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1. Introduction 
 

An emerging technology, comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry 
(GC×GC/TOF-MS), brings much increased signal-to-noise ratio, dynamic range, chemical selectivity, and sensitivity to 
metabolomics analyses [1-4]. This approach uses a multidimensional separation technique, where a short column after the main 
analytical column, to separate as many compounds as possible [5,6]. The orthogonal setup of two columns in separation part makes 
GC×GC/TOF-MS platform get an order-of-magnitude increase in separation capacity, which is very important for the analysis of 
many complex samples. 

 
After analyzing these samples using GC×GC/TOF-MS, it is necessary to recognize molecular features of the same compound 

occurring in different samples from each of the raw instrument data [7,8]. Ideally, the same compound should have the identical 
retention times in the two-dimensional GC if the instrument configuration is the same. However, retention times always shift in 
both GC dimensions as a result of several, sometimes uncontrollable factors such as temperature and pressure fluctuations, matrix 
effects on samples, and stationary phase degradation. Retention time shifts introduce difficulty to compare compound profiles 
obtained from multiple samples. Therefore, aligning the instrumental signals which generated from same compounds in different 
samples, i.e., peak alignment, have to consider the retention time variation [9].   

 
Currently, four studies addressed alignment issue for the two-dimensional GC separations using the raw instrument data as input 

material. Fraga et al. developed a rank-based algorithm using the generalized rank annihilation method (GRAM) to correct retention 
time variations in the two- dimensional GC [10,11] . Mispelaar et al. developed a correlation-optimized shifting-based algorithm to 
align a local region of a GC×GC chromatogram [12]. These two methods can only be used to align small regions of interest in the 
two-dimensional GC data set. To correct the entire chromatogram in both GC dimensions, Pierce et al. proposed an indexing 
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scheme together with a piecewise retention time alignment algorithm [13]. Zhang et al. developed a two dimensional correlation 
optimized warping (2-D COW) method by extending the correlation optimized warping method from 1-D to 2-D [14,15]. 

However, these methods align the GCGC/TOF-MS data based on two-dimensional retention times alone, even though the 
signature feature of a metabolite, i.e., mass spectrum of fragment ions, is readily available in the raw instrument data. Aligning 
metabolite peaks solely based on the two dimensional retention times may introduce a high rate of false alignment because some 
metabolites with similar chemical functional groups have similar retention times in both GC dimensions. For this reason, two peak 
alignment methods, MSort [16] and DISCO [17], were developed. In these two methods, the raw instrument data are first subjected 
for spectrum deconvolution to generate a list of metabolite peaks for each sample, of which each metabolite peak is characterized by 
multiple molecular features including retention times in the two-dimensional GC, peak area, fragment spectrum, and other associated 
features. Both of MSort and DISCO employ two dimensional retention times and the mass spectrum of compound fragment ions 
for peak alignment. MSort was designed to align homogeneous data, while DISCO can align homogeneous and heterogeneous data. 
These two methods greatly reduced the rate of false alignment compared to existing alignment approaches. However, MSort and 
DISCO softwares use a user-defined retention time window with a fixed size in the two retention time dimensions to filter the peak 
candidates first, then the peak pair with the highest similarity will be choose as corresponding peaks in the different experiments if 
its value is bigger than a user-defined threshold. The separated application of retention time distance and spectrum similarity increase 
false alignment since there is no a golden criteria to select the distance window and the spectrum similarity threshold.  

 
To overcome the limitations of current alignment algorithms, this paper reports a novel alignment algorithm for GC×GC/TOF-

MS which can consider the distance and spectrum similarity together and automatically set up the threshold values. After the peak 
lists are generated from instrumental software, the present algorithm is implemented using a two-stage strategy. In the first stage, 
landmark peaks, a set of compound peaks present in each biological sample, are selected from the entire original peak lists using a 
mixture similarity comprised of the Euclidean distances of two-dimensional retention times and mass spectrum similarity of two 
corresponding peaks. In the second stage, retention time shifts are corrected using a local partial linear fitting method to handle non-
linear retention time distortion, and the compound peaks of all samples then are aligned using a progressive retention time map 
searching method.  
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Figure 1. Workflow of the two-stage peak alignment algorithm. 
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2. Methods 
 
For each experimental run, ChromaTOF will generate a peak list analyzed by instrumental software under predefined parameters. 

