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Real-world sensory-processing applications require compact, low-latency, and low-power

computing systems. Enabled by their in-memory event-driven computing abilities, hybrid

memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures pro-

vide an ideal hardware substrate for such tasks. To demonstrate the full potential of such

systems, we propose and experimentally demonstrate an end-to-end sensory processing

solution for a real-world object localization application. Drawing inspiration from the barn

owl’s neuroanatomy, we developed a bio-inspired, event-driven object localization system

that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a

neuromorphic resistive memories-based computational map. We present measurement

results from the fabricated system comprising resistive memories-based coincidence

detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental

results to calibrate our system-level simulations. These simulations are then used to estimate

the angular resolution and energy efficiency of the object localization model. The results

reveal the potential of our approach, evaluated in orders of magnitude greater energy effi-

ciency than a microcontroller performing the same task.
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We are entering an era of pervasive computing, where an
exponentially increasing number of devices and sys-
tems are being deployed to assist us in our daily lives.

These systems are expected to operate continuously, dissipating
the lowest possible amount of energy, while learning to interpret
the data they capture from several sensors in real time and produce
a binary output as the outcome of a classification or recognition
task. One of the most important steps required to reach this
objective is to extract useful and compact information from noisy
and often incomplete sensory data1. Conventional engineering
approaches typically sample the sensed signals at constant and high
rates, thus generating huge amounts of data, even in the absence of
useful input stimuli. Moreover, these approaches use sophisticated
digital signal processing techniques to pre-process the input (often
noisy) data. Conversely, biology provides alternative solutions for
processing noisy sensory data, using energy-efficient, asynchro-
nous, event (spike)-driven methods2,3. Neuromorphic computing
draws inspiration from biological systems to reduce the compu-
tational cost in terms of energy and memory requirements, relative
to conventional signal processing techniques4–6. Innovative
general-purpose brain-inspired systems that implement spiking
neural networks (TrueNorth7, BrainScaleS8, DYNAP-SE9, Loihi10,
Spinnaker11) have recently been demonstrated. These processors
offer low-power and low-latency solutions for implementing
machine learning tasks, and for modeling cortical circuits. To take
full advantage of their energy efficiency, these neuromorphic pro-
cessors should be connected directly to event-driven sensors12,13.
However, only few sensory devices exist today that directly provide
event-driven data. Prominent examples are the dynamic vision
sensor (DVS) used for vision applications such as tracking and
motion detection14–17, the silicon cochlea18 and neuromorphic
auditory sensor (NAS)19, used for processing auditory signals, the
olfactory sensor20, and multiple examples of touch sensors used for
texture recognition21,22.

In this article, we present a newly developed event-driven
auditory processing system applied to object localization. Here,
for the first time, we describe an end-to-end system for object
localization that is obtained by coupling the state-of-the-art pie-
zoelectric micro-machined ultrasound transducers (pMUTs) to a
neuromorphic resistive memory (RRAM)-based computational
map. In-memory computing architectures employing RRAMs are
a promising solution to reduce energy consumption23–29. Their
inherent non-volatility—not requiring active power consumption
to store or refresh the information— matches the asynchronous
event-driven nature of neuromorphic computation perfectly,
resulting in virtually no power consumption when the system is
idle. Piezoelectric micromachined ultrasound transducers
(pMUTs) are low-cost, miniaturized silicon-based ultrasound
sensors able to act as emitters and receivers30–34. To process the
signals captured by the embedded sensors, we have taken
inspiration from the neuroanatomy of the barn owl35–37. The
barn owl Tyto alba is known for its exceptional night hunting
capabilities made possible by a very efficient auditory localization
system. To calculate the position of a prey, the barn owl’s loca-
lization system encodes the time-of-flight (ToF) of the sound
wave coming from the prey when it reaches each of the owl’s ears
or sound receptors. Given the distance between the ears, the
difference between the two ToF measurements (interaural time
difference, ITD) makes it possible to compute the azimuthal
location of the target analytically. Although biological systems are
not adapted to solve algebraic equations, they perform localiza-
tion tasks very efficiently. The barn owl’s nervous system makes
use of an array of coincidence detector (CD) neurons35 (i.e.,
neurons able to detect temporal correlations between spikes
propagating down converging excitatory terminals)38,39 orga-
nized into a computational map to solve the localization task.

Previous studies have shown that both complementary metal-
oxide-semiconductor (CMOS) and RRAM-based neuromorphic
hardware inspired by the inferior colliculus (“auditory cortex”) of
barn owl constitute an efficient way to compute the position from
the ITD13,40–46. However, the potential of a full neuromorphic
system that couples auditory signals to the neuromorphic com-
putational map has not yet been proven. The main challenge is the
intrinsic variability of analog CMOS circuits, affecting the coin-
cidence detection precision. An alternative digital implementation
for the ITD estimation has been recently demonstrated47. In this
work, we propose to exploit the ability of RRAMs to change their
conductance value in a nonvolatile manner to counteract the
variability in analog circuits. We implemented an experimental
system consisting of a single emitting pMUTmembrane working at
111.9 kHz, two reception pMUT membranes (sensors) that emu-
late the barn owl’s ears, and a neuromorphic computational map
fabricated by co-integrating a 130-nm CMOS processor with
hafnium-dioxide RRAM devices. We experimentally characterized
the pMUT sensory system and the RRAM-based ITD computa-
tional map to validate our localization system and to estimate its
angular resolution.

We compared our approach to a microcontroller performing
the same localization task using either conventional beamforming
or neuromorphic techniques and to the digital implementation on
a field-programmable gate array (FPGA) for ITD estimation
proposed in ref. 47. This comparison highlights the competitive
energy efficiency of the proposed RRAM-based analog neuro-
morphic system.

