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A B S T R A C T

This paper concerns the automatic diagnosis of ball bearing defects in industrial geared motor based on statistical
indicators and the Adaptive Neuro-Fuzzy Inference System (ANFIS). The approach consists of three essential steps:
the first is the extraction of statistical indicators from the root mean square (RMS) of the raw vibration signals
measured experimentally for different states of the bearing (healthy and in the presence of defects). The second
step consists of the selection of the more relevant indicators, and finally the introduction of these indicators to the
ANFIS network in order to classify the various defects in the bearing (inner and outer race faults, and combined
fault). A test campaign was conducted on an industrial installation (Wheeled Conveyor) to collect data as the RMS
trend of the raw vibrations using adequate instrumentation in order to verify the validity of the method in real test
conditions. The obtained results show that the proposed approach can reliably detect and classify various faults at
different speeds of rotation of the electric motor. The effectiveness of the proposed method was also approved by
using additional test data.
1. Introduction

Induction machine-based electrical drives are widely used in indus-
trial applications because of their robustness, reliability and low cost. The
availability of the machine is a main objective in the industrial domain
which requires to design a good maintenance plan based on the moni-
toring of the state of the machine and diagnosing the defects starting
from the measurements taken using different techniques either by the
analysis of the machine electric current signature, thermography, oil
analysis, vibration analysis, temperature ... etc. In the context of pre-
ventive maintenance, vibration analysis is the most common technique in
the industrial field for the detection of defects in rotating machinery [1,
2]. According to the study of Electric Power Research Institute EPRI,
41–42 % of the failures of the induction motor are due to defects in
bearings and 36 % are defects related to the stator [3, 4]. The appearance
of incipient defects in the bearing does not lead to immediate breakdown,
but their increase over time will generate a critical failure in the machine
that requires expensive intervention. These issues have prompted many
researchers to propose several diagnosis methods by analyzing the signal
acquired with various methods such as temporal analysis [5, 6],
delkrim).
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frequency analysis [7] and time-frequency analysis [8]. The temporal
analysis is widely used due to its effective results, it uses time-based in-
dicators such as: root mean square [9], kurtosis [10], peak value, skew-
ness [11], high-order statistics [12]. The analysis in the time domain has
the advantage of simple and faster calculations. However, the insensi-
tivity to initial defects and deeply distributed defects are the major
drawbacks of this approach.

The spectral or frequency analysis approach is the most classical
method for detecting faults in rotating machines. Indeed, this approach
allows the conversion of the temporal signal into the frequency domain.
It also gives detailed and early information about the state of the machine
when compared with the time domain analysis. Consequently, several
methods are based on using the spectrum of the temporal signal, such as
the Hilbert transformation method [13], the high-frequency shock and
friction forces method [14], the bearing defect frequencies analysis
technique [15, 16], and the envelope spectrum method [17]. This
approach is sensitive and robust for detecting bearing faults and identi-
fying the location of damage. However, its accuracy depends on the di-
mensions of the bearing and the speed of rotation. In addition, all
methods using the frequency domain require intelligent selection of the
19
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Table 1
Statistical features extraction.

F1 ¼ 1
N

XN
k¼1

xðkÞ
mean (1)

F2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
k¼1

ðxðkÞ � F1Þ2
vuut standard deviation (2)

F3 ¼ max
1�k�N

ðxðkÞÞ maximum (3)

F4 ¼ min
1�k�N

ðxðkÞÞ minimum (4)

F5 ¼ ðQN
k¼1xðkÞÞ

1
N

geometric mean (5)

Fig. 2. Pipe coating process.

Table 2
Technical characteristics of the tested geared motor.

Rated Power 4.0 kW
Supply frequency 50 HZ
Rated speed 1455 rpm
Rated voltage between phases 400 V
Rated current 8.4 A
Power factor 0.80
Nominal torque reduction 932 N.m
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frequency band to be effective, as the information is often submerged in
noise which is characterized by a higher energy. Therefore, it is difficult
to identify the defect in the spectra using the conventional
frequency-based methods.

The time-frequency domain analysis approach allows the provision of
useful information for the stationary and non-stationary signals, which
represents its main advantage over the temporal and frequency based
techniques [18]. Several methods of analysis in the time-frequency
domain have been proposed, such as short-term Fourier Transform
(STFT) [19], Wigner-Ville distribution (WVD), wavelet transforms [20].
It should be noted that in many cases and in particular in variable speed
and load systems, a simple inspection of the monitoring index does not
provide reliable information about the state of the machine.

This work concerns the detection and classification of faults in
rotating machines by means of artificial intelligence. Several methods
using this approach have been used: in [21] the authors used neural
networks for fault diagnosis using time and frequency characteristics. In
[22], a spectral-based diagnosis approach using fuzzy logic has been
proposed. In [23], a Neuro-Fuzzy-based (ANFIS) approach has been
suggested for fault classification. The work presented in [24], showed
diagnosis efficiency using multi-scale entropy and ANFIS. An overview of
the development and application choices of the wavelet was given in
[25]. As for the authors in [26], they proposed an intelligent method for
fault diagnosis based on neural networks combined with intelligent fil-
ters (RNFC). On the other hand, in [27], an approach based firstly on the
extraction of characteristics in the time and frequency domain, then the
Fig. 1. ANFIS a
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construction of a basic classifier by applying a genetic algorithm is pre-
sented. A novel method combining "Adaptive Feature Extraction" and
"Multi-scale entropy" using "Support Vector Machine" (SVM) has been
proposed in [28]. In the research work [29], the faults signature
extraction is based on the frequency domain analysis using the envelope
rchitecture.
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Fig. 3. Kinematic chain of the geared motor.