For all of the peak lists, our algorithm will align them using a two-stage peak alignment algorithm: stage one is full alignment which 
will find the peaks present in all lists and align them together; stage two is partial alignment which will align all remained peaks from 
stage one based on the results of full alignment. The workflow can be described as Figure 1. 

 
In our method, a mixture similarity measurement is adopted to judge two peaks from different peak list are from the same 

compound or not. This mixture similarity mS  can be calculated as follows: 
 

SimwddwmS  )1())/(1( 2

max
                                                                                                                                      

 

where w  is contribution factor, d  is the Euclidean distance of two peaks in two-dimensional retention time space, maxd  is the 

maximum distance for all peaks within all samples, and Sim  is Pearson’s correlation value of spectra of two peaks.  
 
The alignment algorithm is implemented using a two-stage strategy: full alignment and partial alignment. In the full alignment, 

the peaks presented in all peak lists will be found and aligned together. Meanwhile, the parameter w  and maxd  in the formula (1) can 
be obtained for the partial alignment.  
 
 

 
2.1.1 Peak merging 

 
Assuming there is a set of peak lists:

1 2( , , , )NS s s sL , our algorithm will merge the peaks which come from the same compound 

in each peak list. Ideally, all instrument signals generated by one type of metabolite should be reported as a single peak in the output 
file of ChromaTOF software, i.e., one peak entry in the metabolite peak list. However, multiple peak entries of the same metabolite 
can be reported due to the abnormal metabolite peak shape and/or the high sensitivity of the peak detection algorithm. Therefore, 
the multiple entries should be merged before peak alignment. 
 

1) Initialize a user-defined retention time window RT1w, RT2w, and a user-defined mass spectrum similarity 0R , set 1,1  ji ; 
 

2) For the 
thi peak  iii rtrtp 2,1  in the 

thj  peak list js
, if the 

thi peak is the last peak in the peak list js
, set 1,1  jji  when Nj 

, or stop when Nj  , otherwise our algorithm will store this peak into a peak set 
final

candiateP  and extract all peaks within 

)11,1( wRTrtrt ii   as 
1rt

candiateP   
 

3) If 
1rt

candiateP  is not empty, extracts all peaks within )22,2( wRTrtrt ii  as 
2rt

candiateP  within
1rt

candiateP , else set 1 ii go to step 2); 
 

4) If 
2rt

candiateP is not empty, the spectrum similarity between ip  and all the peaks in 
2rt

candiateP  will be calculated. If there are some peaks 

have similarity values which are bigger 0R , those peaks can be seen as multiple entries candidate candiateP of ip , else set 1 ii  go to 
step 2);  
 

5) If candiateP is not empty, store candiateP  into 
final

candiateP , let wRTrtrt ii 111   and go to step 2), else if the number of peaks in 
final

candiateP  is 

bigger than 1, our algorithm will extract all the peaks in
final

candiateP  from the peak list js
, then merge them together as a new peak within 

js
 and set its peak area and retention time as:  
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where npA
denotes peak area of the representative peak, ipA

is peak area of the ith multiple entry to be merged, k  is the index number 

of multiple peak entries to be merged, npRT
denotes retention time of the representative peak, ipRT

 is the retention time of the ith 
multiple entry to be merged. Here, the retention time is either the first dimension retention time or the second dimension retention 
time. 
 