Results
Biological background. One of the most striking examples of
precise and efficient object localization systems can be found in
barn owls35,37,48. At dusk and dawn, barn owls (Tyto Alba)
actively search for small prey such as voles or mice relying mostly
on passive listening. These auditory specialists can locate auditory
cues incoming from their prey with astonishing accuracy (about
2°)35, as shown in Fig. 1a. Barn owls infer the localization of a
sound source in the azimuthal (horizontal) plane from the dif-
ference between the Time-of-Flight incoming from the source on
the two ears (ITD). The ITD computation mechanism has been
postulated by Jeffress49,50, it relies on neural geometry and
requires two key ingredients: axons, neuron’s nerve fibers, that act
as delay lines, and an array of coincidence detector neurons
organized into a computational map, as depicted in Fig. 1b. The
sound reaches the ears with an azimuth-dependent time delay
(ITD). In each ear, the sound is then converted into a spike
pattern. Axons from the left and right ears act as delay lines and
converge at CD neurons. In theory, only one neuron of the array
of coincidence neurons will receive simultaneous inputs (where
the delay is compensated exactly), and will fire maximally
(neighboring cells will fire too, but at a lower rate). The activation
of the particular neuron encodes the position of the target object
in space and there is no need to further convert the ITD into an
angle. This concept is summarized in Fig. 1c: for example, if the
sound originates from the right, a coincidence will occur when
the input signal from the right ear travels a longer path than from
the left ear by an amount compensating the ITD, e.g. at coin-
cidence neuron 2. In other words, each CD responds to a specific
ITD (also called Best Delay) because of axonal delays. In this way,
the brain transforms temporal information into spatial informa-
tion. Anatomical evidence has been found for this
mechanism37,51. There are phase-locked neurons of the nucleus
magnocellularis who preserve the temporal information of the
input sound: as their name indicates, they fire at a specific phase
of the signal. The coincidence detector neurons of the Jeffress
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model can be found in the nucleus laminaris. They receive input
from neurons of the nucleus magnocellularis, whose axons serve
as delay lines. The amount of delay provided by delay lines may
be explained by axonal lengths, but also by differential myelina-
tion patterns, changing the conduction speeds. Inspired by the
auditory system of the barn owl, we developed a bio-inspired
system for object localization. The two ears are represented by the
two pMUT receivers. The sound source is a pMUT emitter
located in between (Fig. 1a), and the computational map is
formed by a grid of RRAM-based CD circuits (Fig. 1b, in green)

taking the role of CD neurons, whose inputs are delayed by delay
line circuits (in blue) which act as the axons in the biological
counterpart. The proposed sensory system diverges from that of
the owl in terms of operation frequency, the barn owl hearing
system works in the range 1−8 kHz, but this work uses pMUT
sensors that work at around 117 kHz. The choice of an ultrasound
sensor was pondered around engineering and optimization cri-
teria. The first one is that restricting the band of reception to—
ideally—a single frequency improves the accuracy of the mea-
surement and simplifies the post-processing stage. In addition,

PMUT Receiver L

Neuromorphic 
signal processing 
chip

TOF1

CD
-90o

dt 90
o

DLL

-90o
DLL

-60o
DLL

-30o
DLL

 0o
DLL

 30o
DLL

 60o
DLL

 90o

dt 90
o

DLR

-90o
DLR

-60o
DLR

-30o
DLR

 0o
DLR

 30o
DLR

 60o
DLR

 90o

CD
-60o

CD
-30o

CD
 0o

CD
 30o

CD
 60o

CD
 90o

L ear
R ear

Brain

R
t

L
db

t

ITD

R ear

Nucleus
Laminaris

Nucleus 
Magnocellularis

L
 ear

ITD Computation

ITD Sensing

1 2 3 4 5

TOF2

Interaural Time Difference 
(TOF1 - TOF2)

Place code:
ITD --> Object Location

t1 t2 t3 t4(c)

(a)

(b)

PMUT Receiver R
PMUT Emitter

Delay line
Coincidence detectors

Coincidence detectors

Delay lines

Different time-
of-flight for the 

two ears/sensors

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

PMUT L PMUT R

Neuromorphic
Pre-Processing

Neuromorphic Computational Map

Delay lines
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operating in the ultrasound regime has the advantage of making
the emitted pulse inaudible, and thus not bothersome, for
humans as their auditory range is ~20–20 kHz.

PMUT sensors for time-of-flight measurement. Piezoelectric
micromachined ultrasonic transducers are scalable ultrasound
sensors that can be integrated with advanced CMOS
technology31–33,52, and have lower actuating voltage and power
consumption than conventional bulk transducers53. In our work,
the diameter of the membrane is 880 μm and the resonance fre-
quency spreads in the range 110−117 kHz (Fig. 2a, see “Methods”
for more details). Over a batch of ten tested devices, the median
quality factor is around 50 (ref. 31). This technology has already
reached industrial maturity, and it is not bio-inspired per se.
Combining the information of different pMUT membranes is a
well-known technique to infer angular information from pMUT
devices, using for instance beamforming techniques31,54.

