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Abstract: Stevia rebaudiana (Bertoni) leaves consist of dietetically important diterpene steviol glyco-
sides (SGs): stevioside (ST) and rebaudioside-A (Reb-A). ST and Reb-A are key sweetening com-
pounds exhibiting a sweetening potential of 100 to 300 times more intense than that of table sucrose.
Ultrasound-assisted extraction (UAE) of SGs was optimized by effective process optimization tech-
niques, such as response surface methodology (RSM) and artificial neural network (ANN) modeling
coupled with genetic algorithm (GA) as a function of ethanol concentration (X1: 0–100%), sonication
time (X2: 10–54 min), and leaf–solvent ratio (X3: 0.148–0.313 g·mL−1). The maximum target responses
were obtained at optimum UAE conditions of 75% (X1), 43 min (X2), and 0.28 g·mL−1 (X3). ANN-GA
as a potential alternative indicated superiority to RSM. UAE as a green technology proved superior
to conventional maceration extraction (CME) with reduced resource consumption. Moreover, UAE
resulted in a higher total extract yield (TEY) and SGs including Reb-A and ST yields as compared
to those that were obtained by CME with a marked reduction in resource consumption and CO2

emission. The findings of the present study evidenced the significance of UAE as an ecofriendly
extraction method for extracting SGs, and UAE scale-up could be employed for effectiveness on an
industrial scale. These findings evidenced that the UAE is a high-efficiency extraction method with
an improved statistical approach.

Keywords: Stevia rebaudiana; ultrasound-assisted extraction; stevioside; rebaudioside-A; optimization

1. Introduction

Stevia rebaudiana (Bertoni) is classified as a shrub belonging to the Asteraceae family
that originated primitively from the Amambay region of Paraguay. Stevia as a non-caloric
natural sweetener has a long history of use in various parts of the world as a substitute for
artificial sweeteners and sucrose such as, Brazil, China, South Korea, and Japan [1,2]. In
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these days, the concerns pertaining to adverse health effects of artificial sweeteners, such as
Acesulfame-K and Saccharin have been on verge of rise and have fostered the attempts to
explore alternative natural sweetening compounds [3,4].

S. rebaudiana (Bert.) contains a wide variety of several important phytochemicals:
diterpenes, triterpenes, labdane, stigmasterol, volatile oils, tannins, and a total of eight
steviol glycosides (SGs). These diterpene glycosides are dulcoside, stevioside (ST), stevi-
olbioside, rebaudioside-A (Reb-A), Reb-B, Reb-C, Reb-D, and Reb-E. ST and Reb-A have
200–300 and 400 times higher sweetness intensities, respectively, when compared with
normal table sugar (sucrose) [5]. Back in 2011, the European Food Safety Authority (EFSA)
gave approval to stevia as a food additive and non-caloric sweetener with an approved
acceptable daily intake (ADI) of 4 mg/kg BW for steviol glycosides (SGs). Similarly in
2008, the U.S. Food and Drug Administration (FDA) gave approval to stevia glycosides for
usage in the form of a highly purified extract by granting it a Generally Recognized as Safe
(GRAS) status [2,6].

The classical extraction methods of SGs have also been reported in various published
reports; stir-aided classic thermal extraction, decoction and infusion [7], conventional
cold solvent extraction via different extractants [8], sorbitol, glycerin, and propylene gly-
col [9], hot water extraction [10], maceration extraction (cold and hot), Soxhlet extraction,
hydro-distillation [11], water extraction [12], and traditional mix-stirring [13]. However,
conventional extraction approaches are laborious, less efficient, and possess certain disad-
vantages namely lower extract yields of target compounds, high usage of solvents, time
and energy, thermo-induced deterioration of the bioactive components in plant matrices,
in conjunction with volatile compounds loss at elevated temperatures [14]. By contrast,
modern green extraction techniques, i.e., supercritical fluid extraction, ultrasound-assisted
extraction (UAE), and microwave-assisted extraction offer improved selectivity, increased
stability, and render clean extracts with adequate organoleptic properties [14]. Among
these, UAE has emerged as a promising technique that is efficient, simple, and economically
cost-effective. These techniques positively impact the efficiency by increasing one or more
prominent extraction parameters governing the extraction mechanisms: interfacial region,
extractions kinetics, and the mass transfer of solutes from the plant matrices [14,15].

Response surface methodology (RSM) as a process optimization technique involves the
exploitation of sophisticated mathematical and statistical techniques for the development,
improvement, and optimization of the processes. Artificial neural network (ANN), which is
inspired from the functioning of the biological brain, has emerged as a powerful non-linear
computational technique for complex non-linear processes owing to its strong learning
and predictive modeling capacities [1,16]. The genetic algorithm is one of the optimization
algorithms that is known as the heuristic approach inspired from the concept of “survival
of the fittest” and is widely reported to yield feasible optimal solutions with a known
fitness function. The depiction of the fitness value vs generation plot for the genetic
algorithm are shown in Figure S1, whereas the setting parameters of genetic algorithm that
are used in the optimization of process are provided in Table S1. The hybrid ANN-GA
method is usually implemented by employing the RSM-ANN data points for algorithm
initialization. In a recent report by Yahya et al. [17], it was implied by researchers that the
application of ANN-GA led to achieve higher predictive accuracy with more proximity
to the experimental data in comparison with those of RSM-predicted values. Pertaining
to the best of our information and knowledge in the open literature, there is no research
report that is available currently with respect to ANN and RSM comparison for optimizing
UAE of ST and Reb-A from S. rebaudiana (Bert.) leaves. Previous research was carried out
to optimize the UAE condition for steviol glycosides extraction, however no structured
statistical approach was employed [18] and no numerical data trend was analyzed by
further applying multivariate techniques, such as principal component analysis (PCA) and
RSM. Moreover, in another report, only RSM was utilized to optimize the UAE extraction
conditions for steviol glycosides but the authors did not compare the predictive modeling
efficiency with improved approaches, such as ANN and GA [19]. This is probably the



Foods 2022, 11, 883 3 of 24

first report about using a hybrid RSM-ANN-GA approach on the optimization of UAE
conditions for bioactive components-rich Stevia rebaudiana (Bertoni) leaves extract. The
need to intensify the extraction of th main bioactive sweetening compounds such as Reb-A
and ST from S. rebaudiana (Bert.) leaves has led to explore the optimization of the UAE
process. UAE extraction conditions require improvement, and modeling of UAE is critical
for identifying the optimum extraction conditions that are suited to market factors. Water
and ethanol as extraction solvents have been reported in published literature [20]. However,
ethanol as an extraction solvent has been preferred by some researchers for SGs extraction
owing to its GRAS status; recovery of higher extraction yields because of the presence of a
hydroxyl group in organic solvents of polar nature, such as ethanol; and it has been also
exploited as a green solvent for bioactive components extraction from plant matrices and
high quality foods, such as pigments, resins, antioxidants, resins, and essential oils etc. [21].