6) Set 1 ii , and go to step 2); 
 
 
2.1.2 Z-score transformation 

 
For typical GC×GC/TOF-MS configuration, the second GC column is much shorter than the first column, which will result in 

the second retention time is smaller than the first retention time obviously. To balance the contribution of the two dimensional 
retention times, the retention time values in both the first and the second dimension GC are therefore transformed into z-scores as 
following: 
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                                                                                                                                     (4) 
 

where 1zRT  is the z-score value after transformation, 1RT  is the original value of the first dimension retention time, 1RT   is the mean 

value of the original first dimension retention times within a peak list, 1RT  is the standard deviation of the original first dimension 
retention times. Accordingly, the symbols in the second dimension retention time have similar meanings. For all the peaks in all peak 

lists, the pairwise distances will be calculated and the maximum value is chosen as maxd . 
 
 
2.1.3 Landmark peak finding 

 
The purpose of full alignment is to find a list of landmark peaks which present in all peak lists. Therefore, one of peak lists has 

been selected randomly from sample set ),,,( 21 NsssS   as reference sample Rs , and the remain are seen as target sample set 

)1,,2,1}({  NisS i  . Then landmark peaks can be found as follows: 
 

1) Selecting a sample randomly as the target sample Ts  from the set of remaining samples S , then { }iS s ( 1, ,i N t L ). 
 

2) For each peak rp in the reference sample Rs , our algorithm will extract the peaks with same name from the target sample Ts  as a 

candidate peak set 
sameName

candidateP , and choose the one with the minimum distance from rp  in z-score transformation space of retention 

time as the corresponding peak tp of rp in Ts .  
 

3) Storing the peak pair ( rp , tp ) into a set of landmark peaks 
lpP . 

 

4) Updating the reference sample Rs  using the peaks which has found the corresponding peak, and if the number of sample in S  is 
not one, go to step 1), else stop. 

 

After landmark peaks set 
lpP  has been found, we can get an optimized value of w  from a candidate value set 

(0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95). For each sample pair ),( i

TR ss where Rs  is the reference sample and 
i

Ts )1,,2,1(  Ni   

from the remained samples, our algorithm calculate the mixture similarity mSim  of the each landmark peak using the formula (1), 

and get a summary value mS for each sample pair. And choose the w  value with the largest summary value of mS  as the optimized 
value for each sample pair. 
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The partial alignment is to align the remained peaks which are not the landmark peaks selected the full alignment. After full 

alignment, we already get the value of maxd  and w  in formula (1) and a set of landmark peaks which present in all the samples. 
However the remained peaks also should be aligned together even they present in part of samples. Our algorithm will use an outlier 
detection method to decide the threshold of distance and similarity automatically, and implement partial alignment based on those 
threshold values. 
 
2.2.1 Outlier detection 

 
Our algorithm considers the landmark peaks as true peak alignment, therefore the information from the landmark peaks can be 

used to help the partial alignment because the remained peaks are detected by the same experimental conditions and the same data 

processing procedure. Here we select the maximum peak distance 0d , the minimum similarity 0Sim  and the minimum mixture 

similarity 0mS  as threshold to judge the remained peaks from different sample come from same compound or not. 
 
However, because the complexity of sample source and some inevitable variation from experiment, the data points will be further 

away from the mean value of the above three parameters than what is deemed reasonable. The simple selection of the extreme value 
of parameters as the threshold will cause faulty alignment of peaks. Therefore, our algorithm remove the outliers using Grubbs’ test 

method from the above three parameters, and set the threshold values 0d , 0Sim  and 0mS after outlier removal. 
 
2.2.2 Peak alignment 

Our algorithm aligns the remained peaks in a pair wise way, i.e. ),( i

TR ss where Rs  is the reference sample and 
i

Ts )1,,2,1(  Ni   

from the remained samples. For each sample pair ),( i

TR ss , the remained peaks are aligned as follows: 
 

1) For each peak ip  in Rs , the peak ip in 
i

Ts , if they satisfy the criteria that 0),( dppd ji 
and 0),( SimppSim ji 

, the peak pair 
),( ji pp
 will be selected as a candidate peak pair and store into a candidate set 

i

candidateP . 
 