However, the signal processing required to extract the angular
information does not suit low-power sensing. The proposed
system, coupling a neuromorphic circuit for pre-processing of the
pMUT data and a RRAM-based neuromorphic computational
map inspired by the Jeffress model (Fig. 2c), offers an alternative
energy-efficient and resource-constrained hardware solution. We
conducted an experiment locating two pMUT sensors about
10 cm apart from each other, thus fully taking advantage of the
different ToF of sound being sensed by the two receiving mem-
branes. A single pMUT working as an emitter is located in
between the receivers. A 12 cm-wide PVC plate located in front of
the pMUT devices at a distance D was used as a target (Fig. 2b).
The receivers record the sound reflected from the object and
respond maximally at the time-of-flight of the sound wave. The
experiment was repeated varying the position of the object,
defined by its distance D and its angle Θ. Inspired in ref. 55, we
propose a neuromorphic pre-processing of the pMUT raw signal
to convert the reflected waves into spikes that are the input of the
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neuromorphic computational map. The ToF, corresponding to
the wave peak amplitude, is extracted from each of the two
channels and encoded as the precise timing of a single spike.
Figure 2c shows the circuits needed to connect the pMUT sensors
to the RRAM-based computational map: for each of the two
pMUT receivers, the raw signal is band-pass filtered to smooth it
out, rectified, and later passed to a leaky-integrate-and-fire (LIF)
neuron that produces an output event (spike) in case of over-
coming a dynamical threshold (Fig. 2d): the timing of the output
spike encodes the detected time-of-flight. The threshold of the
LIF is calibrated to the pMUT response mitigating the pMUT’s
device-to-device variability. Thanks to this approach, instead of
storing the whole sound wave to memory and process it later, we
simply generate a spike corresponding to the ToF of the sound
wave, which constitutes the input of the resistive memory-based
computational map. The spikes are directly sent to the delay lines
and coincident detector modules organized in parallel into the
neuromorphic computational map. Since they are sent to tran-
sistor gates no additional amplification circuitry is required (see
Supplementary Fig. 4 for additional details). To assess the loca-
lization angular precision allowed by the pMUTs and the pro-
posed signal processing technique, we measured the ITD (i.e., the
time difference between the spike events generated by the two
receivers) when varying the distance and angle of the object. The
ITD is then analytically converted into an angle (see “Methods”)
and plotted as a function of the object position: the uncertainty
over the measured ITDs grows with both the object’s distance and
angle (Fig. 2e, f). The main challenge is the peak-to-noise ratio
(PNR) in the pMUT response. The more distant the object is
located, the lower the acoustic signal, thus lowering the PNR
(Fig. 2f, green line). The decrease in the PNR leads to an increase
in the uncertainty over the estimated ITD and consequently on
the precision of the localization (Fig. 2f, blue line). For an object
located 50 cm away from the emitter, the system’s angular pre-
cision is about 10°. This limit, imposed by the sensor’s char-
acteristics, can be improved. For example, the pressure sent by the
emitter can be increased raising up the voltage driving the
pMUT’s membrane34. Another solution to strengthen the emitted
signal is to couple several emitters56. These solutions would
extend the range of detection at the price of an added energy cost.
Other improvements can be performed on the receiving side. The
noise floor of the pMUT receiver could be drastically reduced
improving the connections between the pMUT and the first stage
amplifier, currently done using wire-bonding and RJ45 cables.

RRAM-based neuromorphic computational map. Resistive
memories store information in their nonvolatile conductive
states. The basic working principle of this technology is that
modifying a material at the atomic level results in changes of its
conductance57. Here, we use an oxide-based resistive memory
composed of a 5 nm hafnium-dioxide layer sandwiched between a
top and a bottom electrode of titanium and titanium nitride. The
conductivity of an RRAM device can be modified by the appli-
cation of current/voltage waveforms, which create or break a
conductive filament composed of Oxygen vacancies between the
electrodes. We have co-integrated such devices in a standard
130 nm CMOS process58 to build a fabricated re-configurable
neuromorphic circuit implementing coincidence detectors and
the delay lines circuits (Fig. 3a). Both the non-volatility and
analog nature of the devices perfectly couple with the event-
driven nature of the neuromorphic circuits, minimizing power
consumption. The circuit has an instant on/off feature: it works
immediately after being turned on, allowing to cut the power
supply entirely as soon as the circuit is idle. The basic building
block of the proposed circuit is presented in Fig. 3b. It is

composed of N parallel one-resistor-one-transistor (1T1R)
structures, encoding the synaptic weights, from which a weighted
current is extracted and then injected to a common differential
pair integrator (DPI) synapse59, and finally into a leaky-integrate-
and-fire (LIF) neuron60 (see “Methods” for more details). The
input spikes are applied at the gates of the 1T1R structures as
trains of voltage pulses, with a pulse width on the order of
hundreds of nanoseconds. The resistive memories can be SET
into a high conductance state (HCS) by applying an external
positive voltage reference on Vtop while grounding Vbottom, and
RESET into a low conductive state (LCS) by applying a positive
voltage on Vbottom while grounding Vtop. The mean value of the
HCS can be controlled by limiting the SET programming (com-
pliance) current (ICC) via the gate-source voltage of the series
transistor (Fig. 3c). The function of RRAMs in the circuit is dual:
they route and weigh input pulses.

First, thanks to the two main conductive states (HCS and LCS),
the RRAMs can either block or pass the input pulses when they
are respectively in the LCS or HCS state. As a result, RRAMs
efficiently define the connections in the circuit. This is
fundamental to allow the architecture to be re-configurable. In
order to prove that, we characterized a fabricated circuit
implementation of the circuit block in Fig. 3b. An RRAM
corresponding to G0 was programmed into the HCS and a second
RRAM, G1, was programmed in the LCS. Input pulses were
applied to both Vin0 and Vin1. The effect of two input trains of
pulses was analyzed in the output neuron, by collecting the
membrane voltage and output of the neuron with an oscilloscope.
The experiment is successful when only the pulses connected to
the neuron by the HCS device (G0) excite the membrane voltage.
This is demonstrated in Fig. 3d, where the blue train of pulses
makes the membrane voltage accumulate charge on the
membrane capacitor, whereas the green train of spikes leaves
the membrane voltage unperturbed.

The second important function of RRAMs is implementing the
weight of the connections. By exploiting the analog adjustment of
the RRAMs conductance, the input-to-output connection can be
appropriately weighted. In a second experiment, the device G0 is
programmed in different HCS levels and an input pulse is applied
to the input VIn0. The input pulse extracts a current from the
device (Iweight) which is proportional to the conductance and the
corresponding potential drop Vtop− Vbot. This weighted current
is then injected into the DPI synapse and output LIF neuron. The
membrane voltage of the output neuron is recorded with an
oscilloscope and plotted in Fig. 3e. The peak of the neuron
membrane voltage responding to a single input pulse is
proportional to the conductance of the resistive memory,
confirming that RRAMs can be exploited as programmable
synaptic weight elements. These two preliminary tests demon-
strate that the proposed RRAM-based neuromorphic platform is
able to implement the basic elements of the Jeffress basic
mechanism, namely the delay line and coincidence detector
circuits. The circuital platform is constituted by stacking
consecutive blocks, as the one in Fig. 3b, side-by-side and
connecting their gates to common input lines. We designed,
fabricated, and tested a neuromorphic platform composed of two
output neurons and receiving two inputs (Fig. 4a). The layout of
the circuit is shown in Fig. 4b. The upper 2 × 2 RRAM matrix
allows to route of the input pulses to the two output neurons,
while the lower 2 × 2 array allows the two neurons (N0, N1) to be
recurrently connected. We demonstrate that this platform can
assume a delay line configuration and two distinct coincidence
detector functionalities, as summarized by the experimental
measurements in Fig. 4c–e.