This study was aimed at the employment of the CCD design configuration (five-level-
three-factor) of RSM and an ANN-based model development along with comparison to
optimize the UAE process parameters to elucidate the influence of independent process
variables on target sweetening compounds recovery—total extract yield (TEY), ST, and
Reb-A yields from matrix o stevia leaf powder and this can be achieved at optimum UAE
conditions. The CCD based-independent practical variables such as the concentration of
ethanol (X1), UAE-assisted sonication time (X2), and the ratio of leaf to solvent (X3) were
employed for the determination of process parameter effects on the recovery of extract and
sweetening compounds (ST and Reb-A). Experimental data that were obtained from the
CCD configuration at specified design points was utilized to develop the ANN-GA model
to get the best possible optimized solutions. Moreover, the conventional maceration and
UAE extraction methods were compared in terms of the obtained TE, ST, and Reb-A yields;
energy consumption; and CO2 emission. Therefore, a hybrid RSM-ANN-GA approach
was employed for the optimization of UAE conditions for bioactive component-rich Stevia
rebaudiana (Bertoni) leaves extract.

2. Materials and Methods
2.1. Stevia Leaf Powder Preparation, Reagents and Chemicals

The dried stevia leaves of Vietnamese origin (harvested in 2015) were procured from
the Daepyung Co., Pvt. Ltd. (Hamchang-Eup, Sangju-Si, Gyeongsangbuk-Do, Korea). A
fine leaf powder was obtained by grinding through use of dry grinder (Lab-scale, FM-909
T, Hanil Electric Co., Seoul, Korea). Polythene bags were used for tightly packing the finely
ground leaf powder followed by storage at −10 ◦C until further experiments.

2.2. Conventional Maceration Extraction Procedure

As the control method, CME was carried out as per the methodology details in the
reported method of Alupului et al. [7]. The stevia leaf powder was taken in a quantified
amount of 10 g followed by mixing in a closed Erlenmeyer flask with distilled water
(300 mL). Then, the mixture was subjected to standing time of 24 h at ambient room
temperature (28 ◦C). After the completion of standing time, the crude extract was filtered
with Whatman Filter Paper No. 41 (GE Healthcare, Buckinghamshire, UK) and then Falcon
tubes (50 mL) were used to keep the clear extracts. Then, the tubes were subjected to storage
at after tightly closing the tubes caps at 4 ± 1 ◦C storage temperature until further analyses.

2.3. Ultrasound Assisted Extraction Procedure

UAE of S. rebaudiana (Bert.) was completed procedurally in accordance with the
method of Liu et al. [13] with some modifications by using a microprocessor-controlled
bench-top sonication cleaning bath (Powersonic-420, Hwashin Tech. Co. Seoul, Korea).
Subsequently, the extraction was carried out by placing the flask in the ultrasonic bath at
ambient room temperature (28–30 ◦C) in accordance CCD-specified conditions. After UAE,
the liquid extracts were subjected to vacuum filtration under reduced pressure and then
filtration was performed using Whatman filter paper No. 41 followed by pouring the clean
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extracts in Falcon tubes (50 mL). Then, the tubes were subjected to storage after tightly
closing the tubes caps at 4 ± 1 ◦C storage temperature until further analyses.

2.4. Preliminary Screening Study and RSM-Based Experimental Design

A preliminary screening study was carried out for determining the appropriate ranges
of independent UAE process variables: ethanol concentration (X1), sonication time (X2),
and leaf–solvent ratio (X3) on the basis of a literature review [13,22,23]. X1 was varied from
0 to 100% by keeping X2 and X3 fixed at 32 min and 0.23 g·mL−1, respectively. Similarly,
X2 was changed within a range of 10–54 min, while both X1 and X3 were kept fixed at
50% and 0.23 g·mL−1, respectively. Similarly, X3 was varied from 0.148 to 0.313 g·mL−1,
while X1 and X2 were subjected to fixing at defined levels of 50% and 32 min, respectively.
The preliminary experimental results that are shown in Figure 1 revealed increases in the
response variables (Y1: TEY, Y2: ST yield, and Y3: Reb-A yield) with corresponding rises in
the input variables, and hence, were selected as the most influential parameters. All the
UAE experimental runs were carried out in accordance with the specifications that were laid
down by a 3–factor–5–level CCD. Moreover, all the independent process parameters were
varied over 5 levels (−α, −1, 0, +1, +α) with the variables coding according to Equation (1):

xi =
Xi − Xcp

∆Xi
where i = 1,2,3, . . . , k (1)

In Table 1, the description of the input UAE process variables with their particular
experimental ranges is given, along with their units and coded notations (Equation (2))

Y = β0 +
n

∑
i=1

βiXi +
n−1

∑
i = 1
j > 1

n

∑
j=2

βijXiXj +
n

∑
i=1

βiiX2
i + ε (2)

where Y designates the target responses, whereas β0 denotes the constant coefficient. βi, βii,
and βij are indicative of the regression coefficients pertaining to the UAE process variables
corresponding to linear, quadratic, and interaction effects, respectively. The independent
UAE process variables are presented by Xi and Xj, respectively, and ε depicts the error.

Table 1. UAE process parameters with their particular experimental ranges and levels.

Input Variable
Variable Range and Levels (Coded)

Unit Code −1.68 (−α) −1 0 1 1.68 (+α)

Ethanol concentration % X1 0 25 50 75 100
Sonication time min X2 10 21 32 43 54

Leaf to solvent ratio g/mL X3 0.148 0.18 0.23 0.28 0.313

2.5. Artificial Neural Network (ANN) Modeling

ANN is a powerful modeling tool owing to its learning and generalization capabilities
for approximating complex behaviors of non-linear processes. Multilayer perceptron
(MLP), a feed-forward ANN architecture with back propagation (BP) algorithm, was
chosen because of its capacity to model any function [1], and subsequently trained in order
to map the input layer (X1, X2, X3) and output layer (Y1, Y2, Y3) for the development of
a predictive model. Figure 2A shows a three-layered topology (architecture) of an ANN
model. The manipulation of the ANN architecture was carried out by varying the neuron
number in the hidden layer. It comprised of 3 layers: input, hidden, and output layers.
The ANN model topology was specified in terms of 3-h-3; whereby 3 neurons of the input
layer corresponded to 3 input variables, h was designated to the number of neurons in a
single hidden layer, and 3 neurons in the output layer corresponded to the target responses.
The number of neurons in the input and output layers was defined by the corresponding
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number of input (X1, X2, X3) and output (Y1, Y2, Y3) variables, respectively. The same set of
experimental data that were employed for RSM modeling were subjected to the simulation
by ANN modeling. Using the experimental data, building to various network topologies
was performed followed by training, testing, and subsequently validation through variation
in the number of hidden layers over a range from 1 to 10, and a number of neurons in
the hidden layer from 1 to 15 was also varied with the sole objective to minimize the
degree of deviations between the experimental and predicted values. A feed-forward ANN
comprising MLP with BP algorithm was developed by using the Neural Network Toolbox™
of MATLAB R2015b. An entire experimental dataset was divided into 3 sets that were
named training, validation, and training. Data points proportion that were employed for
various purposes was designated as follows: 70% (14 points) for training of network, 15%
(3 points) to validate the developed model architecture, and the leftover 15% (3 points) was
employed to fulfill the testing purpose. In this study, the sigmoid transfer function was
employed at the hidden layer and a linear transfer function was used for activating the
neurons at the process parameters (input) and target responses (output) layers. A trial and
error searching method was used to carry out the training process until the attainment of
minimum mean square error (MSE) during the validation process.

