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Variability in mRNA translation: 
a random matrix theory approach
Michael Margaliot1,3, Wasim Huleihel1,3 & Tamir Tuller2*

The rate of mRNA translation depends on the initiation, elongation, and termination rates of 
ribosomes along the mRNA. These rates depend on many “local” factors like the abundance of free 
ribosomes and tRNA molecules in the vicinity of the mRNA molecule. All these factors are stochastic 
and their experimental measurements are also noisy. An important question is how protein production 
in the cell is affected by this considerable variability. We develop a new theoretical framework for 
addressing this question by modeling the rates as identically and independently distributed random 
variables and using tools from random matrix theory to analyze the steady-state production rate. 
The analysis reveals a principle of universality: the average protein production rate depends only on 
the of the set of possible values that the random variable may attain. This explains how total protein 
production can be stabilized despite the overwhelming stochasticticity underlying cellular processes.

During translation complex molecular machines called ribosomes scan the mRNA codon by codon. The ribo-
some links amino-acids together in the order specified by the codons to form a polypeptide chain. For each 
codon, the ribosome “waits” for a transfer RNA (tRNA) molecule that matches and carries the correct amino-acid 
for incorporating it into the growing polypeptide chain. When the ribosome reaches a stop codon encoding a 
termination signal, it detaches from the mRNA and the complete amino-acid chain is released.

Several ribosomes may read the same mRNA molecule simultaneously, as this form of “pipelining” increases 
the protein production rate. The dynamics of ribosome flow along the mRNA strongly affects the production rate 
and the correct folding of the protein. A ribosome that is stalled for a long time may lead to the formation of a 
“traffic jam” of ribosomes behind it, and consequently to depletion of the pool of free ribosomes. Mutations affect-
ing the protein translation rates may be associated with various diseases1, as well as viral infection efficiency2.

As translation is a central metabolic process that consumes most of the energy in the cell3–7, cells operate 
sophisticated regulation mechanisms to avoid and resolve ribosome traffic jams8–11. These issues have been stud-
ied extensively in recent years using various computational and mathematical models12. Another testimony of 
the importance of ribosome flow is the fact that about half of the currently existing antibiotics target the bacterial 
ribosome by interfering with translation initiation, elongation, termination and other regulatory mechanisms13,14. 
For example, Aminoglycosides inhibit bacterial protein synthesis by binding to the 30S ribosomal subunit, sta-
bilizing a normal mismatch in codon–anticodon pairing, and leading to mistranslations15. Understanding the 
mechanisms of ribosome-targeting antibiotics and the molecular mechanisms of bacterial resistance is crucial 
for developing new drugs that can effectively inhibit the synthesis of bacterial proteins16.

Summarizing, an important problem is to understand the dynamics of ribosome flow along the mRNA, and 
how it affects the protein production rate. As in many cellular processes, a crucial puzzle is understanding how 
proper functioning is maintained, and adjusted to the signals that a cell receives and to resource availability, in 
spite of the large stochasticity in the cell17,18. Translation and the measurements of this process are affected by 
various types of stochasticity (see a review in19), as illustrated in Fig. 1. Specifically,

•	 All the chemical reactions related to the process are of course stochastic, and so are the concentrations of 
factors like cognate tRNA availability and the resulting translation rates (e.g. during cell cycle), structural 
accessibility of the 5′-end to translation factors, the spatial organization of mRNAs inside the cell and the 
existence of designated “translation factories”20–23.

•	 Different cells in a population are not identical for example in terms of the number of mRNA molecules and 
ribosomes in the cell and many other aspects24.

•	 It was recently suggested that the ribosomes themselves are not identical25.
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•	 The stochastic diffusion of translation substrates play a key role in determining translation rates26. The fact 
that the mRNA molecules of the same gene diffuse (either actively or passively) to different regions in the 
cell affects their translation properties27.

•	 The experimental approaches for measuring translation introduce various types of noise28,29. Thus, the param-
eters of translation that are inferred from these data are also noisy.

•	 Processes such as mRNA methylation can affect all aspects of translation19,30.
•	 There are couplings between the translation process and other stochastic gene expression steps19,31 such as 

transcription32, mRNA stability33,34, and interaction with miRNA35,36 and RNA binding proteins19.

A recent paper analyzes translation and concludes that “randomness, on average, plays a greater role than 
any non-random contributions to synthesis time”37.

Here, we develop a theoretical approach to analyze translation subject to spatial variation by combining a 
deterministic computational model, called the ribosome flow model (RFM), with tools from random matrix 
theory. We model the variation in the initiation, elongation, and exit rates in several copies of the same mRNA 
by assuming that the rates in the RFM are independent and identically distributed (i.i.d.) random variables, that 
is, each random variable has the same probability distribution as the others and all are mutually independent. 
This assumption is of course restrictive, and is needed to obtain our closed-form theatrical results. Yet, it seems 
to have some empirical justification. For example, away from the ends of the coding sequence the translation 
rates tend to be independent38. In addition, various noise sources (such as NGS noise) tend to be independent 
along the mRNA. Furthermore, in "Generalizations" section we describe several generalizations where the i.i.d. 
assumption on the random variables can be relaxed.

