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Abstract: Snakebite envenoming is a neglected tropical disease that each year claims the lives
of 80,000–140,000 victims worldwide. The only effective treatment against envenoming involves
intravenous administration of antivenoms that comprise antibodies that have been isolated
from the plasma of immunized animals, typically horses. The drawbacks of such conventional
horse-derived antivenoms include their propensity for causing allergenic adverse reactions due to
their heterologous and foreign nature, an inability to effectively neutralize toxins in distal tissue, a low
content of toxin-neutralizing antibodies, and a complex manufacturing process that is dependent
on husbandry and procurement of snake venoms. In recent years, an opportunity to develop a
fundamentally novel type of antivenom has presented itself. By using modern antibody discovery
strategies, such as phage display selection, and repurposing small molecule enzyme inhibitors,
next-generation antivenoms that obviate the drawbacks of existing plasma-derived antivenoms could
be developed. This article describes the conceptualization of a novel therapeutic development strategy
for biosynthetic oligoclonal antivenom (BOA) for snakebites based on recombinantly expressed
oligoclonal mixtures of human monoclonal antibodies, possibly combined with repurposed small
molecule enzyme inhibitors.

Keywords: snakebite envenoming; neglected tropical diseases; antivenom; next-generation antivenom;
recombinant antivenom; small molecule inhibitors

Key Contribution: Snakebite envenoming and associated mortalities and morbidities are a solvable
international disaster. We propose a new strategy to improve the treatment of snakebite victims using
biosynthetic oligoclonal antivenom (BOA) for snakebites, a cocktail of recombinant human antibodies
and small molecular inhibitors. This next-generation snakebite envenoming therapy is based on
the well-established technology of human therapeutic antibodies and repurposing of small molecule
inhibitors that have been demonstrated to be sufficiently safe in humans. BOA therapy holds the promise
of being more efficacious and overcoming the inherent drawbacks of horse-derived antivenoms.
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1. Introduction

Snakebite is a serious menace in tropical countries and was recognized as a “neglected tropical
disease” by the World Health Organization in 2017 [1]. Every year, more than 1.8–2.7 million cases
of snakebite envenoming in human victims occur, resulting in 80,000–140,000 deaths and at least
twice as many disabling morbidities around the world [2]. Most of the victims are in their productive
age (between 20–40 years) and are often main breadwinners, leading to a great negative impact
on the economics of their families. India has the highest number of deaths in the world due to
snakebites (more than 46,000 [3]), predominantly caused by the “big four” snakes: Indian cobra
(Naja naja), Common krait (Bungarus caeruleus), Russell’s viper (Daboia russelii), and Saw-scaled
viper (Echis carinatus) [4]. In October 2018, several like-minded basic scientists and clinicians came
together at the Live and Let Live: Snakebite Cure Symposium at the Nextgen Genomics, Biology,
Bioinformatics, and Technologies Conference in Jaipur, India to find a sustainable solution to the Indian
snakebite envenoming challenge. Scientific discussions at this event concluded in agreement that the
concept presented in this article is likely to be a promising avenue to follow for the development of
next-generation antivenom with improved therapeutic properties. In this present concept, we propose
the use of recombinant human antibodies and small molecule inhibitors to eventually replace
horse-derived antivenoms (Figure 1). These next-generation treatments will have better efficacy and a
reduced level of adverse reactions compared to current therapies.
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antivenom is bottled and ready for use. Drawbacks of conventional plasma-derived antivenoms and 
the corresponding benefits of recombinant antivenoms are presented in the right side of the figure. 

  

Figure 1. Schematic overview of the manufacturing processes for antivenoms. (A) Conventional
plasma-derived antivenoms are manufactured through a five-step process. (1) Snakes are milked
to obtain venom. (2) The venom is used to immunize a horse (or in some cases a sheep). (3) Upon
completion of the immunization process, blood is drawn from the horse. (4) Plasma and erythrocytes
are separated, and different precipitation techniques are used to isolate IgG antibodies from the plasma.
(5) Following concentration and formulation, the antivenom is bottled and ready for use. (B) In contrast,
recombinant antivenoms based on monoclonal antibodies and/or antibody fragments can be developed
through a very different, and much more defined, five-step process. (1) Different techniques are used
to identify medically important venom toxins (e.g., toxicovenomics). (2) Using phage display selection
(or other antibody discovery techniques), monoclonal antibodies are discovered against the medically
relevant toxins. (3) Different formats of monoclonal antibodies may be combined to formulate an
oligoclonal mixture of monoclonal antibodies that each target different key toxins. (4) The oligoclonal
antibody mixture is manufactured using cell cultivation techniques, such as single-batch expression
technologies. (5) Upon purification and formulation, the recombinant antivenom is bottled and ready
for use. Drawbacks of conventional plasma-derived antivenoms and the corresponding benefits of
recombinant antivenoms are presented in the right side of the figure.
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2. Current Treatment for Snakebite Victims