2.6. Genetic Algorithm

The data that were obtained from the developed ANN network was employed as
the initial population using a genetic algorithm (GA) through RStudio software (RStudio
Community, Boston, MA, USA). “R” and its libraries implement a wide variety of statistical
and graphical techniques, including linear and nonlinear modeling, classical statistical tests,
time-series analysis, classification, clustering, and others [24]. The following R packages
were utilized to complete the GA optimization; Tidyverse, GA, Ranger, Tidymodels, Caret,
and Tictoc packages. As an iterative and population-based global search optimization
algorithm, GA has been widely utilized as a hybrid approach with ANN to optimize
non-linear complex problems. While implementing a hybrid ANN-GA algorithm for
optimization, several steps are involved, such as initialization; selection pertaining to
fitness evaluation followed by genetic operators, such as reproduction, crossover and
mutation; and all these steps are sequentially performed until the obtainment of optimal
solutions [25]. Regarding the setup related to the problem under evaluation, GA was
subjected to selection using different functions, such as the solver and fitness functions from
ANN, that were employed as the objective function in GA implementation for achieving
maximum values of all the target responses. The further optimization endorsement of the
UAE conditions was carried out through the use of a genetic algorithm (GA) by employing
the RSM-ANN-generated dataset as the initial population. In the case of employing the
objective function in GA implementation, it is imperative to utilize only the scalar values
instead of the first- or second-order functional derivatives. The network data from the
developed and trained RSM-ANN was trained for the objective function, and GA was
implemented with maximization of the problems.

2.7. Determination of Total Extract Yield (TEY)

TEY was calculated by using the reported method of Ameer et al. [1] with some
modifications. A tarred round bottom flask was utilized for transferring the obtained
extract followed by evaporation by means of a rotary evaporator that was operated under
the vacuum condition. Then, a hot air oven was used to dry the flask at 105 ◦C until
complete dryness to a constant weight followed by weights calculation using the following
Equation (3):

Total extract yield (%) =
A – B

W
×100 (3)

where, A represents the constant weight of flask with sample after oven drying, B denotes
the empty dry flask weight, whereas W denotes the total sample weight.



Foods 2022, 11, 883 6 of 24
Foods 2022, 11, x FOR PEER REVIEW 5 of 25 
 

 

 

 

Figure 1. Effect of X1 (ethanol concentration) on TEY (%) target response, (a) the effect of X1 (ethanol 
concentration) on ST and Reb-A yields (mg/g), (b) ST yield: sonication time effect on TEY (%) target 
response, (c) sonication time effect on ST and Reb-A yields (mg/g), (d) Leaf-to-solvent ratio effect on 
the TEY (%) response, (e) Leaf-to-solvent ratio effect on ST and Reb-A yields (mg/g) responses (f). 

Figure 1. Effect of X1 (ethanol concentration) on TEY (%) target response, (a) the effect of X1 (ethanol
concentration) on ST and Reb-A yields (mg/g), (b) ST yield: sonication time effect on TEY (%) target
response, (c) sonication time effect on ST and Reb-A yields (mg/g), (d) Leaf-to-solvent ratio effect on
the TEY (%) response, (e) Leaf-to-solvent ratio effect on ST and Reb-A yields (mg/g) responses (f).
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responses (D). 

  

Figure 2. Optimal architecture of the multiplayer perceptron (MLP) topology of the developed ANN
model. (A) Depiction of the network training curves demonstrating the number of Epochs for the
trained subsets for TEY (%) target response, (B) ST yield (mg/g), (C) and Reb-A yield (mg/g) target
responses (D).

2.8. HPLC Analysis

The sample preparation for HPLC analysis was procedurally completed as per the
details that were described by Erkucuk, Akgun, and Yesil-Celiktas [26]. HPLC quantifica-
tion of SGs including ST and Reb-A was carried out in accordance with the international
standard guidelines that were specified by Joint FAO/WHO Expert Committee on Food
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Additives (JECFA) approved at the 69th meeting being held in Geneva and were published
in the FAO/JECFA monograph [27]. Agilent-1260 HPLC system (Agilent Tech., Santa Clara,
CA, USA) with UV detector (210 nm) was employed for the detection and quantification of
target steviol glycosides (ST and Reb-A) in the UAE extracts. The column named TSKgel
Amide–80 column (4.6 mm ID, 250 mm length, and 5 µm particle size) that was supplied
by Tosoh Bioscience Corp., Tokyo, Japan was employed to separate the ST and Reb-A.
Maintenance of column temperature and was kept at the ambient room temperature of
25 ◦C in order to carry out the HPLC analysis. A mobile phase consisting of a mixture of
acetonitrile and water (80:20 v/v) was used for chromatographic separation of SGs at a flow
rate of 1 mL min−1. The mobile phase pH was maintained at a specific value of 3 using
phosphoric acid (5.9 N). A sample volume of 20 µL was injected during all the runs. SGs
including ST and Reb-A percentages were calculated through the JECFA-specified formula
for all steviol glycosides as shown below in Equations (4) and (5).

X (%) = [
Ws

W
]× [

fxAx

As
]×100 (4)

In this equation, X expresses the percentage of ST, Ws represents the ST dry weight in
milligrams present in standard solution, and W represents the sample’s dry weight (mg)
in the sample solution. Ax and As represent the peak areas of ST from the sample and
standard solutions, respectively. fx corresponds to the ratio of molecular weight of steviol
glycoside (X) to molar mass of ST (804.872 g/mol) or Reb-A (967.013 g/mol).

Reb-A that was present in sample solution was quantified by using the following
formula in accordance with the protocol that was published in the FAO/JECFA monograph.

Reb-A (%) = [
WR

W
]× [

Ax

AR
]×100 (5)

In this equation, WR represents the dry weight of Reb-A (mg) that was present in the
standard solution while W is the dry weight of the sample (mg) in the sample solution. As
in the case of ST, and AR and Ax represent the Reb-A peak areas from the standard and
sample solutions, respectively.

2.9. Statistical Analysis

The Optimization Toolbox™ (for implementing second-order polynomial central
composite design of RSM), Neural Network Toolbox™ (Feed-forward ANN comprising
MLP with BP algorithm implementation) of MATLAB R2015b software (The Mathworks,
Inc., Ver. 8.6.0.347, MA, USA), and Microsoft Excel 2013 (15.0.44) (Microsoft Corporation,
Redmond, WA, USA) were used for carrying out the one-way analysis of variance (ANOVA)
and differences between the means were calculated using a Duncan multiple range test at
significance level of p < 0.05.

Performance Comparison of RSM and ANN-GA Models

The predictive performance assessment of the employed modeling approaches in-
cluding RSM and ANN-GA models were subjected to analysis through the use of dif-
ferent statistical indicators; coefficient of determination (R2), root mean square error
(RMSE), the absolute average deviation (AAD), and the standard error of prediction (SEP)
(Equations (6)–(9)) [28–30].