We believe that our approach can be used to tackle various levels of stochaticity and uncertainty in transla-
tion and its measurements. Our main results (Theorems 1 and 2 below) reveal a new principle of universality: 
as the length of the mRNA molecule increases the overall steady-state protein production rate converges, with 
probability one, to a constant value that depends only on the minimal possible value of the random variables. 
Roughly speaking, this suggests that much of the variability is “filtered out”, and this may explain how the cell 
overcomes the variations in the many stochastic factors mentioned above.

The next section reviews the RFM and some of its dynamical properties that are relevant in our context. This 
is followed by our theoretical results. "Generalizations" section describes several generalizations. The final section 
concludes and describes possible directions for further research.

Ribosome flow model (RFM)
Mathematical models of the flow of “biological particles” like RNA polymerase, ribosomes, and molecular motors 
are becoming increasingly important, as powerful experimental techniques provide rich data on the dynamics of 
such machines inside the cell39–41, sometimes in real-time42. Computational models are particularly important 
in fields like synthetic biology and biotechnology, as they can provide qualitative and quantitative testifiable 

Figure 1.   Stochasticity and noise in mRNA translation and its measurements imply that identical mRNAs 
chains may have different transition rates. The double arrows represent tRNA molecules.
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predictions on the effects of various manipulations of the genetic machinery. They are also helpful for under-
standing the evolution of cells and their biophysics43.

The standard computational model for the flow of biological particles is the asymmetric simple exclusion 
process (ASEP)44–48. This is a fundamental model from nonequilibrium statistical mechanics describing parti-
cles that hop randomly from a site to a neighboring site along an ordered (usually 1D) lattice. Each site may be 
either free or occupied by a single particle, and hops may take place only to a free target site, representing the 
fact that the particles have volume and cannot overtake one another. This simple exclusion principle generates 
an indirect coupling between the moving particles. The motion is assumed to be directionally asymmetric, i.e., 
there is some preferred direction of motion. In the totally asymmetric simple exclusion process (TASEP) the 
motion is unidirectional.

TASEP and its variants have been used extensively to model and analyze natural and artificial processes 
including ribosome flow, vehicular and pedestrian traffic, molecular motor traffic, the movement of ants along a 
trail, and more43,49,50. However, due to the intricate indirect interactions between the hopping particles, analysis 
of TASEP is difficult, and closed-form results exist only in some special cases51,52.

The RFM53 is a deterministic, nonlinear, continuous-time ODE model that can be derived via a dynamic 
mean-field approximation of TASEP54. It is amenable to rigorous analysis using tools from systems and control 
theory. The RFM includes n sites ordered along a 1D chain. The normalized density (or occupancy level) of site i 
at time t is described by a state variable xi(t) that takes values in the interval [0, 1], where xi(t) = 0 [ xi(t) = 1 ] 
represents that site i is completely free [full] at time t. The transition between sites i and site i + 1 is regulated 
by a parameter �i > 0 . In particular, �0 [ �n ] controls the initiation [termination] rate into [from] the chain. The 
rate at which particles exit the chain at time t is a scalar denoted by R(t) (see Fig. 2).

When modeling the flow of biological machines like ribosomes the chain models an mRNA molecule coarse-
grained into n sites. Each site is a codon or a group of consecutive codons, and R (t) is the rate at which ribosomes 
detach from the mRNA, i.e. the protein production rate. The values of the �i s encapsulate many biophysical 
properties like the number of available free ribosomes, the nucleotide context surrounding initiation codons, 
the codon compositions in each site and the corresponding tRNA availability, and so on53,55,56. Note that these 
factors may vary in different locations inside the cell.

The dynamics of the RFM is described by n nonlinear first-order ordinary differential equations:

where we define x0(t) := 1 and xn+1(t) := 0 . Every xi is dimensionless, and every rate �i has units of 1/time . 
Eq. (1) can be explained as follows. The flow of particles from site i to site i + 1 is �ixi(t)(1− xi+1(t)) . This flow 
is proportional to xi(t) , i.e. it increases with the occupancy level at site i, and to (1− xi+1(t)) , i.e. it decreases 
as site i + 1 becomes fuller. This is a “soft” version of the simple exclusion principle. The maximal possible flow 
from site i to site i + 1 is the transition rate �i . Eq. (1) is thus a simple balance law: the change in the density xi 
equals the flow entering site i from site i − 1 , minus the flow exiting from site i to site i + 1 . The output rate from 
the last site at time t is R(t) := �nxn(t).

An important property of the RFM (inherited from TASEP) is that it can be used to model and analyze the 
formation of “traffic jams” of particles along the chain. It was shown that traffic jams during translation are com-
mon phenomena even under standard conditions57. Indeed, suppose that there exists an index j such that �j is 
much smaller than all the other rates. Then Eq. (1) gives

this term is positive when x ∈ (0, 1)n , so we can expect site j to fill up, i.e. xj(t) → 1 . Now using Eq. (1) again gives

suggesting that site  j − 1 will also fill up. In this way, a traffic jam of particles is formed “behind” the bottleneck 
rate �j.

Note that if �j = 0 for some index j then the RFM splits into two separate chains, so we always assume 
that �j > 0 for all  j ∈ {0, . . . , n}.