The delay line (Fig. 4c) simply exploits the dynamical behavior
of the DPI synapse and LIF neuron to reproduce the input spike
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from Vin1 to Vout1 with a delay Tdel. Only the RRAM connecting
Vin1 to Vout1, G3, is programmed into the HCS, while the other
RRAMs are in the LCS. The G3 device is programmed to 92.6 μS
to ensure that each input spike increases the membrane voltage of
the output neuron sufficiently to reach the threshold and to
generate a delayed output spike. The delay Tdel is defined by both
the synapse and neuron time constants. A coincidence detector
detects the occurrence of temporally correlated but spatially
distributed input signals. A direction insensitive CD relies on
separate inputs converging to a common output neuron (Fig. 4d).
The two RRAMs connecting Vin0 and Vin1 to Vout1, G2 and G4,
respectively, are programmed into the high conductance state.
The synchronous arrival of spikes at Vin0 and Vin1 pushes the
membrane voltage of the neuron N1 over the threshold required
to generate an output spike. If the two inputs arrive too far apart
in time, the charge on the membrane voltage accumulated by the
first input may have time to decay away, preventing the
membrane potential of N1 to reach the threshold. The G1 and
G2 are programmed to around 65 μS, ensuring that a single input
spike does not increase the membrane voltage enough to generate
an output spike. Coincidence detection between spatially and
temporally distributed events is a basic operation common to a
wide range of sensing tasks, such as optical flow-based obstacle
avoidance61, and sound source localization. Consequently, the
computation of both direction-sensitive and -insensitive CDs are
fundamental building blocks to build for both visual and sound
localization systems. The proposed implementation of the circuit
fits a range of four orders of magnitude of time scales, as shown
by the characterization of the time constant (see Supplementary
Fig. 2). It can therefore fit with the requirements of both visual

and sound systems. The direction-sensitive CD is a circuit
sensitive to the spatial order of arrival of impulses: from right to
left or vice versa. This is a basic building block in the elementary
motion detection network of Drosophila’s visual system to
compute the direction of motion and detection of collisions62.
To implement a direction-sensitive CD the two inputs have to be
routed to two different neurons (N0, N1) and between those, a
directional connection has to be established (Fig. 4e). Upon the
arrival of the first input, N0 responds by increasing its membrane
voltage up to overcoming its threshold and emitting a spike.
Thanks to the directional connection in green, this output event
in turn excites N1. If the Vin1 input event arrives to excite N1

when its membrane voltage is still high, N1 will produce an
output event, signifying the detection of coincidence between the
two inputs. The directional connection allows N1 to emit an
output only if input 1 arrives after input 0. The G0, G3, and G7

are, respectively, programmed to 73.5 μS, 67.3 μS, and 40.2 μS,
ensuring that a single input spike at Vin0 generates a delayed
output spike, while the membrane potential of N1 reaches the
threshold only upon the synchronous arrival of two input spikes.

Variability in neuromorphic circuits and RRAM-based cali-
bration procedure. Variability is a source of non-ideality in
analog neuromorphic systems63–65. It results in heterogeneous
behaviors among neurons and synapses. Examples of such
imperfections include for example 30% (mean value over stan-
dard deviation) of variability on input gain, time constants and
refractory period, to name a few (see “Methods”). This issue is
more pronounced when several neuron circuits are connected
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130 nm CMOS technology, with its selector transistor (width of 650 nm) in green. b Basic building block of the proposed neuromorphic circuit. Inputs
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together, as in the case of the direction-sensitive CD, which
consists of two neurons. To function properly, the input gain and
decay time constants of the two neurons should be as similar as
possible. For example, large differences in input gain may result
in a neuron responding excessively to an input pulse, while the
other being almost insensitive. Figure 5a shows that randomly

selected neurons respond differently to the same input pulse. This
neuron variability has an impact on e.g. the functionality of the
direction-sensitive CD. In the circuit characterized in Fig. 5b, c,
neuron 1 presents a much higher input gain than neuron 0. As a
result, neuron 0 requires three input pulses (instead of 1) to reach
the threshold, while neuron 1 reaches the threshold with two

N0

N1

Vin

Vout1

N0

N1

Vin0

Vout1

N1

Vin0

Vin1

Vout1

Vbot Vbot

N0 N1

N0

N1

Vout0

Vin1

(e)

(d)

Direction Sensitive CD

Direction Insensitive CD

in1

N1

Vin1

N0

N1

Vout0

Vout1

(c)

Delay Line

Vin0

Vin1

Vout0

Vout1

Vin0

Vin1

Vout0

Vout1

Vin0

RRAM-based 
Neuromorphic Platform

Vout1

(a)

(b)

COINCIDENCE NO COINCIDENCE

G0 G1

G2

G4

G6

G3

G5

G7

G3=92.6μS

G1=71.3μS
G3=62.1μS

G0=73.5μS
G3=67.3μS
G7=40.2μS

t0 t1

tout

t0

t1

tout

t2

t3Δt1

tout

t1

0

0

[V]

[V]

tN1

Δt2

Δt

Tdel

[V]
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input events, as expected. The implementation of the bio-inspired
spike-timing-dependent plasticity (STDP) is a possible way to
mitigate the impact of the imprecise and sluggish neuron and
synapse circuits on the system performances43. Here, we propose
to exploit the plastic behavior of the resistive memory as a mean
of acting on the input gain of neurons and reduce the impact of
the neuromorphic circuit variability. As demonstrated in Fig. 4e,
the conductance level associated with an RRAM synaptic weight
effectively modulates the response of the associated neuron
membrane voltage. We adopt an iterative RRAM programming
strategy. For a given input, the conductance value of the synaptic
weights is re-programmed until the target circuit behavior is
obtained (see “Methods”).