RMSE =

(
1
n

n

∑
i=1

(
Ypredict – Yexp

)2
) 1

2

(6)

R2 =

(
∑n

i=1
(
Yexp − Yexp

) (
Ypredict − Ypredict

))2

∑n
i=1
(
Yexp − Yexp

)2
(

Ypredict − Ypredict

)2 (7)
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AAD (%) =

[
∑

p
i=1

(∣∣Yi,exp − Yi,cal
∣∣/Yi,exp

)
P

]
× 100 (8)

SEP (%) =
RMSE

Ye
× 100 (9)

whereby the number of sample points are denoted by n, the predicted response value is
designated by Ypredict, whereas Yexp is indicative of the experimental value, and “−” over
variables represents the average value of the concerned variable values.

3. Results and Discussion
3.1. RSM Modeling of UAE Process

All of the UAE experiments were performed in terms of triplicate manner in accor-
dance with the CCD matrix specifications as shown in Table 2 and data analysis was
performed by considering the mean experimental values to obtain good model fitting
and second-order quadratic model equations (Equations (10)–(12)). Statistical significance
and adequacy of these model equations were evaluated by using analysis of variance
(ANOVA) (Table 3). For the fitted model, further evidence pertaining to the goodness
of fit was provided by the model summary statistics and the model demonstrated high
significance as evident from the lower probability values (p < 0.0001), high R2, adjusted
R2 values, along with the predicted R2 values. The R2 and p-values of Equations (10)–(12)
were 0.9401; 0.0812, 0.8874, and 0.1356; and 0.9758; and 0.09517, respectively. The ANOVA
results demonstrated that linear, quadratic, and interactive coefficients were significant
owing to the lower p-values and higher F-values and had considerably large effects on
TE and SGs (ST and Reb-A) yields from the UAE extracts. Moreover, the validity of the
quadratic model was endorsed in terms of a non-significant lack of fit (>0.05) values with
better precision and reliability of the developed model. Three-dimensional (3D) surface
plots were constructed based on polynomial regression equations in order to elucidate the
interaction effects of the input variables of the UAE process on the response variables (Y1,
Y2, Y3).
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Table 2. CCD-specified experimental design with target responses as a function of the independent UAE process variables.

Dependent Variables

Run No. 2

Independent Variables 1 Y1: TE Yield (%) Y2: ST Yield (mg/g) Y3: Reb-A Yield (mg/g)

X1 (%) X2 (min) X3 (g/mL) Experimental
Data

RSM
Predicted

ANN
Predicted

Experimental
Data

RSM
Predicted

ANN
Predicted

Experimental
Data

RSM
Predicted

ANN
Predicted

1 25 (−1) 21 (−1) 0.18 (−1) 5.67 ± 0.07 3 5.85 5.80 14.42 ± 0.04 15.66 15.04 10.96 ± 0.16 12.56 13.04
2 25 (−1) 21 (−1) 0.28 (+1) 6.01 ± 0.04 6.13 6.09 14.63 ± 0.02 15.12 15.81 12.85 ± 0.03 13.45 15.81
3 25 (−1) 43 (+1) 0.18 (−1) 6.03 ± 0.05 6.34 6.12 14.63 ± 0.02 15.90 15.97 12.85 ± 0.03 13.52 15.96
4 25 (−1) 43 (+1) 0.28 (+1) 7.37 ± 0.03 7.21 7.56 16.94 ± 0.04 17.85 17.32 13.97 ± 0.03 12.75 13.57
5 75 (+1) 21 (−1) 0.18 (−1) 6.02 ± 0.03 6.57 6.16 14.64 ± 0.04 14.12 15.45 12.85 ± 0.04 13.51 14.41
6 75 (+1) 21 (−1) 0.28 (+1) 6.74 ± 0.05 6.61 6.87 16.44 ± 0.03 16.15 17.12 13.34 ± 0.03 14.87 14.57
7 75 (+1) 43 (+1) 0.18 (−1) 7.27 ± 0.03 7.05 7.39 16.85 ± 0.02 18.32 17.86 13.87 ± 0.02 12.42 14.47
8 75 (+1) 43 (+1) 0.28 (+1) 8.85 ± 0.05 8.93 9.86 20.76 ± 0.03 19.45 21.81 16.45 ± 0.04 17.03 17.22
9 50 (0) 32 (0) 0.23 (0) 6.47 ± 0.05 6.04 6.57 16.86 ± 0.04 17.94 17.15 13.86 ± 0.02 15.12 17.15

10 50 (0) 32 (0) 0.23 (0) 6.46 ± 0.03 6.13 6.49 16.87 ± 0.03 17.89 17.33 13.87 ± 0.04 15.09 17.26
11 0 (−α) 32 (0) 0.23 (0) 5.81 ± 0.02 6.47 5.71 14.55 ± 0.03 15.64 15.12 12.46 ± 0.03 13.56 15.01
12 100 (+α) 32 (0) 0.23 (0) 8.01 ± 0.04 7.80 7.57 16.95 ± 0.04 18.13 17.75 13.94 ± 0.03 13.51 15.86
13 50 (0) 10 (−α) 0.23 (0) 5.99 ± 0.04 6.46 6.09 14.65 ± 0.04 13.90 15.14 12.85 ± 0.03 13.47 14.03
14 50 (0) 54 (+α) 0.23 (0) 7.35 ± 0.03 7.79 7.37 16.93 ± 0.04 17.47 17.86 13.97 ± 0.03 15.29 15.87
15 50 (0) 32 (0) 0.148 (−α) 5.57 ± 0.03 5.65 5.47 14.46 ± 0.03 15.66 15.12 11.94 ± 0.06 13.14 14.45
16 50 (0) 32 (0) 0.313 (+α) 6.94 ± 0.02 7.11 6.89 17.03 ± 0.04 17.80 17.59 14.02 ± 0.04 15.26 14.87
17 50 (0) 32 (0) 0.23 (0) 6.43 ± 0.03 6.01 6.56 16.86 ± 0.04 17.92 17.12 13.85 ± 0.02 15.07 17.11
18 50 (0) 32 (0) 0.23 (0) 6.46 ± 0.03 6.09 6.52 16.85 ± 0.03 17.97 17.27 13.86 ± 0.04 15.13 17.04
19 50 (0) 32 (0) 0.23 (0) 6.45 ± 0.02 6.03 6.51 16.86 ± 0.04 17.93 17.09 13.85 ± 0.02 15.11 17.09
20 50 (0) 32 (0) 0.23 (0) 6.47 ± 0.03 6.11 6.54 16.87 ± 0.03 17.91 17.35 13.87 ± 0.04 15.16 17.21

1 X1: ethanol concentration, X2: sonication time, X3: leaf/solvent ratio. 2 Experimental conditions in accordance with the CCD–specified design points. 3 Experimental values:
mean ± S.D. (n = 3).
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Table 3. ANOVA table showing the model terms (linear, quadratic, and interaction effects) of each
variable and coefficients for model prediction.