(1)ẋi = �i−1xi−1(1− xi)− �ixi(1− xi+1), i = 1, . . . , n,

ẋj = �j−1xj−1(1− xj)− �jxj(1− xj+1)

≈ �j−1xj−1(1− xj),

ẋj−1 = �j−2xj−2(1− xj−1)− �j−1xj−1(1− xj)

≈ �j−2xj−2(1− xj−1),

Figure 2.   Unidirectional flow along an n site RFM. State variable xi(t) ∈ [0, 1] represents the normalized 
density at site i at time t. The parameter �i > 0 controls the transition rate from site i to site i + 1 , with �0 [ �n ] 
controlling the initiation [termination] rate. R(t) is the output rate from the chain at time t.
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The asymptotic behavior of the RFM has been analyzed using tools from contraction theory58, the theory of 
cooperative dynamical systems59, continued fractions and Perron-Frobenius theory60. We briefly review some 
of these results that are required later on.

Dynamical properties of the RFM.  Let x(t, a) denote the solution of the RFM at time t ≥ 0 for the initial 
condition x(0) = a . Since the state-variables correspond to normalized occupancy levels, we always assume 
that a belongs to the closed n-dimensional unit cube:

Let (0, 1)n denote the interior of [0, 1]n.
It was shown in59 (see also58) that there exists a unique e = e(�0, . . . , �n) ∈ (0, 1)n such that for any a ∈ [0, 1]n 

the solution satisfies x(t, a) ∈ (0, 1)n for all t > 0 and

In other words, every state-variable remains well-defined in the sense that it always takes values in [0, 1], and the 
state converges to a unique steady-state that depends on the �i s, but not on the initial condition. At the steady-
state, the flows into and out of each site are equal, and thus the density in the site remains constant. Note that the 
production rate R(t) = �nxn(t) converges to the steady-state value R := �nen , as t → ∞ . The rate of convergence 
to the steady-state e is exponential61.

At the steady-state, the left hand-side of Eq. (1) is zero, and this gives

where we define e0 := 1 and en+1 := 0 . In other words, at the steady-state the flow into and out of each site are 
equal to R.

Solving the set of non-linear equations in Eq. (2) is not trivial. Fortunately, there exists a better representation 
of the mapping from the rates �0, . . . , �n to the steady-state e1, . . . , en . Let Rk

>0 denote the set of k-dimensional 
vectors with all entries positive. Define the (n+ 2)× (n+ 2) tridiagonal matrix

This is a symmetric matrix, so all its eigenvalues are real. Since every entry of Tn is non-negative and Tn is irre-
ducible, it admits a simple maximal eigenvalue σ > 0 (called the Perron eigenvalue or Perron root of Tn ), and a 
corresponding eigenvector ζ ∈ R

n+2
>0  (the Perron eigenvector) that is unique (up to scaling)62.

Given an RFM with dimension n and rates �0, . . . , �n , let Tn be the matrix defined in Eq. (3). It was shown 
in63 that then

In other words, the steady-state density and production rate in the RFM can be directly obtained from the spectral 
properties of Tn . In particular, this makes it possible to determine R and e even for very large chains using efficient 
and numerically stable algorithms for computing the Perron eigenvalue and eigenvector of a tridiagonal matrix.

The spectral representation has several useful theoretical implications. It implies that that R = R(�0, . . . , �n) 
is a strictly concave function on Rn+1

>0  . Thus, the problem of maximizing  R under an upper bound on the sum of 
the rates always admits a unique solution63.

Also, the spectral representation implies that the sensitivity of the steady-state w.r.t. a perturbation in the 
rates becomes an eigenvalue sensitivity problem. Known results on the sensitivity of the Perron root64 imply that

where ζ ′ denotes the transpose of the vector ζ . It follows in particular that  ∂
∂�i

R > 0 for all i, that is, an increase 
in any of the transition rates yields an increase in the steady-state production rate60.

The RFM has been used to analyze various properties of translation. These include mRNA circularization 
and ribosome cycling65, maximizing the steady-state production rate under a constraint on the rates63,66, optimal 
down regulation of translation67, and the effect of ribosome drop off on the production rate68. More recent work 
focused on coupled networks of mRNA molecules. The coupling may be due to competition for shared resources 
like the finite pool of free ribosomes69,70, or due to the effect of the proteins produced on the promoters of other 
mRNAs71. Several variations and generalizations of the RFM have also been suggested and analyzed54,68,72–75.

[0, 1]n := {x ∈ R
n : xi ∈ [0, 1], i = 1, . . . , n}.
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Several studies compared predictions of the RFM with biological measurements. For example, protein levels 
and ribosome densities in translation53, and RNAP densities in transcription76. The results demonstrate high 
correlation between gene expression measurements and the RFM predictions.

All previous works on the RFM assumed that the transition rates �i are deterministic. Here, we analyze for 
the first time the case where the rates are random variables. This may model for example the parallel translation 
of copies of the same mRNA molecule in different locations inside the cell. The variance of factors like tRNA 
abundance in these different locations implies that each mRNA is translated with different rates. It is natural to 
model this variability using tools from probability theory. For example, Ref.77 showed that the distribution of 
read counts related to a codon in ribo-seq experiments can be approximated using an exponentially modified 
Gaussian.