The two elements employed in the ITD computational map are
the delay lines and direction insensitive CD. Both circuits need to
be precisely calibrated to ensure the good performance of the
object localization system. The delay line has to precisely deliver a
delayed version of the input spike (Fig. 6a), the CD must be
activated only when the inputs fall within the target detection
range. For the delay line, the synaptic weight of the input
connection (G3 in Fig. 4a) is re-programmed until the target delay
is obtained. A tolerance around the target delay is set to stop the
procedure: the smaller the tolerance, the harder it is to
successfully tune the delay line. Figure 6b shows the result of
the calibration procedure for the delay line: as it can be seen the
proposed circuit can precisely provide all the delays required in
the computational map (from 10 to 300 μS). The maximum
number of calibration iterations affects the quality of the
calibration procedure: 200 iterations allow the error to be reduced
to less than 5%. One calibration iteration corresponds to a SET/
RESET operation of the RRAM cell. The tuning procedure is also
crucial to improve the accuracy of the detection of the temporally
close events of the CD module. Ten calibration iterations are

needed to reach a true positive rate (i.e., rate of events correctly
detected as correlated) higher than 95% (blue line in Fig. 6c).
However, the tuning procedure has no effect on false-positive
events (i.e., rate of events incorrectly detected as correlated).
Another technique observed in biological systems which solves
the time constraint of rapidly activated pathways is redundancy
(i.e., many copies of the same entity are used to fulfill a given
function). Taking inspiration from biology66, we stacked multiple
CD circuits in each CD module between two delay lines to reduce
the effect of false-positive detection. As shown in Fig. 6c (green
lines), stacking three CD elements in each CD module allows
reducing the false-positive rate to less than 10−2.

System assessment. We now assess the performance and power
consumption of the end-to-end integrated object localization
system presented in Fig. 2 using the measured results of the
acoustical characterization of the pMUT sensors, the CD, and the
delay line circuits composing the neuromorphic computational
map inspired by the Jeffress model (Fig. 1a). Regarding the
neuromorphic computational map, the higher the number of CD
modules, the better the angular resolution, but also the higher the
system energy (Fig. 7a). A trade-off is reached by comparing the
precision of the single components (both pMUT sensors, and
neuron and synapse circuits) with that of the whole system. The
resolution of delay lines are limited by the time constants of the
analog synapses and neurons, which are greater than 10 μs in
our circuits, corresponding to an angular resolution of 4° (see
“Methods”). A more advanced CMOS technology node would
enable the design of neuron and synapse circuits with lower time
constants and consequently higher precision of the delay line
element. However, in our system, the precision is limited by the
pMUT uncertainty in the estimation of the angular position, that

Delay Line

tdel

Stddel

VIn [V]

Vmem [V]

(b)

(d)

0 Iterations

25 Iterations

200 Iterations

1 CD element

2 CD elements

3 CD elements

Fig. 6 Performance of the delay line and direction insensitive CD circuits and impact of the RRAM calibration procedure. a Impact of the neuron
variability on the delay line circuit. b The delay line circuit can be scaled up to larger delays, setting the time constant of the corresponding LIF neuron and
DPI synapse to larger values. Increasing the iterations of the RRAM calibration procedure enabled us to substantially improve the precision on the target
delay: 200 iterations allow the error to be reduced to less than 5%. One iteration corresponds to a SET/RESET operation on the RRAM cell. c Each CD
module in the Jeffress model can be implemented with N-parallel CD elements, to be more resilient to system failures. dMore RRAM calibration iterations
allow to improve the true positive rate (blue line), while the false-positive rate is independent of the number of iterations (green lines). Stacking more CD
elements in parallel enabled us to avoid false coincidence detection from a CD Module.
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is 10o (dark-blue horizontal line in Fig. 7a). We fixed the number
of CD modules to 40, corresponding to an angular resolution of
about 4o, that is the computational map angular precision (light-
blue horizontal line in Fig. 7a). At the system level, this results in
a 4o resolution and 10o precision for an object located in front of
the sensory system at a distance of 50 cm. This value is com-
parable to the sound localization neuromorphic system reported
in ref. 67. A comparison of the proposed system with the state-of-
the-art can be found in Supplementary Table 1. Adding extra
pMUTs, boosting the acoustic signal level, and bringing down the
electronic noise are possible ways to further improve the locali-
zation precision. The single bank power consumption for the
neuromorphic pre-processing of the pMUT signal (see Fig. 2) is
evaluated at 9.7 nW, according to ref. 55. Accounting for the 40
CD modules in the computational map, the energy per operation
(i.e. energy to localize an object) estimated by SPICE simulations
is 21.6 nJ. The neuromorphic system is activated only at the
arrival of an input event, i.e., when the sound wave reaches any of
the pMUT receivers and overcomes the detection threshold, and
kept idle otherwise. This allows avoiding unnecessary energy
consumption when no input signal is present. Considering a rate
of localization operations of 100 Hz and an activation period of
300 μs per operation (maximum possible ITD), the power con-
sumption of the neuromorphic computational map results being
of 61.7 nW. Accounting for the neuromorphic pre-processing
applied to each of the pMUT receivers brings the total system’s
power consumption to 81.6 nW. To gain a perspective on the
energy efficiency of the proposed neuromorphic approach com-
pared to conventional hardware, we benchmark this figure to the
energy required for running the same task on a state-of-the-art
low-power microcontroller68 using either neuromorphic or con-
ventional beamforming techniques. The neuromorphic method
accounts for an analog-digital-converter (ADC) stage followed
by a Band-Pass filter and an envelope extraction stage
(Teager–Kaiser method). Finally, a thresholding operation is
performed to extract the ToF. We omit the computation of the
ITD based on the ToF and the conversion to the estimated
angular position as it happens once per measurement (see
“Methods”). Assuming a sampling frequency of 250 kHz on the
two channels (pMUT receivers), 18 operations for the band-pass
filter, 3 operations for the envelope extraction, and 1 operation
for the thresholding per sample, the estimate of the overall power
consumption leads to 245 μW. This leverages the micro-
controller's low-power mode69 which is enabled when not per-
forming the algorithm, reducing the power consumption to
10.8 μW. The power consumption for the beamforming signal
processing solution proposed in ref. 31, accounting for 5 pMUT
receivers and 11 beams equally distributed in the [−50o,+50o]
azimuthal plane is 11.71 mW (see “Methods” for the details).