Y1: TE Yield (%) Y2: ST Yield
(mg/g)

Y3: Reb-A Yield
(mg/g)

Source DF Estimated
Coefficient

Estimated
Coefficient

Estimated
Coefficient

Model 9 282.3273 ** 119.727 * 28.9583 **
Intercept

(β0) 1 26.8068 ** 43.1629 ** 23.7821 **
Linear terms

X1 (β1) 1 −0.335019 ** 0.390353 * −0.685319 **
X2 (β2) 1 0.471612 ** 0.499269 ** −0.430433 **
X3 (β3) 1 −0.602871 * 0.619773 * −0.471874 **

Quadratic terms
X1

2 (β11) 1 0.352586 ** 0.031327 ** 0.070971 **
X2

2 (β22) 1 −0.087273 ** 0.088718 ** −0.059163 **
X3

2 (β33) 1 0.080291 * 0.075561 ** 0.030346 **
Interaction terms

X1X2 (β1β2) 1 –0.301062 ** −0.009164 ** −0.002171 ***
X1X3 (β1β3) 1 0.246349 ** 0.008153 ** 0.054853 **
X2X3 (β2β3) 1 0.874523 ** 0.044789 ** −0.001965 **

Lack of fit(probability) 7 0.0128 0.03561 0.00517
F–value probability <0.001 <0.001 <0.001

R2 0.9401 0.8874 0.9758
Adj. R2 0.8641 0.8419 0.9063

Predicted. R2 0.8396 0.8128 0.8363
* p < 0.05, ** p < 0.01 and *** p < 0.001.

3.2. Process Variables Effect on Total Extract Yield (YEY)

TEY values of the UAE–derived extracts were presented in Table 2 with the correspond-
ing extraction conditions according to the CCD matrix. The coded form using coefficients
is shown in Table 3 as shown in Equation (10):

Y1 (%) = +26.8068 − 0.3350X1 + 0.4716X2 − 0.6029X3 + 0.3526X2
1 − 0.0872X2

2
+0.0603X2

3 − 0.3011X1X2 + 0.2464X1X3 + 0.8745X2X3
(10)

The model R2 value was 0.9401 as shown in Table 3, which evidenced existing vari-
ability of the input variables which could be explicable up to 94% of the variation in the
corresponding TEY. For the Y1 response, it is evident from Table 3 that a fairly high R2

value (0.9401) and non–significant lack of fit (0.0128) suggested adequacy of the model
(Equation (10)) at the 95% confidence interval and well–fitting of experimental data. The
highest TEY was obtained from experimental run No. 8 under the following extraction
conditions: X1 of 75%, X2 of 43 min, and X3 of 0.28 g·mL−1. The lowest TEY was obtained
at X1 of 75%, X2 of 43 min, and X3 of 0.28 g·mL−1. It could be observed from regression
evaluation that the independent UAE process variables exhibited a linear effect on TEY. For
TEY, the ethanol concentration and sonication time were found as more influential at a level
of p < 0.01 than the leaf–solvent ratio at a level of p < 0.05. Conversely, quadratic terms of X2

1
and X2

2 were highly significant (p < 0.01) in comparison with that of X2
3 (p < 0.05), while all

the interaction effects were found to be statistically significant at p < 0.01. The experimental
yield of the Y1 responses showed an increasing trend with increases in the three input
variables. TEY as function of ethanol concentration and sonication time exhibited a rising
tendency with a fixed level of leaf–solvent ratio at 0.23 g·mL−1 (Figure 3A). The response
surfaces exhibited well–defined convexity and surface curvatures (Figure 3B,C) which
suggested similar trends for TEY as functions of X1 and X3, and X2 and X3 at fixed levels of
sonication time (32 min) and ethanol concentration (50%), respectively. The TEY reached a
maximum value near the midpoint region of response plots. The leaf–solvent ratio worked
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as a vital factor in achieving an increased TEY. This could be explained in terms of localized
heating of the extraction solvent owing to cavitation phenomenon during UAE, which
causes mechanical disruption of the cell walls and particle collisions followed by a release
of the cellular contents [30].

Foods 2022, 11, x FOR PEER REVIEW 12 of 25 
 

 

 

 
 

Figure 3. Cont.



Foods 2022, 11, 883 13 of 24Foods 2022, 11, x FOR PEER REVIEW 13 of 25 
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min) (B) and sonication time and leaf–solvent ratio at a fixed level of concentration of ethanol (50%). 
(C) ST yield showing the interaction effect of concentration of ethanol and sonication time at fixed 
level of leaf–solvent ratio (0.23 g·mL−1). (D) Concentration of ethanol and leaf–solvent ratio at fixed 
level of sonication time (32 min) (E) and sonication time and leaf–solvent ratio at fixed level of con-
centration of ethanol (50%) (F); Reb−A yield showing the interaction effect of concentration of etha-
nol and sonication time at fixed level of leaf–solvent ratio (0.23 g·mL−1). (G) Concentration of ethanol 
and leaf–solvent ratio at fixed level of sonication time (32 min) (H) and sonication time and leaf–
solvent ratio at fixed level of concentration of ethanol (50%) (I). 
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cosides peaks in standard chromatographic depictions (Figure 4a) and UAE extract (Fig-
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Figure 3. 3D response surface curve and corresponding contour plots of TEY showing the inter-
action effect of the concentration of ethanol and sonication time at fixed level of leaf–solvent ratio
(0.23 g·mL−1). (A) Concentration of ethanol and leaf–solvent ratio at a fixed level of sonication time
(32 min) (B) and sonication time and leaf–solvent ratio at a fixed level of concentration of ethanol
(50%). (C) ST yield showing the interaction effect of concentration of ethanol and sonication time at
fixed level of leaf–solvent ratio (0.23 g·mL−1). (D) Concentration of ethanol and leaf–solvent ratio at
fixed level of sonication time (32 min) (E) and sonication time and leaf–solvent ratio at fixed level
of concentration of ethanol (50%) (F); Reb-A yield showing the interaction effect of concentration of
ethanol and sonication time at fixed level of leaf–solvent ratio (0.23 g·mL−1). (G) Concentration of
ethanol and leaf–solvent ratio at fixed level of sonication time (32 min) (H) and sonication time and
leaf–solvent ratio at fixed level of concentration of ethanol (50%) (I).

3.3. Process Variables Effect on ST Yield

The ST yield values that were obtained from the UAE extracts are given in Table 2 with
their corresponding extraction conditions according to the CCD matrix. A full quadratic
model equation (Equation (7)) was constructed in coded notations by using coefficients
that are given in Table 3 after polynomial regression analysis.