Our results analyze the average steady-state production rate given the random transition rates. Note that this 
provides a global picture of protein production in the cell, rather than the local production in any single chain. 
For example, when “drawing” the rates from a given distribution, one rate may turn out to be much smaller 
than the others and this will generate a traffic jam in the corresponding chain. However, our analysis does not 
consider any specific chain, but the average steady-state production rate on all the chains drawn according to 
the distribution of the i.i.d. rates.

The following section describes our main results on translation with random rates.

Main results
Assume that the RFM rates are not constant, but rather are random variables with some known distribution 
supported over R≥δ := {x ∈ R : x ≥ δ} , where δ > 0 . What will the statistical properties of the resulting protein 
production rate be? In the context of the spectral representation given in Eq. (3), this amounts to the following 
question: given the distributions of the random variables {�i}ni=0 , what are the statistical properties of the maximal 
eigenvalue σ of the random matrix Tn?

Recall that a random variable X is called essentially bounded if there exists 0 ≤ b < ∞ such that P[|X| ≤ b] = 1 , 
and then the L∞ norm of X is

Roughly speaking, this is the maximal value that X can attain. Clearly, bounded random variables is the relevant 
case in any biological model. In particular, if X is supported over R≥δ , with δ > 0 , then the random variable 
defined by W := X−1/2 is essentially bounded and ||W||∞ ≤ δ−1/2.

We can now state our main results. To increase readability, all the proofs are placed in the final section of this 
paper. To emphasize that now the production rate is a random variable, and that it depends on the length of the 
chain, from hereon we use Rn to denote the production rate in the n-site RFM.

Theorem 1  Suppose that every rate �0, . . . , �n in the RFM is drawn independently according to the distribution of an 
random variable X that is supported on R≥δ , with δ > 0 . Then as n → ∞ , the maximal eigenvalue of the matrix Tn 
converges to 2||X−1/2||∞ with probability one, and the steady-state production rate Rn in the RFM converges to

with probability one.

This result may explain how proper functioning is maintained in spite of significant variability in the rates: 
the steady-state production rate always converges to the value in Eq. (6), that depends only on ||X−1/2||∞ . This 
also implies a form of universality with respect to the noises and uncertainties: the exact details of the distribu-
tion of X are not relevant, but only the single value ||X−1/2||∞.

In general, the convergence to the values in Theorem 1 as n increases is slow, and computer simulations may 
require n values that exhaust the computer’s memory before we are close to the theoretical values. The next 
example demonstrates a case where the convergence is relatively fast.

Example 1  Recall that the probability density function of the half-normal distribution with parameters (µ, σ) is

This may be interpreted as a kind of normal distribution, but with support over [µ,∞) only. Suppose that X has 
this distribution with parameters (µ = 1, σ = 0.1) . Note that X−1/2 has support (0, 1], so ||X−1/2||∞ = 1 . In this 
case, Theorem 1 implies that Rn converges with probability one to 1/4 as n goes to infinity. For n ∈ {50, 500, 1000} , 
we numerically computed Rn using the spectral representation for 10, 000 random matrices. Figure 3 depicts 
a histogram of the results. It may be seen that as n increases the histogram becomes “sharper” and its center 
converges towards 1/4, as expected.

Theorem 1 does not provide any information on the rate of convergence to the limiting value of Rn . This is 
important as in practice n is always finite. The next result addresses this issue. For ǫ > 0 , let

�X�∞ := inf
b≥0

{P[|X| ≤ b] = 1}.

(6)(2||X−1/2||∞)−2,

f (x) =
{

√

2
πσ 2 exp(− 1

2 (
x−µ
σ

)2), x ≥ µ,

0, otherwise.
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Note that  a(ǫ) ∈ (0, 1] .  Intuitively speaking, a(ǫ) is the probability that  X−1/2 falls in the 
range [�X−1/2�∞ − ǫ, �X−1/2�∞].

Theorem 2  Suppose that every rate �0, . . . , �n in the RFM is drawn independently according to the distribution of 
an random variable X that is supported on R≥δ , with δ > 0 . Pick two sequences of positive integers n1 < n2 < . . . 
and k1 < k2 < . . . , with ki < ni for all i, and a decreasing sequence of positive scalars ǫi , with ǫi → 0 . Then for 
any i the steady-state production rate Rni in an RFM with ni sites satisfies

with probability at least

Note that if we choose the sequences such that

and take i → ∞ then Theorem 2 yields Theorem 1. Yet, we state and prove both results separately in the interest 
of readability.

Example 2  Suppose that X has a uniform distribution over an interval [δ, γ ] with 0 < δ < γ . From here on we 
assume for simplicity that δ = 1 and γ = 2 . Then for any ǫ > 0 sufficiently small, we have

Fix d ∈ (0, 1) and take ǫi = n
(d−1)/ki
i  . Then the condition in Eq. (9) becomes

and this will hold if ki does not increase too quickly. We can write ǫi as

so to guarantee that ǫi → 0 , we take ki = (log(ni))
c , with c ∈ (0, 1) , and then Eq. (9) indeed holds. Theorem 2 

implies that

a(ǫ) := P
(

X
−1/2 ≥ �X−1/2�∞ − ǫ

)

.