Snakebite envenoming is a severe medical emergency that can cause multiple organ failure. Thus,
it requires quick and timely treatment of the victims. Currently, the only accepted treatment for snakebite
envenomings involves intravenous administration of conventional antivenoms, which comprise
antibodies or antibody fragments derived from the plasma of larger mammals (typically horses)
that have been immunized with snake venom(s) (Figure 1A) [5,6]. Unfortunately, the use of such
heterologous antivenoms has numerous inherent drawbacks:

1. Inability to abrogate local tissue damage: Snakebites from several snake species cause severe local
tissue damage, leading to disfigurement, amputation, and permanent disability. The administration
of antivenoms in most cases fails to neutralize this catastrophic pathology, as the heterologous
antibodies or antibody fragments in antivenoms have insufficient pharmacokinetics to reach and
neutralize toxins in deep tissue before these have started exerting their toxic functions [2].

2. Allergic reactions and anaphylactic shock: The administration of antivenoms, which are foreign
horse-derived antibodies, may lead to acute anaphylactic shock in snakebite victims, which has
been demonstrated to be the case for >40% for certain antivenoms [7–10]. These life-threatening
adverse reactions must be managed by attending clinicians.

3. Serum sickness: Serum sickness is a delayed response to antivenom administration that occurs
for 5–56% of treated victims for certain antivenoms [11–13]. The incidence of serum sickness is
poorly defined, mostly because patients rarely return to health centers or they are not adequately
followed after hospital discharge. Despite best efforts, typical antivenoms contain only 5–36%
snake venom toxin-binding antibodies [14–16]. The ability of these antibodies to neutralize
snakebite pathologies depends on the proportion of toxin-neutralizing antibodies and their
pharmacokinetics. Hence, a significant number of antivenom vials are administered to each
snakebite victim, with extreme cases requiring as much as 15 g of heterologous antibody
protein [17]. Such a high dose administration increases the probability of serum sickness.

4. Inability to neutralize snake venoms from different regions: Snake venoms exhibit significant
geographic variations in their toxin composition [18–29]. These variations are due to local
adaptation, differences in diet, and ontogeny [30]. In a large country, like India, it would be
ideal to pool venoms from various regions when designing immunization mixtures to overcome
this drawback.

5. Complex manufacturing processes: Antivenom manufacture is complicated by the dependence
of polyclonal antibodies on two biological systems, namely representative snake venoms and
individual horse immune systems.

Some of the above drawbacks make clinicians recalcitrant to treat snakebite victims with
antivenom. These drawbacks—taken together with poor transportation to quickly reach primary
health centers, unavailability of antivenoms, and poor training of clinicians—lead to a large number of
snakebite-induced deaths.

3. Next-Generation Snakebite Therapy

Based on the above limitations, we opined that there is an unmet medical need for significantly
improved treatments for snakebite victims. In this regard, we considered the use of recombinant
antivenoms containing oligoclonal mixtures of human monoclonal antibodies along with small
molecule inhibitors.

3.1. Biosynthetic Oligoclonal Antibodies (BOA) for Snakebite

In the last couple of decades, human therapeutic antibodies have become the mainstay in the
development of biologics for the treatment of various human diseases [31]. Human antibodies and
their fragments are useful in acute and chronic treatments. Such applications have led to improved
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technologies for the production of high-quality human antibodies in large amounts. High quality,
efficacious biosynthetic oligoclonal antibodies (BOA) for snakebite requires a cocktail of human
antibodies that target most or all of the key toxins that are responsible for snakebite-induced
pathophysiology (Figure 1B) [32–34]. The key toxins to be targeted could be elucidated using
toxicovenomic approaches, including the assessment of potential toxin synergism [35–38]. BOAs may
contain 20–40 or more toxin-neutralizing antibodies for a given number of particular snake venoms,
but critically and in contrast to horse-derived polysera, these BOAs would be precisely defined mixtures
of carefully selected recombinant human antibodies [39]. Additionally, BOAs can be designed to be
monovalent or polyvalent against different snake species, depending on the number and specificity of
monoclonal antibodies included in the final formulations.