Furthermore, we report the power consumption of the FPGA-
based Temporal-Difference-Encoder (TDE)47, as an alternative to
the Jeffress model for object localization, evaluated at 1.5 mW.
Based on these estimations, the proposed neuromorphic
approach achieves a reduction of five orders of magnitudes in
power consumption relative to a microcontroller adopting a
classical beamforming technique for an object localization
operation. Adopting a neuromorphic signal processing approach
on a classical microcontroller reduces the power consumption of
about two orders of magnitude. The efficiency of the proposed
system can be attributed to the combination of the asynchronous,
resistive memory-based analog circuits able to perform in-
memory computing, along with the absence of analog-to-digital
conversion of the sensed signal.

Discussion
To minimize the energy consumption of the object localization
system, we envisioned, designed, and implemented an efficient,
event-driven RRAM-based neuromorphic circuit that processes
signal information produced by embedded sensors to calculate a
targeted object’s position in real time. Whereas conventional
processing techniques would continuously sample the detected
signal and crunch calculations to extract the useful information,
the proposed neuromorphic solution computes asynchronously
as the useful information arrives: this has allowed us to increase
the system’s energy efficiency by five orders of magnitude. Fur-
thermore, we highlight the flexibility of RRAM-based neuro-
morphic circuits. The capability of RRAMs to change their
conductance in a nonvolatile manner (plasticity) compensates for
the inherent variability of the ultra-low-power analog DPI
synapse and neuron circuits. This makes such RRAM-based cir-
cuits versatile and powerful. Our goal is not to extract complex
features or patterns from a signal, but to locate an object in real
time. Our system is also capable of efficiently compressing the
signal and eventually sending it to a subsequent processing stage,
if needed, for more complex decision-making. In the context of a
localization application, our neuromorphic pre-processing stage
can provide information about the position of a target. This
information can be used, for example, for motion detection or
gesture recognition. We stress the importance of coupling ultra-
low-power sensors, such as pMUTs, with ultra-low-power elec-
tronics. To do so, the neuromorphic approach has been key, as it
led us to the design of novel circuit implementations of
biologically-inspired computational methods such as the Jeffress
model. In the context of sensor fusion application, our system can
be coupled with several different event-based sensors to compute
more accurate information. Although owls can perfectly locate
their prey in the dark, they have an excellent vision, and prey
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system FPGA
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Fig. 7 Power consumption and angular resolution of the presented neuromorphic sensory and signal processing system. a Angular resolution (blue) and
energy consumption (green) of one localization operation as a function of the number of CD modules. The dark-blue horizontal bar represents the angular
precision of the PMUTs while the light-blue horizontal bar represents the angular precision of the neuromorphic computational map. b Power consumption
of the proposed system and comparison with the two discussed implementations on a microcontroller and the digital implementation on an FPGA of the
temporal-difference encoder (TDE)47.
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capture is preceded by combined auditory and visual search70.
When a specific auditory neuron fires, the owl has the informa-
tion needed to determine in which direction to start the visual
search, focusing its attention on only small subsets of the visual
scene. Combining visual sensors (DVS cameras) and the pro-
posed audition sensor (pMUT based) should be explored to
develop future autonomous agents.

Methods
Acoustic measurement setup and pMUT characterization. pMUT sensors are
arranged in a printed circuit board, separating the two receivers of about 10 cm,
with the emitter between the receivers. In this work, each membrane is a suspended
bimorph structure made of two 800-nm-thick piezoelectric aluminum nitride
(AlN) layers sandwiched between three 200-nm-thick Molybdenum (Mo) layers,
covered by a 200-nm-thick top SiN passivation layer, as reported in ref. 71. Inner
and outer electrodes are patterned on the bottom and the top Mo layers, while the
middle Mo electrode is not patterned and used as the ground, resulting in a
membrane with four electrode pairs.

This architecture enables to exploit the whole deformation of the membrane,
resulting in a enhanced drive and receive sensitivity. Such a pMUT typically
presents a drive sensitivity of typically 700 nm/V as an emitter, delivering a surface
pressure of 270 Pa/V. As a receiver, a single pMUT membrane presents a short-
circuit sensitivity of 15 nA/Pa, directly related to the piezoelectric coefficients of
AlN. The technological variability of the stress within the AlN layers results in a
resonant frequency variation which is compensated by applying a DC bias to the
pMUT. The DC sensitivity has been measured at 0.5 kHz/V. For acoustic
characterization, a microphone is used in front of the pMUT.

For pulse-echo measurements, we positioned a rectangular plate of about
50 cm2 in front of the pMUTs, reflecting the emitted sound wave. Both the distance
of the plate and the angle with respect to the pMUT plane are controlled utilizing
dedicated supports. Tectronix CPX400DP voltage sources bias the three pMUT
membranes to tune the resonant frequency to 111.9 kHz31, while the emitter is
controlled by a Tectronix AFG 3102 pulse generator set close to the resonance
frequency (111.9 kHz), and a duty cycle of 0.01. The currents read at the four
output ports of each pMUT receiver are converted into a voltage by a dedicated
differential current-to-voltage architecture and the resulting signal is digitized by a
Spektrum acquisition system. We characterized the limit of detection by collecting
the pMUT signal in different conditions: we moved the reflecting plate at different
distances [30, 40, 50, 60, 80, 100] cm and varied the angle of the pMUT support
([0, 20, 40]o). Figure 2b shows the relationship between the temporal resolution in
detecting ITD and the corresponding angular position in degrees.

