. Nevertheless, 
our approach makes the best use of the reference set and 
provides more accurate performance evaluations.

These general indel calling programs employ different 
prediction algorithms and predict different number of 
indels with different length and type distributions (Addi-
tional file  1: Tables S1-2). There is a tradeoff between 
the number of true positives and false positives. Some 
of them recognize a large number of true positive indels 
but at the same time output more false positive indels. 
We found that combing indels predicted from several 
different programs can achieve a good balance of TPs 
and FPs by removing a large number of false positives 
while keeping most of the true positives. The idea behind 
this is that if an indel is a true one, most programs are 
expected to find it no matter what algorithm is used. On 
the other hand, if an indel is a false one, it probably will 
only be predicted by one or a small number of programs. 
Our results show it is indeed the case and the best TP/FP 
balance is achieved with two or three different programs 
(Tables 4, 5).

In addition to germline indels, we also carried out pro-
gram comparisons of somatic indel predictions using 
30 cancer samples of three different types. Evaluating 
somatic indels is even more challenging because there is 
no benchmark that can be used for a systematic compari-
son and cancer indels are more random in terms of indel 
positions. Nevertheless, by using a common sample sets, 
we can evaluate the similarity/differences of indels from 
different somatic indel calling programs and among dif-
ferent cancer types. To get a sense of the potential num-
ber of true positive or false positive somatic indels, we 
compared the predicted indels with the cancer indels in 
COSMIC database (as potential true positives) and the 
germline indel set (as potential false positive somatic 
indels). While each program produces different number 
of indels with various ratios of indel types (Table 6 and 
Additional file 1: Tables S4 and S5), there is a clear trend 
among different cancer types in general. Bladder cancer 
has the lowest number of predicted somatic indels and 
colon cancer has the largest number of predicted somatic 
indels (Tables 6 and Additional file 1: Table S5). Secondly, 
unlike the germline indels, the number of indels pre-
dicted by all programs is very small (Table  7), suggest-
ing a low agreement among the programs even though 
the input sequences are the same. Thirdly, the programs 
identify a small number of insertions. This trend has also 
been reported by other case studies. For example, 2233 
deletions and 544 insertions were identified from 21 
breast cancer genomes by a modified Pindel program, 
and 680 deletions and 303 insertions were found from 
a skin cancer genome by Pindel, BWA and GROUPER 

Table 7  Performance on  different number of  somatic 
program combinations (The data shown are average 
values)

Cancer types # of Tools Total indels COSMIC 
indels

Potential 
germline indels 
and rate

Bladder 1 5995 4 577 (0.24)

2 285 1 64 (0.22)

3 92 1 20 (0.24)

4 22 0 6 (0.27)

Breast 1 13,963 6 1463 (0.27)

2 616 1 185 (0.25)

3 181 1 47 (0.19)

4 36 0 5 (0.14)

Colon 1 15,221 13 6666 (0.26)

2 3142 3 948 (0.23)

3 1051 2 300 (0.18)

4 161 1 14 (0.09)
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[16, 43–45]. In COSMIC database, there are also less 
insertions compared with deletions (Additional file  1: 
Table S5). On the other hand, Sathya et al. identified SNP 
and indel patterns from lung cancer genomes and found 
more insertions than deletions in both healthy genomes 
and lung cancer genomes using GATK-UG [46]. Whether 
the difference in the ratio of insertion and deletion in the 
cancer genomes is caused by the characteristics of the 
cancer genomes or by the algorithms used by the somatic 
variants calling programs remains to be further studied.

Conclusions
Our results show that a better balance between TP and 
FP can be achieved by combining results from a small 
number of programs for germline indel annotations. 
However, the low agreement among indel calling pro-
grams, especially for somatic indel identifications, calls 
for novel approaches for improving prediction accuracy 
with NGS data. In addition, the development of such 
approaches needs well-annotated indel reference sets.
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