(7)(2�X−1/2�∞)−2 ≤ Rni ≤ (2�X−1/2�∞)−2
(

1+ O(ǫi + k−2
i )

)

,

(8)1− exp

(

−
⌊

ni − 1

ki

⌋

(a(ǫi))
ki

)

.

(9)
ni

ki
(a(ǫi))

ki → ∞,

a(ǫ) = P
(

X
−1/2 ≥ 1− ǫ

)

= P
(

X ≤ (1− ǫ)−2
)

= 2ǫ + o(ǫ).

ndi
ki

→ ∞

ǫi = exp((d − 1) log(ni)/ki),

Figure 3.   Histograms of 10, 000 Rn values in Example 1 for n = 50 (green), n = 500 (blue), and n = 1000 (red). 
The theory predicts that as n → ∞ , Rn converges to 1/4 with probability one.
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with probability at least

Example 3  As in Example 1, consider the case where X is half-normal with parameters (µ, σ) , where µ > 0 . 
Then �X−1/2�∞ = µ−1/2 , so

where z := (µ−1/2 − ǫ)−2 . Thus,

It is not difficult to show that this implies that

where c(µ, σ) := 2
√

2
πσ 2µ

3/2 . To satisfy Eq. (9), fix p ∈ (0, 1) and choose ǫi such that (cǫi)ki = n
p−1
i  . This implies 

that

Now, pick q ∈ (0, 1) and take ki = (log(ni))
q . Then Eq. (9) holds, and

Theorem 2 implies that for any p, q ∈ (0, 1) , we have

with probability at least

This shows that Rni “is close” to µ/4 , and provides an explicit expression for the rate of convergence to µ/4.

Generalizations
The assumption that all the rates are i.i.d. random variables allows to derive the general theoretical results in 
Theorems 1 and 2 above. However, this assumption is restrictive. In this section, we describe several cases where 
we allow more relaxed assumptions on these rates. Our first generalization considers the case where the ran-
dom variables might be non-identical, but all share the same support. In the second generalization, we allow an 
increasing (but small compared to n) number of random variables to have a different support from the majority 
of the other random variables. In these two cases we show that the production rate converges to the same value 
as in Theorem 1.

We then turn to investigate the most general case, where the rates are arbitrary but bounded, and in this case 
provide lower and upper bounds on the production rate.

Analysis of the proofs of Theorems 1 and 2 shows that our results remain valid even if each rate �i is drawn 
from the distribution of Xi , which are not necessarily identically distributed, but are all independent, supported 
on the positive semi-axis, and satisfy

namely, they all have the same bound. The next example demonstrates this.

Example 4  Consider n+ 1 independent random variables with X0,X1, . . . ,X n−1
2

 distributed according to the 
half-normal distribution with parameters (µ = 2, σ = 0.1) , and X n−1

2 +1, . . . ,Xn distributed according to the 

(2�X−1/2�∞)−2 ≤ Rni ≤ (2�X−1/2�∞)−2
(

1+ O(max{exp((d − 1)(log(ni))
1−c), (log(ni))

−2c})
)

,

(10)1− exp

(

−ndi
(log(ni))c

)

.

a(ǫ) = P
(

X
−1/2 ≥ µ−1/2 − ǫ

)

= P(X ≤ z),

a(ǫ) =
√

2

πσ 2

∫ z

µ

e
− (x−µ)2

2σ2 dx

=
2√
π

∫
z−µ√
2σ2

0
e−x2dx.

(11)a(ǫ) = c(µ, σ)ǫ + o(ǫ),

(12)ǫi =
1

c
exp

(

p− 1

ki
log(ni)

)

.

(13)ǫi =
1

c
exp

(

(p− 1)(log(ni))
1−q

)

.

µ

4
≤ Rni ≤

µ

4
+ O

(

max

{

1

c
exp

(

(p− 1)(log(ni))
1−q

)

, (log(ni))
−2q

})

,

1− exp

(

−n
p
i

(log(ni))q

)

.

(14)||X−1/2
0 ||∞ = · · · = ||X−1/2

n ||∞,
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uniform distribution on [2, 3]. Note that ||Xi
−1/2||∞ = 2−1/2 = 1/

√
2 , for all i = 0, 1, . . . , n . Thus, our theory 

predicts that in this case Rn converges with probability one to (2/
√
2)−2 = 1/2 as  n goes to infinity. 

For n ∈ {50, 500, 1000} , we numerically computed Rn using the spectral representation for 10, 000 random 
matrices. Figure 4 depicts a histogram of the results. It may be seen that as n increases the histogram becomes 
“sharper” and its center converges towards 1/2, as expected.

Our second generalization considers the case where among the n+ 1 random rates there are d rates drawn 
from the distributions of the random variables Y1, . . . ,Yd , that might have some different distributions; they do 
not have to satisfy the uniform support condition in Eq. (14), and they might be dependent. Here d = d(n) is 
an integer that is allowed to grow with n, but at a slower rate than n. We assume that the rates modeled by these 
random variable are larger those rates modeled by the other n+ 1− d random variables (see Eq. (15) below).