Design and fabrication of neuromorphic circuits. Two different fabricated
RRAM circuits are used in this article. The first is a 16,384 (16k) device array
(128 × 128 devices) of one-transistor/one-resistor, 1T1R, structures. The second
chip is the neuromorphic platform presented in Fig. 4a. The RRAM cell consists of
HfO2 5-nm-thick film sandwiched in a TiN/HfO2/Ti/TiN stack. The RRAM stack
is integrated into the back end Of Line (BEOL) of a standard 130 nm CMOS
process. RRAM-based neuromorphic circuits present the challenge of designing a
fully analog electronic system in which the RRAM devices coexist with conven-
tional CMOS technology. In particular, the conductive state of the RRAM devices
has to be read and utilized as a functional variable of the system. To do so, a circuit
that reads a current from a device upon arrival of an input pulse and that uses such
current to weight the response of a differential pair integrator (DPI) synapse has
been designed, fabricated, and tested. The circuit is shown in Fig. 3a and it
represents the basic building block of the neuromorphic platform in Fig. 4a. The
input pulses activate the gate of the 1T1R devices, resulting in a current flow
through the RRAM proportional to the conductance of the device, G (Iweight=
G(Vtop− Vx)). The operational amplifier circuit (OPAMP) has a constant DC bias
voltage VTop applied to its inverting input. The negative feedback of the OPAMP
will act to ensure that Vx= Vtop, by sourcing an equal current from transistor M1.
The current extracted from the device, Iweight, is injected onto the DPI synapse.
Stronger currents will result in greater depolarization, thus the RRAM’s con-
ductance effectively implements the synaptic weight. This exponential synaptic
current is injected onto the membrane capacitor of a leaky-integrate and fire (LIF)
neuron where it integrates as a voltage. If the threshold voltage of the membrane
(the switching voltage of an inverter) is overcome, the output section of the neuron
is activated, producing an output spike. This pulse feeds back and shunts the
neuron membrane capacitor to the ground such that it is discharged. The circuit is
then complemented by a pulse extender, not shown in Fig. 3a, that reshapes the
output pulse of the LIF neuron to the target pulse width. Further multiplexers were
integrated on each line in order to be able to apply voltages to the top and bottom
electrodes of the RRAM devices.

Circuit measurement setup and RRAM characterization. The electrical tests
involved analyzing and recording the dynamical behavior of analog circuits as well
as programming and reading RRAM devices. Both phases required dedicated
instrumentation, all simultaneously connected to the probe card. RRAMs devices in

the neuromorphic circuits are accessed from the external instrumentation by
means of multiplexars (MUXs). The MUXs decouple the 1T1R cell from the rest of
the circuit where they belong, allowing to read and/or program the device. For
programming and reading the RRAM devices, a Keithley 4200 SCS machine was
used combined with an Arduino microcontroller: the first for precise pulse gen-
eration and current reading, the second to fast access a single 1T1R element in the
memory array. The first operation is the forming of the RRAM devices. The cells
are selected one by one and a positive voltage was applied between the top and
bottom electrodes. At the same time, the current is limited to the order of tens of
micro-amperes by applying an appropriate gate voltage to the selector transistor.
Afterward, the RRAM cells can be cycled between the low conductance state (LCS)
and the high conductance state (HCS) through RESET and SET operations,
respectively. SET operations are performed with a positive square voltage pulse of
1 μs width and 2.0−2.5 V peak voltage applied to the Top Electrode, and a similarly
shaped synchronous pulse with 0.9−1.3 V peak voltage applied to the gate of the
selector transistor. Such values allow to modulate the RRAM conductance in the
20−150 μS interval. For the RESET, a pulse of 1 μs width and 3 V peak is applied to
the bottom electrode (Bit Line) of the cell while the gate voltage is in the 2.5−3.0 V
range. Inputs and outputs of the analog circuits are dynamical signals. In the case
of the input, we have alternated two HP 8110 pulse generators with a Tektronix
AFG3011 waveform generator. Input pulses have a width of 1 μs and rise/fall edge
of 50 ns. This type of pulse is assumed as the stereotypical spiking event in the
spike-based analog circuit. Concerning the outputs, a 1 GHz Teledyne LeCroy
oscilloscope was utilized to record the output signals. The acquisition speed of the
oscilloscope has been proven not to be a limiting factor analyzing and collecting
data from the circuits.

Variability in neuron and synapse circuits. Exploiting analog electronics’
dynamics to mimic the behavior of neurons and synapses is an elegant and efficient
solution to improve computation efficiency. The downside of such a computational
substrate is that it is subject to variability, from circuit to circuit. We quantified the
variability in neuron and synapse circuits (Supplementary Fig. 2a, b). Of all the
manifestations of variability, the most impactful at the system level are the ones
concerning the time constant and the input gain. The time constant of LIF neurons
and DPI synapses is defined by an RC circuit, where the R value is controlled by a
bias voltage applied to a transistor’s gate (Vlk for neurons, Vtau for synapses),
defining the leakage rate. Input gain is defined as the peak voltage reached by the
synapse and neuron membrane capacitor stimulated by an input pulse. The input
gain is controlled by another biased transistor modulating the input current. Monte
Carlo Simulations calibrated on ST Microelectronics 130 nm process are performed
in order to collect some statistics about the input gain and the time constant. The
results are plotted in Supplementary Fig. 2 where input gain and time constant are
quantified as a function of the bias voltage controlling the leakage rate. Green
markers quantify the standard deviation of the time constants with respect to the
mean value. Both neuron and synapse circuits are capable of expressing a wide
range of time constants, in the 10−5−10−2 s range, as shown in Supplementary
Fig. 2c, d, while the variability is quantified at 30% for both the neuron and synapse
circuit. The input gain (Supplementary Fig. 2e, d) variability is around 8% and 3%
for the neuron and synapse respectively. Such defects are well documented in the
literature: in the family of DYNAP chips, different measurements have been per-
formed to evaluate the mismatch across a population of LIF Neurons63. Synapses in
the Mixed-Signal chip BrainScale have been measured and the mismatch between
them analyzed, also proposing a calibration procedure to reduce the variability
impact at the system level64.