Y2 (mg/g) = +43.1629 + 0.3904X1 + 0.4993X2 + 0.6198X3 + 0.0313X2
1

−0.0887X2
2 + 0.0756X2

3 − 0.0091X1X2 + 0.0081X1X3
+0.0448X2X3

(11)

A variation of 88.74% in the ST yield could be explained based on the model R2 value
(Table 3). The experimental data were fitted well and a high R2 value and non–significant
lack of fit (0.03561) suggested model validity (Equation (11)). The UAE extract that was ob-
tained under the extraction conditions of run No. 8 exhibited higher ST yield (20.76 mg/g),
found to be in fair match with those of the predicted yield values of 19.45 mg/g as evi-
denced by HPLC chromatograms which demonstrated the quantified component glycosides
peaks in standard chromatographic depictions (Figure 4a) and UAE extract (Figure 4b) at
optimized UAE process variables. The ST yield showed significant increases with corre-
sponding increases in the independent variables. The role of extractant and crystallization
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solvents including methanol, ethanol, and isopropyl was studied by and authors who
concluded that ethanol as crystallization solvent exhibited a great influence on the recovery
of SGs (ST, Reb-A, and Reb-C) crystals [31]. Ethanol was reported to cause the highest
recovery rate with improved purity. The 3D response surface plots (Figure 3D–F) demon-
strated that the ST yield was affected by UAE process parameters in the same manner as
TEY was affected. The sharp and higher convexity of the plots indicated optimal ranges
of the independent variables resulting in maximum response values. This implied a close
association between the Y1 and Y2 responses. Corresponding to our results, a correlation
of the total extract recovery and glycoside yield was also reported by Jaitak, Bandna, &
Kaul [8]. Regression analysis showed that X2 was significantly (p < 0.01) more influential
among the linear terms as compared to X1 and X3. All the quadratic and interaction terms
were statistically significant at a level of p < 0.01. Our results were endorsed by Periche
et al.’s [22] findings who recovered increased ST recovery (47 mg/g) by means of UAE at
a sonication time of 20 min in comparison with the conventional extraction (29 mg/g) by
thermostatic bath at atmospheric pressure.

3.4. Process Variables Effect on Reb-A Yield

The Y3 mean response values are provided in Table 2, and quadratic model equation
that was generated from regression analysis in coded form is given below as shown in
Equation (12).

Y3 (mg/g) = +19.1186 − 0.1551X1 − 0.2916X2 − 0.3228X3 + 0.0726X2
1

−0.0593X2
2 + 0.0323X2

3 − 0.0211X1X2 + 0.0664X1X3
−0.6946X2X3

(12)

A high R2 (0.9758) and non–significant lack of fit (0.00517) suggested model validity for
Reb-A yield at 95% confidence interval. The highest yield of Reb-A glycoside (16.45 mg/g)
was obtained from run No. 8 at specified conditions (Table 2), and an experimental yield
value as well as predicted Reb-A yield value exhibited a fair match. All the linear and
quadratic terms significantly (p < 0.01) affected the Y3 response, while the interaction of X1
and X2 affected Y3 more significantly (p < 0.001) as compared to other interaction terms
(p < 0.01). Similar to the Y1 and Y2 responses, 3D response plots demonstrated that the
Y3 response showed positive correlation in a linear fashion with corresponding increases
in the independent variables as evidenced from the convex nature of the response plots
(Figure 3G–I) that were generated by plotting the Y3 response values against the two
independent variables while keeping the third parameter at a fixed level. A maximum Reb-
A yield was obtained near the midpoint region. The solid–liquid ratio exhibited significant
influence on recovery yield of Reb-A and the solid–liquid ratio may be effective up to certain
extent whereas further rises may cause increased solubility leading to reduced recovery of
Reb-A [32]. Similarly, Periche et al. [22] reported an increased Reb-A yield from UAE and
confirmed improved efficiency of the method as compared to conventional extraction.

3.5. Hybrid ANN–GA Modeling

Recently, ANN has gained popularity as a powerful simulation and optimization
tool for extraction processes owing to the powerful predictive and estimation capabilities.
Analogous to the human brain, ANN can be used successfully to map non–linear relation-
ships between independent and dependent variables by training and constructing an ANN
model [1,30]. Therefore, an ANN model was developed to trace the nonlinear relationship
between the input process variables (X1, X2, X3) and the required target responses (Y1, Y2,
Y3) through a topology optimization procedure involving feed–forward back propagation,
also known as the Levenberg–Marquardt (LA) algorithm and it was constructed by ex-
ploiting the experimental data from CCD–matrix comprising of three layers: input layer,
hidden layer, as well as an output layer. In this study, the number of neurons in both the
input and output layers were defined by the CCD. Therefore, a selection of an appropriate
number of neurons iteratively was restricted to only the hidden layer (layer 2). The whole
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dataset comprising of 20 data points was divided in a random manner into 3 sets: 14–points
for training, 3–points for validation, and 3–points for testing subsets. The splitting of the
data into training, validation, and testing subsets allowed for the estimation of predictive
performance of the neural network regarding “unseen” data that were not employed for
training [1]. As a criteria to measure the performance of the developed network, the least
training and testing errors were employed to evaluate the network performance of the
optimized ANN topology. A high Epoch number could result in over–fitting of the model
during topology optimization [32]. Therefore, the Epochs number was kept to the lowest
number to avoid this problem. Network training was performed by LA algorithm in order
to achieve the best validation performances pertaining to the target responses: Y1, Y2,
and Y3 at Epoch number 2, 1, and 4, respectively (Figure 2B–D). Various feed–forward
neural networks (FFNNs) comprising of variegated topologies were subjected to training
for establishing the neuron number in the hidden layers and the best optimized topology
selection on the basis of performance criteria of the highest R2 and the lowest RMSE values
as measures of better precision and reliability. Owing to the particular criteria, the best
FFNN topologies were chosen for three target responses as given ahead; Y1: TEY (3:8:1),
Y2: ST yield (3:10:1), and Y3: Reb-A yield (3:7:1), representing the neuron numbers in the
three architectural layout layers comprising of input, hidden, and output, respectively.
Moreover, the fair match was observed between the RSM model−predicted values and the
observed experimental values (Figure 5A–C). Moreover, the experimental data showed
good agreement with the ANN model–predicted data (Figure 5D–F) as evident from the
high correlation values for all the response variables. All the data points were found to be
in close proximity of the straight line, which indicated higher precision of the developed
ANN model with respect to predictability for all the response variables for valid regions
under consideration. These results suggested high predictive accuracy of the developed
ANN model. For network modeling and pattern recondition, the transfer function, named
hyperbolic tangent sigmoid, was employed as per the Equation (13) given below:

f (x) = tansig (n) =
2

1 + e–2x − 1 (13)

The GA optimization constraints were established as given below:

0 ≤ X1 ≤ 100

10 ≤ X2 ≤ 54

0.148 ≤ X3 ≤ 0.313

3.6. Predicive Performance Comparison of RSM and ANN–GA Models

For achieving better predictive modeling, the SEP, RMSE, and AAD values should
lower. The lower RMSE, AAD, and SEP values in the case of the ANN–GA model were
evident of the absolute model fit [33]. For validation and testing of the extrapolating
capabilities of both models, a completely new dataset of nine runs was used (apart from
the dataset that was previously employed to create the model, data not shown). Moreover,
the predicted and experimental response values of both models are given in Table 2.