Theorem 3  Let d = d(n) > 0 be an integer such that limn→∞
d(n)
n = 0 . Let {Xi}n−d

i=0  be a set of (n+ 1− d) inde-
pendent random variables, supported on R≥δ , with δ > 0 , and satisfying

Also, let {Yi}di=1 be a set of d random variables supported on the positive semi-axis, and satisfy

Fix ǫ > 0 and a positive integer  k. Denote the concatenation of {Yi}di=1 and {Xi}n−d
i=0  by Z , namely, 

Z = (Y1,Y2, . . . ,Yd ,X0,X1, . . . ,Xn−d) . Let Sn+1 denote the set of permutations on {1, . . . , n+ 1} . Fix a permu-
tation π ∈ S

n+1 , and let Zπ � π ◦ Z . Suppose that every rate �i in the RFM is drawn independently according to 
the distribution of the random variables in Zπ

i  . Then as n → ∞ , the steady-state production rate Rn in the RFM 
converges to

with probability one.

In other words, even in the presence of the “interfering” Yi ’s the theoretical result remains unchanged. The 
next example demonstrates Theorem 3.

Example 5  Consider the case where d(n) =
√
n . Let X0, . . . ,Xn−d be i.i.d. random variables distributed accord-

ing to the uniform distribution on [1/2, 1], and let Let Y1, . . . ,Yd be i.i.d. random variables distributed according 
to the uniform distribution on [15, 20]. We draw the rates according to the vector Zπ , with π a random permuta-
tion (implemented using the Matlab command randperm). Our theory predicts that in this case Rn converges 
with probability one to (2||X−1/2

i ||∞)−2 = (2
√
2)−2 = 1/8 as n goes to infinity. For n ∈ {50, 500, 1500} , we 

numerically computed Rn using the spectral representation for 10, 000 random matrices. Figure 5 depicts a 
histogram of the results. It can be seen that the Rn converges with probability one to a limiting value, despite the 
“interfering” Yi random variables.

||X−1/2
0 ||∞ = · · · = ||X−1/2

n−d ||∞.

(15)||Y−1/2
j ||∞ ≤ δ−1/2, j = 1, . . . , d.

(16)(2||X−1/2
0 ||∞)−2,

Figure 4.   Histograms of 10, 000 Rn values in Example 4 for n = 50 (green), n = 500 (blue), and n = 1000 (red). 
The theory predicts that as n → ∞ , Rn converges to 1/2 with probability one.
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Our last and most general result considers the case where the random variables are arbitrary but bounded. 
In particular, they do not necessarily have to be independent or identical. We use the notation Ip

k to denote the 
set of all possible k consecutive integers from the set {1, 2, . . . , p} . For example,

Theorem 4  Suppose that every rate �i in the RFM is drawn according to the distribution of a random variable Xi 
that is supported on R≥δi , with δi > 0 , for 0 ≤ i ≤ n . Then the steady-state production rate Rn in the n-site RFM 
satisfies

with probability one.

Contrary to our previous analytical results, in this case the steady-state production rate will not necessar-
ily converge to a deterministic value, but rather we show that it is bounded above and below by two random 
quantities. However, it can be shown that when the random variables are i.i.d. then both bounds converge 
to (2||X−1/2

0 ||∞)−2 as n → ∞ , and in this sense the bounds in Theorem 4 are tight.

Discussion
Cellular systems are inherently noisy, and it is natural to speculate that they were optimized by evolution to 
function properly, or even take advantage, of stochastic fluctuations.

Many studies analyzed the fluctuations in protein production due to both extrinsic and intrinsic noise (see, 
e.g.18,78–82). Here, we derived a new approach, based on random matrix theory, for analyzing the average protein 
production rate from multiple copies of the same mRNA that are affected by variations in the translation rates 
due, for example, to the different spatial location of these mRNAs inside the cell. Our approach can also deal 
with experimental noise.

Our results have both a theoretical and a practical value. We show that given one parameter value δ from 
the i.i.d. distribution allows to determine the steady-state average production rate. The production rate is thus 
agnostic to many other details underlying the distribution e.g. it’s mean, variance, etc. This may explain how 
steady-state production is maintained despite the considerable stochasticity in the cell. This theoretical result 
holds regardless of whether one can actually determine the value δ or not.

Our approach can also deal with phenomena that is not directly captured by the RFM, if its affects can be 
modeled as a stochastic perturbation of the transition rates. Examples may include experimental noise, methyla-
tion, and interaction with miRNA. In particular, methylation affects one nucleotide/codon, and miRNA affects 
a sequence of up to 7 codons.

It is important to note that our results hold for many possible distributions of the translation rates. For 
example, it was suggested that decoding rates distributions are similar to an exponential modified Gaussian or 
log normal distributions77,83.

Currently, it is challenging to estimate the distribution of transition rates (and thus the bound on the sup-
port δ ). Indeed, approaches such as ribo-seq plot averages over all mRNA molecules and all cells in a certain 

I
3
2 = {{1, 2}, {1, 3}, {2, 3}}.