2) Within 
i

candidateP , all peak pairs have the same name which assigned by ChormaTOF software will be extracted as a subgroup 
sameName

candidateP , and assign the remained peak pairs as another subgroup 
sameName

candidateP . 
 

3) For each compound name, we account the times present within 
sameName

candidateP , if it just presents in one peak pair, this peak pair will be 

seen as the same compound and transfer this pair into aligned peak pair set 
i

alignedP
; if it presents in more than one peak pair, the peak 

pair with the largest mS  value will be transferred into 
i

alignedP
, and remove all pairs in 

sameName

candidateP  consists of either peak of this peak 

pair. Repeat this step until 
sameName

candidateP  is empty. 
 

4) Removing all peak pairs in 
sameName

candidateP  with the same peak within 
i

alignedP
. 

 

5) If 
sameName

candidateP  is not empty, our algorithm will transfer the peak pair with the largest mS  value from
sameName

candidateP  into 
i

alignedP
, and 

remove all  pairs in 
sameName

candidateP  consists of either peak of this peak pair. Repeat this step until 
sameName

candidateP  is empty. 
 

6) The above steps 1)-5) will be repeated until all sample pair ),( i

TR ss )1,,2,1(  Ni   are aligned and all
i

alignedP
are combined into 

partial alignment result alignedP
. 

 

7) After partial alignment, our align algorithm will be finished with combination of full alignment result 
lpP  and partial alignment 

result alignedP
. 
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3. Results and discussion 
 

 
A mixture of 76 compounds (8270 MegaMix, Restek Corp., Bellefonte, PA) and C7-C40 saturated n-alkanes (Sigma-Aldrich 

Corp., St. Louis, MO) were spiked with a deuterated six component semi-volatiles internal standard (ISTD) mixture (Restek Corp., 

Bellefonte, PA) at a concentration of 2.5 µg/mL prior to GCGC/TOF-MS analysis. 
 
The performance of our algorithm was tested by aligning three datasets, which are replicate analyses of the same sample using an 

identical two dimensional GC configuration with different column temperature gradients, i.e., 5 oC /min, 7 oC/min, and 10 oC 
/min, respectively. To evaluate the performance of our proposed algorithm more objectively, the experiments ramped at different 
temperature gradients have been repeated different times, i.e., 10 replicate analyses for 5 oC /min, 3 replicate analyses for 7 oC/min, 
and 4 replicate analyses for 10 oC/min. The design of the different repeat times of different experimental conditions will help us to 
evaluate how robustness our algorithm is. The experiments can be found in our previous work in more details [17]. 
 

 
Here the algorithm performance is evaluated by three measurements, i.e., true positive rate (TPR), positive predictive value 

(PPV), and F1 score of the peak alignment. For the sample set ),,,( 21 NsssS  , if a compound presents in all N samples, it will be 

called as a positive peak pair. After peak alignment, if the number of positive peak pairs is pN
and the number of matched peak pairs 

is mN , then the values of TPR, PPV and F1 score can be calculated as follows: 
 

)/( FNTPTPTPR                                                                 
 

)/( FPTPTPPPV                                                                  (5) 
 

)/(21 PPVTPRPPVTPRF               
 
where TP is the number of positive peak pairs that were aligned as positive (true positive), FP is the number of negative peak pairs 

that were aligned as positive (false positive) and is mN -TP, FN is the number of positive peak pairs that were not aligned (false 

negative) and is pN
-TP. TPR is also called recall and PPV precision and F1 score is their harmonic mean.  