The results of the statistical comparison between the RSM and ANN–GA models are
demonstrated in Table 4. Comparative values of R2, RMSE, AAD, and SEP showed better
performance of the ANN model with respect to generalization capability as compared to
RSM. Moreover, comparative resemblance plots (Figure 5G–I) for the three target responses
(Y1, Y2, Y3) showed that the ANN model was more precise and much better with improved
accuracy for experimental data fitting in comparison with the RSM models. From the
results, it was observed that the ANN model demonstrated relatively less variation with
steady residuals while the RSM model exhibited larger deviations between the predicted
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and actual target response values, also known as residuals. The significantly higher
generalization capacity of ANN could be attributed to its universal approximation ability
to approximate any form of non–linearity/non–linear process behavior, whereas RSM
application is effective only for quadratic non–linear relationship and this demands a
profound insight of the defined ranges for each independent variable [34]. Similar results
have been reported by Teslić et al. [35] for microwave–assisted extraction of polyphenols
from defatted wheat germ, whereby the authors compared both RSM and ANN for their
predictive modeling efficiency and compared both RSM and ANN for influence analysis,
fitting quality, and optimization.
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Figure 5. Comparison between the experimental values and model–predicted data values that were
rendered by the RSM model for: TEY (%) (A) ST yield (mg/g) (B) and Reb-A yield (mg/g) (C); ANN
model for: TEY (%) (D), ST yield (mg/g) (E), and Reb-A yield (mg/g) (F), Scatter plot showing the
distribution along the straight line of predicted values versus the experimental values that were
obtained by ANN and RSM models for the prediction of: TEY (%) (G), ST yield (mg/g) (H), and
Reb-A yield (mg/g) (I).

Table 4. Predictive comparison parameters showing the estimation comparison of the RSM and ANN
models for the three target responses.

Y1: TE Yield (%) Y2: ST Yield (mg/g) Y3: Reb-A Yield (mg/g)

Parameters RSM ANN RSM ANN RSM ANN

R2 (%) 94.01 96.71 88.74 94.39 97.58 98.83
RMSE 3.72 2.05 4.53 1.58 6.54 1.71

AAD (%) 1.337 0.238 1.689 0.751 1.327 0.8137
SEP (%) 0.22 0.08 0.19 0.11 0.25 0.07
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3.7. PCA

PCA analysis was performed for elucidating the numerical data trend of the UAE
extraction results and the effects on the target responses (TEY, ST, and Reb-A yields). PCA
has been recognized as the power multivariate data analysis technique for dimensionality
reduction of the multivariate data to a minimum of two to three components (PC1 and
PC2) with a minimum degree of information loss. The score plots and loading plots with
respect the numerical data trend for the target response and number of experimental runs
are shown in Figure 6A–D. The original contribution to the total variance by the variables
in terms of the target responses that were reached for PC1 and PC2 was up to 81.17% and
11.64%, respectively (Figure 6A,B). Eigen-analysis of the correlation matrix is provided in
Table S2. The number of experimental runs also exhibited influence on the total variability,
whereby PC1 and PC2 contributions to the total variance owing to number of experimental
runs at CCD–specified conditions were 84.34% and 12.83%, respectively (Figure 6A,B). The
distinct clusters were evident on the PCA score plots which indicated that the ethanol
concentration and extraction time had a significant influence on the target responses (YEY,
ST, and Reb-A yields). Moreover, the ST–yield and Reb-A yield lay on the positive side of
the PCA score plot and the number of experimental runs including R–R4 and R5–R10 were
positively correlated with the TEY, ST, and Reb-A yields. Therefore, it might be implied
that the PCA may serve as the valuable chemometric tool to elucidate the numerical data
trend for classifying information based on the stevia samples in correlation with the target
responses and the UAE extraction conditions at various experimental conditions. These
results were in agreement with the findings of the Choi et al. [29] who reported that
PCA was successful to elucidate the numerical data trend for Nypa fruticans samples in
correlation with the antioxidant activities.
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3.8. Physicochemical Features and Glycosides Extraction Phenomenon

With regard to the chromatographic separation of glycosides, a hydrophilic interaction
liquid chromatography (HILIC) mode was employed. In HILIC of separation, the column
packing comprised of spherical silica particles (5 µm) which were covalently bonded to
carbonyl groups. With the HILIC columns, the distinctive selectivity for enhanced separa-
tion of target glycosides was provided by the stationary phase (amide: NH2 in this case).
Owing to this phenomenon, a higher degree of resolution of ST and Reb-A was achieved
during chromatographic separation. Furthermore, 5 µm column was reported to exhibit
improved selectivity as compared to 10 µm. In comparison with traditionally employed
amino phases, the amide–80 column (5 µm) rendered improved selectivity and unique
stability with higher peak sensitivity which enabled efficient chromatographic separation of
SGs. In addition to this, a silica matrix as stationary phase precluded splitting of SGs peaks
at a lower temperature range [36–38]. It was also reported in various published reports
that the application of amino (NH2−)–bonded columns led to the efficient separation of
SGs (ST and Reb-A) under HILIC separation mode and isocratic elution in comparison
with conventional reverse–phase (RP) columns [37,38]. A poor degree of selectivity has
been reported in the case of RP columns as far as glycoside separation including for ST and
Reb-A, whereas the amino–bonded column (TSKgel NH2–80) exhibited a higher degree of
efficiency owing to its hydrogen retention mechanism which caused bonding between the
carbonyl group of the stationary phase (amide) and hydroxyl groups of the sample [36].
Moreover, a specified flow rate (1 mL·min−1) achieved enough contact time between the
carbonyl groups and SGs molecules to acquire a maximum degree of separation along the
silica matric layer with an improved level of selectivity.

Furthermore, ethanol as a polar extracting solvent resulted in structural changes in the
cellular matrix of the leaf powder which is attributed to the intra–crystalline and osmotic
swelling. The led to enhanced solubilization along with mass transfer of the target analyte
SGs components including ST and Reb-A to solution because of the disruption of the
binding of the matrix and analyte. UAE is a highly effective extraction technique to recover
active principles from plant sources due to the cavitation phenomenon [39]. After exposure
to ultrasonic waves, cavitation bubbles are formed near the interface boundary between the
extraction solvent (ethanol) and the solid plant matrix. Cavitation also results in enhanced
mass transfer and extraction kinetic rates due to a localized rise in temperature at the
interfacial region. This phenomenon produces two–fold effects: (1) localized heating of the
solvent causes mechanical disruption of the cell walls followed by a release of the cellular
contents, and (2) increased diffusion rate renders higher extract yields [14,39]. Moreover,
the target compounds after dissolution reached the interfacial region that existed between
the extracting solvent (ethanol in this case) and the sample matrix (finely ground particles
in powdered form) which facilitated the mass transfer and led to maximum dissolution of
SGs in bulk solution [40].