(17)
[

max
i=1,...,n

X
−1/2
i−1 + X

−1/2
i

]−2

≤ Rn ≤
[

2 max
1≤k≤n+1

cos

(

π

k + 2

)

max
Ik∈In+1

k

min
i∈Ik

X
−1/2
i

]−2

,

Figure 5.   Histograms of 10, 000 Rn values in Example 5 for n = 50 (green), n = 500 (blue), and n = 1500 (red). 
The theory predicts that as n → ∞ , Rn converges to 1/8 with probability one.
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population/sample. It is also difficult to estimate the protein translation rate. Usually, the measured quantity is 
protein level, but this depends not only on translation, but also on the rate of transcription, and mRNA and 
protein dilution and decay79. Thus, in this respect, the theory in the paper precedes biological measurement 
capabilities. Our results however may indicate general principles that can be tested experimentally. For example, 
the analysis suggests that as the length of the mRNA increases while keeping all its statistical properties such as 
initiation rate and codon usage identical, the translation rate becomes more uniform.

The RFM, just like TASEP, is a phenomenological model for the flow of interacting particles and thus can be 
used to model and analyze phenomena like the flow of packets in communication networks84, the transfer of a 
phosphate group through a serial chain of proteins during phosphorelay75, and more. The RFM is also closely 
related to a mathematical model for a disordered linear chain of masses, each coupled to its two nearest neighbors 
by elastic springs85, that was originally analyzed in the seminal work of Dyson86. In many of these applications 
it is natural to assume that the rates are subject to uncertainties or fluctuations and model them as random vari-
ables. Then the results here can be immediately applied.

We believe that the approach described here can be generalized to other models of intra-cellular phenomena 
derived from the RFM75,87, and thus for analyzing additional aspects of translation and gene expression.

Proofs
The proofs of our main results are based on analyzing the spectral properties of the matrix Tn in Eq. (3) when 
the �i s are i.i.d. random variables. The problem that we study here is a classical problem in random matrix 
theory88, yet the matrix Tn is somewhat different from the standard matrices analyzed using the existing theory 
(e.g. the Wigner matrix). Hence, we provide a self-contained analysis based on combining probabilistic arguments 
with the Perron-Frobenius theory of matrices with non-negative entries (see e.g.62, Ch. 8).

Proof of Theorem  1.  Recall that the rates {�i}ni=0 are drawn independently according to the distribu-
tion of a random variable X that is supported on R≥δ , with δ > 0 . For simplicity of notation, let Wi := �

−1/2
i  , 

i ∈ {0, 1, . . . , n} , and note that {Wi}ni=0 are essentially bounded, i.i.d., and each random variable Wi follows the 
same distribution of X−1/2 . In particular, W0 ≡ X−1/2 . With this definition, Eq. (3) can be written as:

Therefore, Tn is an (n+ 2)× (n+ 2) symmetric tridiagonal matrix, with zeros on its main diagonal, and bounded 
positive random variables {Wi}ni=0 on the super- and sub-diagonals.

Since Tn is symmetric, componentwise non-negative, and irreducible, it admits a simple maximal eigenvalue 
denoted �max(Tn) , and �max(Tn) > 0 . Our goal is to understand the asymptotic behavior of �max(Tn) , as n → ∞ . 
We begin with an auxiliary result that will be used later on.

Proposition 1  Suppose that the random variables {Wi}ni=0 are i.i.d. and essentially bounded. Fix ǫ > 0 
and an integer 1 ≤ k ≤ n+ 1 . Let K denote the event: there exists an index  0 ≤ ℓ ≤ n− k + 1 such 
that Wℓ, . . . ,Wℓ+k−1 ≥ �W0�∞ − ǫ . Then as n → ∞ the probability of K converges to one.

In other words, as n → ∞ the probability of finding k consecutive random variables whose value is at 
least �W0�∞ − ǫ goes to one.

Proof  Fix ǫ > 0 and a positive integer k. Let s := �W0�∞ − ǫ . For any  j ∈ {0, . . . , n− k + 1} , let K(j) denote 
the event: Wj , . . . ,Wj+k−1 ≥ s . Then

where p is the largest integer such that (p+ 1)k ≤ n . Since the Wi s are i.i.d.,

The probability P(W0 ≥ s) is positive, and when n → ∞ , we have p → ∞ , so P(K) → 1 . 	� �

The next result invokes Proposition 1 to provide a tight asymptotic lower bound on the maximal eigenvalue 
of Tn.

Proposition 2  Suppose that the random variables {Wi}ni=0 are i.i.d. and essentially bounded. Fix ǫ > 0 and an 
integer 1 ≤ k ≤ n+ 1 . Then the probability

(18)Tn :=

















0 W0

W0 0 W1

W1 0
. . .

. . . Wn

Wn 0

















.

P(K) ≥ P
(

K(1) ∪K(k + 1) ∪K(2k + 1) ∪ · · · ∪K(pk + 1)
)

,

P(K) ≥ 1− (1− P(K(1)))p+1

= 1− (1− (P(W0 ≥ s))k)p+1.
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goes to one as n → ∞.