 

 

 
One of advantages of our algorithm proposed here is there are no predefined parameters when the peak alignment is 

implemented. The method can automatically decide the threshold of Pearson’s correlation of two spectra, the distance window in z-
score transformation retention time space and the mixture similarity value. However, the complexity of samples and some inevitable 
variations of experiments may make the distributions of these parameters not normal. Our algorithm decides the thresholds based on 
the landmark peaks, which are presented all the samples. Except the information of retention time and spectrum similarity, our 
algorithm also uses the peak name assigned by the ChromaTOF software. After the full alignment, the distribution of parameters: 

Eculid distance, spectrum similarity mS , and mixture similarity mSim  can be found in Figure 2. It can be seen that the each 
distribution of three parameters has an apparent tail. Therefore, the simple selection of maximum or minimum of these parameters 
may cause some inaccurate setting. Our algorithm uses an outlier detection method to remove the observations which are distant 
from the rest of the parameters, which makes the selections more reasonable.  
 

 
Our algorithm is tested using the experimental data which are generated under different temperature gradient setup, i.e., 5 

oC/min, 7 oC/min, and 10 oC/min. Therefore, 17 peak lists can be obtained from ChromaTOF where each peak list means one 
sample analyzed by GC×GC/TOF-MS, and they can be denoted as 5 5 5

1 2 105( , , , )C C CS s s s  L , 7 7 7

1 2 37( , , )C C CS s s s   , and 
10 10 10 10

1 2 3 410( , , , )C C C CS s s s s     for the different temperature gradients respectively. After peak alignment, the overall performance can be 

found in Figure 3. 
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Obviously, the performance will be changed along with the sample size because the more samples will be aligned, the fewer peaks 

will present in all samples, and the fewer peaks will be aligned together. The number of positive peak pairs pN
 is 72 for the 7, 67 

for 10, 66 for 5 and 63 for all degree gradients experiments. The number of matched peak pairs mN  is 64, 64, 57 and 43 for 7, 10, 
5 and all degree gradients experiments.  
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Figure 2. The distribution of Pearson’s correlation, Euclid distance and mixture similarity of peak pairs. 

Figure 3. The overall performance of peak alignment. 
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For Figure 3, we can also found that the PPV values our algorithm achieved in all different data sets are 1.0, which means false 
positive is zero based on the above definition of PPV. Our alignment algorithm can make sure the peaks what we aligned together 
are come from the same compound, therefore it can solve the false positive problem which is the most limitation of current peak 
alignment methods.   
 
 

Conclusions 
 
This paper proposed a new two-stage peak alignment algorithm, which is consist of full alignment and partial alignment, to align 

the GC×GC/TOF-MS data. The present algorithm uses a set of peak lists which is output of the instrument control software, 
ChromaTOF, as its input data. In the full alignment, multiple peak entries of the same compound were detected firstly and merged 
into one peak. A z-score transformation was applied to balance the contribution of the first and second dimensional retention times 
in the peak distance calculation. Landmark peaks then were found based on the information from two-dimensional retention times, 
the mass spectrum similarity and the assigned compound name by ChromaTOF. In the partial alignment, our algorithm can 
automatically set up the threshold of peak distance, mass spectrum similarity and mixture similarity value to recognize the same 
compound from different experiments. A progressive retention time map searching method then is used to align metabolite peaks in 
all samples together based on the landmark peaks found in the full alignment.  

 
Our algorithm can avoid a user-defined threshold of retention time window in the first and second dimension, as well as a 

threshold of spectrum similarity, which is very difficult task for the users since the experimental condition is always changed in 
different experimental runs, even for the repeat experiments. This kind of design can avoid the problems caused by improper 
parameter selection and inconsistency among samples. Another advantage of this work is taking full advantage of the information 
generated by experimental instrumental software, i.e. the two dimensional GC retention times, fragment ion spectrum correlation and 
database information which implicated by the compound name assigned by ChromaTOF.  

 
The performance of the present algorithm was tested by experimental data where the samples were analyzed under different 

experiment conditions. The results show that our algorithm can work well in peak alignment from real biological samples. As a 
critical step of data pre-processing, the alignment results achieved by our propose methods can be used effectively for further analysis 
such as pattern recognition and statistical significance testing.  
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