RRAM-based calibration procedure. The function of RRAMs in the neuro-
morphic circuit is dual: defining the architecture (routing inputs to outputs) and
implementing synaptic weights. The latter property can be exploited to mitigate the
problem of variability in analog neuromorphic circuits. We developed a simple
calibration procedure that consists in re-programming the RRAM device until the
circuit under analysis meets certain requirements. For a given input, the output is
monitored and the RRAMs are re-programmed until the target behavior is
achieved. A 5 s waiting time is introduced between programming operations to
mitigate the RRAM Relaxation issue, causing temporal fluctuations of the con-
ductance (Supplementary Information). The synaptic weights are adapted or
calibrated to the requirements of the analog neuromorphic circuit. Focusing on the
two basic functionalities of the Neuromorphic Platform, the delay lines, and
direction insensitive CD, the calibration procedure is summarized in Supplemen-
tary Algorithms [1, 2]. For the delay line circuit, the target behavior is to deliver the
output pulse with a delay Δt. If the actual delay of the circuit is smaller than the
target, the synaptic weight G3 has to be decreased (the G3 has to be RESET and
then SET with a lower compliance current, Icc). Contrarily, if the actual delay is
longer than the target, the conductance of G3 has to be reinforced (the G3 has to be
RESET and then SET with a higher Icc). This procedure is repeated until the delay
produced by the circuit matches the target, with a tolerance set to stop the cali-
bration procedure. For the direction insensitive CD, the calibration procedure
involves two RRAM devices, G1 and G3. The circuit is provided with two inputs,
Vin0 and Vin1 delayed by dt. The circuit must only respond to delays lower than the
coincidence range [0,dtCD]. When an output spike is absent, whereas the input
spikes are close, both the RRAM devices must be reinforced in order to help the
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neuron reach the threshold. Conversely, if the circuit responds to delays larger than
the target range dtCD, the conductances have to be decreased. The procedure is
repeated until the correct behavior is obtained. The compliance current can be
modulated by the embedded analog circuit presented in refs. 72,73. Exploiting this
embedded circuit, one could perform such procedure periodically to calibrate the
system or to re-purpose it for different applications.

Estimation of the power consumption on a microcontroller. We estimate the
power consumption of a neuromorphic signal processing approach on an off-the-
shelf 32-bits microcontroller68. In this estimation, we assumed to operate with an
identical setup to the one presented in this work, with one pMUT emitter and two
pMUT receivers. The method accounts for a band-pass filter followed by an envelope
extraction stage (Teager–Kaiser method), and finally a thresholding operation applied
to the signal to extract the time-of-flight. The computation of the ITD and its con-
version to the detected angle are omitted in the estimation. We consider the band-
pass filter to be implemented with a 4th order Infinite Impulse Response filter,
requiring 18 floating-point operations. Envelope extractionmakes use of further three
floating-point operations, and a final operation is due for thresholding. In total, 22
floating-point operations are required for pre-processing the signal. The signal sent is
a short pulse of a 111.9 kHz sine wave, produced every 10ms, resulting in a 100 Hz
localization operation frequency. We adopt a 250 kHz sample rate to respect the
Nyquist theorem and a 6-ms window per measurement to capture a range of 1 m.
Note that 6 ms is the time-of-flight for an object located at 1 m distance. This gives a
power consumption of 180 μW for the analog-to-digital conversion of 0.5 MSPS. The
pre-processing of the signal accounts for 6.60 MIPS (instructions per second),
resulting in 0.75 mW. However, the microcontroller can be switched to a low-power
mode69 while not running the algorithm. This mode allows for a static 10.8 μWpower
consumption and has a wake-up time of 113 μs. Considering the clock rate of
84MHz, the microcontroller terminates all the operation of the neuromorphic
algorithm well within the 10ms period, with a 6.3% duty cycle for the algorithm
computation, thus taking advantage of the low-power mode. The resulting power
consumption is 244.7 μW. Note that we omit the derivation of the ITD from the ToFs
and the conversion to the detected angle, thus underestimating the power con-
sumption in the microcontroller. This gives further value to the energy efficiency of
the proposed system. As a further term of comparison, we estimate the power con-
sumption of a classical beamforming approach, presented in refs. 31,54, when
embedded on the same microcontroller68 under a 1.8 V supply voltage. Five evenly
spaced pMUT membranes are used to provide data for the beamforming. About the
processing itself, the beamforming technique used is the delay-and-sum. It simply
consists of applying a delay to the channels corresponding to the expected time
difference of arrival between one channel and a reference channel. If the signals are in
phase, once time-shifted, the sum of these signals will exhibit high energy. If they are
not in phase, destructive interference will limit the energy of their sum. In ref. 31, a
2MHz sample rate is chosen to time-shift the data by an integer number of samples.
A more frugal approach consists in keeping a coarser 250 kHz sample rate and using
finite-impulse-response (FIR) filters to synthesize fractional delays. We will consider
that the beamforming algorithm complexity is dominated by the time-shifting
because of the convolution of each channel with a 16 taps FIR filter for each direction.
To calculate the number of MIPS required for this operation, we consider using a
6-ms window per measurement to capture a 1-meter range, 5 channels, 11 beam-
forming directions (+/−50° range with a 10° step). Already 75 measurements
per second push the microcontroller to its maximum of 100 MIPS. According to
ref. 68, this results in a power consumption of 11.26mW, which gives a total power
consumption of 11.71mW when adding the on-chip ADC contribution.

Data availability
The data that support the findings of this study are available from the corresponding
author, F.M., upon reasonable request.
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