To achieve as facile and low-cost development as possible, it is relevant to piggyback on existing
technologies for selection, production, and characterization of therapeutic antibodies [40]. One of the
technologies that has been identified as particularly promising for developing therapeutic antibodies
against snake venom toxins is phage display [41,42]. This technology allows for the development of
therapeutic monoclonal antibodies that are fully human to avoid allergenic adverse reactions and loss of
efficacy in human recipients. Antibody phage display technology allows for the discovery and maturation
of fully human antibodies in vitro [43]. In essence, phage display technology simulates the human
immune system in the lab, by employing libraries of antibody-displaying bacteriophages [41,44–46] to
select for human antibody fragments in vitro [47]. The phage display approach to antivenom research
circumvents meticulous immunization and screening protocols and overcomes the high toxicity and low
immunogenicity of the target protein. Following conversion from the typically employed single-chain
variable fragment (scFv) or antigen-binding fragment (Fab) format to the full human immunoglobulin
G (IgG) format, these antibodies can be expressed in mammalian cells to ensure correct folding and
post-translational modifications [48]. Following this approach, Laustsen et al. have recently reported the
development of the first experimental BOAs consisting of in vivo neutralizing human IgG antibodies
against toxins from the black mamba [32]. Additionally, manufacturing oligoclonal mixtures of IgGs has
been demonstrated to be cost-competitive [39,49].

However, several hurdles in the development of next-generation antivenoms were identified:
(a) There is a lack of point-of-care diagnostic kits for snakebites that are simple, reliable, and fast.
Preferably, such kits would be both qualitative and quantitative. Such kits will be essential for patient
stratification during clinical trials with BOAs to ensure that patients are treated with a BOA that is
efficacious against envenomings by the perpetrating snake species in each clinical trial case; (b) there
is a paucity of information on key target toxins in each venom that have to be neutralized to achieve
better efficacy in terms of reduction in mortality and morbidity; (c) a streamlined pathway has yet to
be defined to enable evaluation of the efficacy and safety of BOAs to enable approval and marketing;
and (d) the specific formulation of a given (monovalent or polyvalent) BOA needs to be defined in
terms of which snake species it should be efficacious against, so that relevant monoclonal antibodies
that target all the key medically toxins present in the venoms of these species are included.

BOA will have many potential advantages over conventional horse-derived antivenoms:

1. Compatibility with human victims: BOA will contain only human antibodies and will thus be
compatible with treatment of human patients [50].

2. Enriched for toxin-neutralizing antibodies: Horse-derived antivenoms contain both toxin-
neutralizing and toxin-binding antibodies, but only toxin-neutralizing antibodies are useful
for abrogating the pathophysiology of envenomation [33]. Antibody production in animals
occurs due to the natural immune response, and there is no control over the antibody clones that
expand and produce antibodies [51]. Therefore, horse antibodies show significant differences
in their neutralizing capacities. In addition, these antivenoms may also contain antibodies
raised against irrelevant infections, to which horses used for antivenom manufacture may
have been exposed. Consequently, horse-derived antivenoms contain a small percentage of
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toxin-neutralizing antibodies [5]. In contrast, recombinant antibodies can be selected precisely for
toxin-neutralizing ability. Therefore, the BOA will be enriched for toxin-neutralizing antibodies.

3. Consistent and reproducible production: The production of polyclonal antibodies in horses is
highly variable, and there will always be inherent batch-to-batch variations. The quality of BOAs
will provide excellent consistency and reproducibility, and thus, batch-to-batch variation will be
obviated [39,50].

4. Tailor-made antibodies with optimal pharmacokinetics (PK) and pharmacodynamics (PD):
Different toxins in snake venoms exhibit distinct biodistribution, PK, and PD, which often
contributes to multi-organ failure in snakebite victims. Neutralization of such varied properties
of toxins requires antibodies with appropriate biodistribution, PK, and PD. This can be achieved
by utilizing full-length immunoglobulin G (IgG) antibodies, antibody fragments, or alternative
non-antibody-based binding proteins [35,50]. In the preparation of BOAs, it is possible to include
a mixture of full-length antibodies and/or fragments based on the properties of each toxin
(toxicokinetics). Tailor-made mixtures of antibodies cannot be produced from horse-derived
polyclonal antibodies, but are possible in BOA technology.