Proof  Let s := �W0�∞ − ǫ . Conditioned on the event K , Proposition 1 implies that there exists an index ℓ such 
that Wℓ, . . . ,Wℓ+k−1 ≥ s . Assume that ℓ = 0 (the proof in the case ℓ > 0 is very similar). Let Mk denote the 
(k + 1)× (k + 1) symmetric tridiagonal matrix:

Recall that the maximal eigenvalue of this matrix is �max(Mk) = 2 cos π
k+2 (see e.g.89). Now, let Pn be the matrix 

obtained by replacing the (k + 1)× (k + 1) leading principal minor of Tn by sMk . Note that Tn ≥ Pn (where 
the inequality is componentwise), and thus �max(Tn) ≥ �max(Pn) . By Cauchy’s interlacing theorem, the largest 
eigenvalue of Pn is larger or equal to the largest eigenvalue of any of its principal minors. Thus,

and this completes the proof of Proposition 2. 	�  �

We can now complete the proof of Theorem 1. Recall that if  A is an n× n symmetric and componentwise 
non-negative matrix then (see, e.g.62, Ch. 8)

In other words, �max(A) is bounded from above by the maximum of the row sums of A. As any row of Tn has at 
most two nonzero elements, Eq. (21) implies that

with probability one. Combining this with Proposition 2 implies that

with probability one. Since this holds for any ǫ > 0 and any integer k > 0 , this completes the proof of Theo-
rem 1. 	�  �

Proof of Theorem 2.  Fix ǫ > 0 and an integer 1 ≤ k ≤ n+ 1 . Let ā(ǫ) := P(W0 ≥ �W0�∞ − ǫ) . The proofs 
of Propositions 1 and 2 imply that

with probability P(K) ≥ 1− (1− (ā(ǫ))k)⌊
n
k ⌋ . Fix b, c > 0 . The trivial bound 1− b < exp(−b) implies that 

1− (1− b)c > 1− exp(−bc) , and thus,

Pick two sequences of positive integers n1 < n2 < . . . and k1 < k2 < . . . , with ki < ni for all i, and a decreasing 
sequence of positive scalars ǫi , with ǫi → 0 . Using Eq. (24) we get

(19)P

(

�max(Tn) ≥ 2(�W0�∞ − ǫ) cos
π

k + 2

)

,

(20)Mk :=

















0 1
1 0 1

1 0
. . .

. . . 1
1 0

















.

�max(Pn) ≥ �max(sMk)

≥ 2s cos

(

π

k + 2

)

.

(21)�max(A) ≤ max
i∈{1,...,n}

n
∑

j=1

aij .

(22)
�max(Tn) ≤ max

i∈{1,...,n}
(Wi−1 +Wi)

≤ 2 max
i∈{0,...,n}

Wi ,

(23)2(||W0||∞ − ǫ) cos

(

π

k + 2

)

≤ �max(Tn) ≤ 2||W0||∞,

(24)�max(Tn) ≥ 2(�W0�∞ − ǫ) cos
π

k + 2
,

(25)
P(K) ≥ 1− (1− (ā(ǫ))k)⌊

n
k ⌋

≥ 1− exp
(

−
⌊n

k

⌋

(ā(ǫ))k
)

.
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Combining this with the spectral representation of the steady-state in the RFM completes the proof of Theo-
rem 2. 	�  �

The proofs of Theorems 3 and 4 below are similar to the proof of Theorem 1, and so we only explain the 
needed modifications in the proof of Theorem 1.

Proof of Theorem 3.  The proof of Proposition 1 remains valid due to the fact that d > 0 is sub-linear in n, 
and we let n → ∞ . Specifically, by the pigeonhole principle it is clear that there must exist a sub-sequence of Zπ , 
of length at least n/d, which consists of consecutive Xi’s; therefore, we can apply the proof of Proposition 1 on 
this sub-sequence. In this case, we note that the range of the parameter p in the proof of Proposition 1 becomes 
(p+ 1)k ≤ ⌊n/d⌋ , and thus as long as n/d → ∞ we have p → ∞ as well. Thus, the conclusion of Proposition 2 
remains valid. The bound in Eq. (22) also holds, due to the condition in Eq. (15). Thus, Eq. (23) holds, and this 
completes the proof of Theorem 3. 	�  �

Proof of Theorem 4.  As in the proof of Theorem 1, define Wi := X
−1/2
i  , i ∈ {0, 1, . . . , n} . The proof of the 

upper bound in Theorem 4 is in fact the same as in Eq. (22). Indeed, in Eq. (22) we show that

which implies the lower bound in Eq. (17). The upper bound in Eq. (17) follows from the same arguments used 
to obtain Proposition 1. Indeed, for any 1 ≤ k ≤ n , let Ik be any set of k consecutive indices in {0, 1, . . . , n} . Let Pn 
be the matrix obtained by replacing the (k + 1)× (k + 1) principal minor that corresponds to the indices Ik of Tn 
by Mk ·mini∈Ik Wi . Note that Tn ≥ Pn (where the inequality is componentwise), and thus �max(Tn) ≥ �max(Pn) . 
By Cauchy’s interlacing theorem, the largest eigenvalue of Pn is larger or equal to the largest eigenvalue of any 
of its principal minors. Thus,

Now, since Eq. (27) holds for any choice of 1 ≤ k ≤ n and Ik ∈ I
n+1
k  , we can maximize the r.h.s. of Eq. (27) with 

respect to these assignments, which implies the upper bound in Eq. (17). 	�  �
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