3.9. Comparison of Extraction Efficiencies of UAE and CME

For the estimation and validation of the efficiency of ultrasound on SGs extraction
from stevia leaf powder, both ecofriendly sonication (UAE) and conventionally employed
(CME) methods were subjected to comparison, and the results are demonstrated in Figure 7.
It was evidenced from the results that the UAE method rendered a higher recovery of the
target responses including TEY, ST, and Reb-A yields at optimized extraction conditions in
accordance with the CCD specification as compared to that of the recoveries from the CME
(24 h) procedure as far as efficiency is concerned. A reduced extraction time, energy, and
solvent consumption were some of the chiefly rendered advantages that were gained by
utilizing the UAE as an alternative to CME in conjunction with a higher recovery of the
desired bioactive component–rich extracts from stevia plant matrix. A high yield rate from
the UAE procedure in shorter times can be explained by the cavitation phenomenon that
results in a collapse of bubbles during the exposure of waves near the matrix interfaces,
which causes a rupturing of the cell structure followed by an enhanced mass transfer of the
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extractable components to the extraction solvent [41]. Šic Žlabur et al. [23] have reported
UAE to be more rapid and efficient for ST and Reb-A extraction; conventional hot water
extraction aided with magnetic stirring required 24 h to yield 74 mg/g ST and 22 mg/g
Reb-A while UAE rendered higher recoveries of both ST (96.5 mg/g) and Reb-A (37 mg/g)
in 10 min using a probe diameter of 22 mm. Similarly, Alupului et al. [7] have also reported
comparable yields of ST and Reb-A from both UAE and conventional solvent extraction;
UAE proved to be more effective and simpler and required only 20 min as compared to the
24–h conventional extraction. Corresponding to our results, Jaitak, Bandna, and Kaul [8]
have also reported UAE to be more efficient and rapid for steviol glycoside extraction
compared with the 12–h conventional cold extraction.
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43 min sonication time and X3: 0.28 g·mL−1 leaf-to-solvent ratio) and CME for: TEY (%) (A), ST, and
Reb-A yields (mg/g) (B).

There were two more comparative parameters that were also employed including
energy consumption and CO2 emission to compare the UAE and CME efficiency. The
energy consumption and CO2 emission calculations were carried out as per the specified
revised guidelines of IPCC [42]. The power and time were subjected to multiplication to
calculate the power consumption in terms of kWh. Furthermore, the energy consumption
calculation was also performed to calculate the TOE (tonne of oil equivalent) in accordance
with the Equations (14) and (15) given below, which took into account the fuel calorific
value, as specified by the Republic of Korea Energy Act [43]; implying total calorific
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value/1 kWh electricity use that was equivalent to 2300 kcal. Power consumption was
subjected to conversion to the CO2 emissions (Tonnes CO2: TCO2) by employing the factor
pertaining to greenhouse gas emissions (0.4585 TCO2 equivalent/ MWh) as notified by the
Korea Power Exchange [44] and given in Equation (16).

Power consumption (kWh) = Power (W) × time (h) (14)

Energy consumption (TOE) = fuel calorific value kcal/107 (15)

CO2 emissions (TCO2 equivalent) = power consumption × greenhouse gas emissions factor × 1000 (16)

The depiction of the results pertaining to the CO2 emissions and energy consumption
is given in the Figure 8. Moreover, the UAE exhibited relatively lower amounts of CO2
emissions (0.000023 TCO2 equivalent) as compared to that which was calculated for CME
(0.0028 TCO2 equivalent). Further, lower CO2 emissions (1/120), reduced time consumption
(1/100), and energy utilization (1/110) were exhibited by the eco–friendly UAE method. It
was endorsed by these results that the UAE method was found to be adequately suitable
to extract bioactive component–rich stevia leaf powder extract with reduced resource
consumption in comparison with the CME method.

Foods 2022, 11, x FOR PEER REVIEW 22 of 25 
 

 

The depiction of the results pertaining to the CO2 emissions and energy consumption 
is given in the Figure 8. Moreover, the UAE exhibited relatively lower amounts of CO2 
emissions (0.000023 TCO2 equivalent) as compared to that which was calculated for CME 
(0.0028 TCO2 equivalent). Further, lower CO2 emissions (1/120), reduced time consump-
tion (1/100), and energy utilization (1/110) were exhibited by the eco−friendly UAE 
method. It was endorsed by these results that the UAE method was found to be ade-
quately suitable to extract bioactive component−rich stevia leaf powder extract with re-
duced resource consumption in comparison with the CME method. 

 
Figure 8. Efficiency comparison on the energy consumption (a) and CO2 emission (b) from the UAE 
and CME extraction methods. 

4. Conclusions 
In the current research, both the RSM and ANN modeling approaches were em-

ployed to determine the optimum UAE extraction conditions that yield maximum TE, SGs 
including ST and Reb−A yields from stevia (S. rebaudiana) leaf powder. A comparative 
overview of both modeling techniques based on assessment using R2, RMSE, AAD, and 
SEP parameters demonstrated the superiority of the ANN−GA model over RSM. There-
fore, it can be concluded that even though the optimization of the extraction processes is 
most widely performed using RSM, the hybrid ANN−GA technique could be employed 
as a better alternative with improved accuracy and predictive capability. Moreover, the 
requirement of a lower number of experimental runs that are independent of experimental 
design makes hybrid ANN−GA a preferred choice for efficient and optimum UAE of SGs 
from stevia leaves as compared to RSM. A PCA was highly effective to elucidate the nu-
merical data trend for the target responses and effects of the experimental runs at specified 
conditions. Finally, the optimum and economic UAE parameters resulting in the maxi-
mum target responses were X1 of 75%, X2 of 43 min, and X3 of 0.28 g·mL−1, which could be 
implemented to scale−up at an industrial level. Moreover, in comparison with the CME 

Figure 8. Efficiency comparison on the energy consumption (a) and CO2 emission (b) from the UAE
and CME extraction methods.

4. Conclusions

In the current research, both the RSM and ANN modeling approaches were employed
to determine the optimum UAE extraction conditions that yield maximum TE, SGs includ-
ing ST and Reb-A yields from stevia (S. rebaudiana) leaf powder. A comparative overview
of both modeling techniques based on assessment using R2, RMSE, AAD, and SEP parame-
ters demonstrated the superiority of the ANN–GA model over RSM. Therefore, it can be
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concluded that even though the optimization of the extraction processes is most widely
performed using RSM, the hybrid ANN–GA technique could be employed as a better
alternative with improved accuracy and predictive capability. Moreover, the requirement
of a lower number of experimental runs that are independent of experimental design
makes hybrid ANN–GA a preferred choice for efficient and optimum UAE of SGs from
stevia leaves as compared to RSM. A PCA was highly effective to elucidate the numerical
data trend for the target responses and effects of the experimental runs at specified con-
ditions. Finally, the optimum and economic UAE parameters resulting in the maximum
target responses were X1 of 75%, X2 of 43 min, and X3 of 0.28 g·mL−1, which could be
implemented to scale−up at an industrial level. Moreover, in comparison with the CME
method, higher TE, ST, and Reb-A recoveries were achieved through UAE with reduced
consumption of resources and CO2 emission. Additionally, the UAE method may serve as
the eco–friendly method with improved efficiency as an alternative to the conventionally
employed maceration extraction to extract the bioactive component–rich extract, exhibiting
higher amounts of SGs including ST and Reb-A from stevia leaf powder.
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