5. Better safety profile: Highly compatible, toxin-neutralizing antibodies with suitable PK and PD
are expected to have better safety profiles compared to horse-derived antivenoms [50]. Thus,
intravenous administration of a BOA should not cause acute (allergic and anaphylactic) or
delayed (serum sickness) reactions.

6. Rapid administration of antivenoms: Because of inherent acute allergic and anaphylactic
reactions, horse-derived antivenoms are administered to snakebite victims only after the victim
develops symptoms and has reached a hospital setting. Such delays lead to poor treatment
outcomes. The better safety profile of the BOA will allow quicker administration, for example,
during transportation to the hospital, thus likely allowing for improved treatment outcomes.

7. Acceptance among clinicians: Poor efficacy compounded with acute (allergic and anaphylactic)
and delayed (serum sickness) reactions has kept many clinicians from venturing to treat snakebite
victims with antivenom. With better efficacy and safety profiles, BOA will help in the acceptance
of treatment of snakebite victims.

8. Geographic variation of venoms: Most of the geographic variation in venom composition is
due to differences in the abundance of specific toxins in venoms from snake specimens obtained
from different regions. Such variations, at times, will make horse-derived antivenoms raised
against venoms from one region ineffective against venoms from the same species in another
region. Additionally, venoms from the same snake species from different regions may have
one or more distinct/unique toxins. In both these cases, the problems can be overcome with
BOA by simply including more antibodies or additional antibodies against all offending toxin(s).
Such additions will not affect the safety profile of the BOA due to the compatibility of human
monoclonal antibodies with the human immune system.

9. Cross-reactivity with other snake venom toxins: Some toxin-neutralizing antibodies neutralize
related toxins not only from the same species, but also from different species [52]. If such
cross-reactivity is intelligently engineered into the monoclonal antibodies during development,
it may help in preparing polyvalent BOAs from a stock of a limited number of human
antibodies [53].

10. Elimination of interaction with live snakes: The production of BOA does not require a
continuous supply of snake venoms. This will eliminate the need for collecting venoms from
wild or captive snakes, thus reducing accidental bites [5,50].

11. Abrogation of local tissue damage: In most cases, horse-derived antivenoms fail to abrogate
local tissue damage induced by snake venom toxins [2]. This inability could be either due
to a lack of antibodies that neutralize the offending toxin(s) or to the toxin(s) initiating local
tissue damaging processes before being neutralized by antibodies [54]. It may be possible to
find suitable human antibodies that could neutralize offending toxins. Alternatively, enzymatic
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processes leading to local tissue damage could be neutralized using small molecule enzyme
inhibitors [55,56] (see below). Finally, by having an improved safety profile, it might be possible
to administer BOA during transportation en route to the hospital, thereby minimizing the time
that the locally-acting snake toxins can exert their toxic actions around the bite wound.

12. Potential prophylactic use of BOA: The better safety profile of BOA could be of prophylactic
use for people who will be exposed to snakebite hazards. The longer PK of full-length antibodies
(IgGs), which typically have half-lives of several weeks [50], could provide excellent prophylactic
protection, which could reduce mortality, morbidity, and intensity of pathophysiological impact
of snakebite.

3.2. Small Molecule Enzyme Inhibitors

Snake venoms contain enzymes, including phospholipases A2, metalloproteases, serine proteases,
L-amino acid oxidases, nucleotidases, and hyaluronidases [2,5,57–59]. In addition to the digestion of
prey, these venom enzymes contribute to various pharmacological functions. They may also contribute
to various pathophysiologies of envenomation, including local tissue destruction and damage. Over the
last several decades, a number of natural and synthetic molecules have been evaluated for their ability
to inhibit various enzymes found in snake venoms, and some of these molecules have been tested in
human patients for treatment of other diseases [5,55,60,61]. Such inhibitors could be repurposed for the
treatment of snakebite victims, potentially in combination with current antivenoms or next-generation
antivenoms (Figure 2) [60,62].

Toxins 2018, 10, x FOR PEER REVIEW  6 of 10 

 

length antibodies (IgGs), which typically have half-lives of several weeks [50], could provide 
excellent prophylactic protection, which could reduce mortality, morbidity, and intensity of 
pathophysiological impact of snakebite. 

3.2. Small Molecule Enzyme Inhibitors 

Snake venoms contain enzymes, including phospholipases A2, metalloproteases, serine 
proteases, L-amino acid oxidases, nucleotidases, and hyaluronidases [2,5,57–59]. In addition to the 
digestion of prey, these venom enzymes contribute to various pharmacological functions. They may 
also contribute to various pathophysiologies of envenomation, including local tissue destruction and 
damage. Over the last several decades, a number of natural and synthetic molecules have been 
evaluated for their ability to inhibit various enzymes found in snake venoms, and some of these 
molecules have been tested in human patients for treatment of other diseases [5,55,60,61]. Such 
inhibitors could be repurposed for the treatment of snakebite victims, potentially in combination with 
current antivenoms or next-generation antivenoms (Figure 2) [60,62]. 

 
Figure 2. Schematic representation of how small molecule inhibitors may be used in combination with 
conventional antivenom or biosynthetic oligoclonal antivenom (BOA) against snakebite to 
strategically neutralize key toxins that are poorly neutralized by the antivenom or BOA. 

The key hurdle in the use of such inhibitors is evaluating their efficacy in inhibiting offending 
snake venom enzymes, both in vitro and in vivo (including in treatment mode). These molecules 
should also be evaluated for their in vivo efficacy in combination with horse-derived antivenoms as 
well as BOA. Small molecule enzyme inhibitors could provide several potential advantages. 

1. Increased treatment window: Treatment for envenomation should ideally start within a 
short time period following snakebite, as mortality and morbidity increase significantly beyond 
this window. Small molecule enzyme inhibitors may substantially increase this time window, if 
they can be administered in the field setting (i.e., if they are stable at elevated temperatures and 
orally available), and could thus provide more time to reach hospital care. 
2. Fast and effective tissue penetration: The small size of the inhibitors may allow rapid 
distribution to all ‘compartments’ in vivo, if such inhibitors exhibit fast diffusion kinetics and 
effective tissue penetration [5,54,61]. 
3. Validated safety in humans: As many of these small molecule inhibitors have been 
evaluated for their toxicity in human recipients, they have already been proven sufficiently safe 
for use in the treatment of snakebite envenoming. 

  

Figure 2. Schematic representation of how small molecule inhibitors may be used in combination with
conventional antivenom or biosynthetic oligoclonal antivenom (BOA) against snakebite to strategically
neutralize key toxins that are poorly neutralized by the antivenom or BOA.

The key hurdle in the use of such inhibitors is evaluating their efficacy in inhibiting offending
snake venom enzymes, both in vitro and in vivo (including in treatment mode). These molecules
should also be evaluated for their in vivo efficacy in combination with horse-derived antivenoms as
well as BOA. Small molecule enzyme inhibitors could provide several potential advantages.

1. Increased treatment window: Treatment for envenomation should ideally start within a short
time period following snakebite, as mortality and morbidity increase significantly beyond this
window. Small molecule enzyme inhibitors may substantially increase this time window, if they
can be administered in the field setting (i.e., if they are stable at elevated temperatures and orally
available), and could thus provide more time to reach hospital care.
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2. Fast and effective tissue penetration: The small size of the inhibitors may allow rapid distribution
to all ‘compartments’ in vivo, if such inhibitors exhibit fast diffusion kinetics and effective tissue
penetration [5,54,61].

3. Validated safety in humans: As many of these small molecule inhibitors have been evaluated
for their toxicity in human recipients, they have already been proven sufficiently safe for use in
the treatment of snakebite envenoming.

4. Conclusions

Mortality and morbidity due to snakebite envenoming represents a solvable international
disaster. For more than 100 years, animal-derived antivenoms have been the most accepted treatment
for snakebite victims (Figure 1A). Although they significantly reduce mortality and morbidity,
these antiquated antivenoms are beset with inherent limitations, including a high propensity to cause
adverse reactions, complex manufacturing processes, low content of toxin-neutralizing antibodies,
and an inability to effectively neutralize locally-acting toxins in distal tissues. The concept of using
biosynthetic oligoclonal antivenom (BOA) for snakebites proposes to use modern well-established
technology to overcome the limitations of existing treatments through using oligoclonal mixtures
of human monoclonal antibodies and repurposed enzyme inhibitors (Figure 1B). Being based on
human therapeutic antibodies, a BOA would not cause allergenic reactions in human recipients. Also,
since the antibodies included in a BOA would be specifically selected as toxin-neutralizing recombinant
monoclonal antibodies (both for monovalent and polyvalent BOAs), a BOA could be manufactured to
only comprise therapeutically active antibodies by industrially standardized manufacturing processes
for oligoclonal antibody mixtures. Finally, the combined use of small molecule inhibitors together with
a BOA could lead to improved neutralization of toxins in distal tissue by improving pharmacokinetics
(Figure 2).
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