Fig. 4. Different states of the bearing: (a) Healthy, (b) outer race fault, (c) inner race fault and (d) combined fault.

Fig. 5. Vibration measurement experimental setup.
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power spectrum. In [30], the proposed approach is based on the wavelet
transform and Artificial Neural Networks (ANN) for the detection and
3

classification of faults. A feature selection and diagnosis method based on
Ensemble Empirical Mode Decomposition (EEMD) and optimized by the



Fig. 6. Results of acquired vibrations for different bearing states and different speeds: (a) healthy, (b) outer race fault, (c) inner race fault, (d) combined defect.
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algorithm Elman_AdaBoost was suggested in [31].
The aim of this work is the integration and validation of an intelligent

automated approach for the detection and classification of geared motor
bearing faults in an industrial field using only the RMS trend signals. The
method is based on using temporal statistical indicators and Adaptive
Neuro-Fuzzy Inference System (ANFIS) [32]. The features are calculated
from the acquired signals in the form of the Root Mean Square (RMS)
trend of the raw vibration signals issued from an accelerometer installed
on a rotating machine in operation. Such choice gives fast features cal-
culations as it uses simple equations compared with other techniques and
does not require complex denoising procedures. The experimental tests
are carried out using several bearing sets with different states and
operating at various speeds of rotation.

2. Theory/ calculation

2.1. Feature extraction and classification

The acquired vibration data represents the root mean square (RMS) of
the original vibration data which is the available form of measurement
from the acquisition device. These signals are then subject to a moving
window calculations of statistical features in order to extract intrinsic
characteristics.

2.1.1. Feature extraction
Statistical features are calculated from the dataset of each state of the

bearing with a length of 2400 points. The used features are (mean,
standard deviation (std), maximum, minimum, geometric mean) which
are given in Table 1 as Eqs. (1), (2), (3), (4), and (5) applied to an input
4

signal x(k) with a window of length N.

2.1.2. Adaptive neuro-fuzzy inference system
The ANFIS algorithm was first introduced by Jang [32], which con-

sists of a network characterized by inputs that are fuzzified using a
chosen membership functions and a training algorithm that adjusts the
weighting parameters and membership functions to give a fuzzy infer-
ence system that mimics a desired input-output mapping. The fuzzy
inference system is composed of rules of the following form:

If x is Ai and y is Bi then zi ¼ pixþ qiyþ ri

Where Ai and Bi are fuzzy sets, x and y are system input output desired
mapping, zi output of each rule with design parameters pi, qi and ri. The
structure of the ANFIS network is given in Fig. 1.

2.1.2.1. Input membership function layer. Each node i in this layer is an
adaptive node with a node function. Hence O1

i is a membership grade of
the fuzzy set (A1;A2 ;B1; B2) which are given in Eqs. (6) and (7)

O1
i ¼ μAiðxÞ; i ¼ 1; 2: (6)

O1
i ¼ μBi�2ðxÞ; i ¼ 3; 4: (7)

μAi(x) and μBi-2(x) are fuzzy membership functions given in Eq. (8).
The used membership functions in the previous nodes are chosen to be
the bell-shaped functions with an upper limit of one and a minimum of
zero, it is given as follows:
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Fig. 7. Steps for detection and classification of defects.
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μAiðxÞ¼
1"� �2

#bi
; i ¼ 1; 2: (8)
1þ x�ci
ai

Where ai, bi and ci are the parameters of the bell shaped membership
function.

2.1.2.2. Rule layer. Each node in this layer is a fixed node labeledM. The
output is a product of all the input signals. The outputs in Eq. (9)
represent the weights ωifor each rule as:

O2
i ¼ωi ¼ μAiðxÞ:μBiðyÞ; i ¼ 1; 2: (9)
5

2.1.2.3. Normalization layer. The nodes in this layer are fixed nodes
labeled N. The ith node calculates the ratio of theith rule's weight to the
sum of all rule's weights are given as given in Eq. (10).

X2

i¼1

ωi; i ¼ 1; 2: (10)

The outputs for this layer are normalized weights calculated using Eq.
(11).

O3
i ¼ωi ¼ ωiP2

i¼1ωi

; i ¼ 1; 2: (11)

2.1.2.4. Output membership function layer. Each node i in this layer is an
adaptive node with the node function in Eq. (12).

O4
i ¼ωi:zi ¼ ωi½pixþ qiyþ ri�; i ¼ 1; 2: (12)

qi,pi and ri are the adaptive parameters set of this node.

2.1.2.5. Output layer. The output node is labeled S, which calculates the
overall output using the sum of all input signals as in Eq. (13).

O3
i ¼ z ¼

X2

i¼1

ωizi ¼
P2

i¼1ωiziP2
i¼1ωi

(13)

The algorithm used for the training of the ANFIS network is a com-
bination of a gradient descent method and the least squares estimation
algorithm that comprises two stages for better training efficiency and
bypass the possibility of being trapped in local minima. In the first step,
the parameters are supposed to be fixed. The resulting parameters are
then given to the least squares estimation algorithm. In the next step, the
parameters are also supposed to be fixed. The parameters are then
updated using the back propagation gradient descent method, on the
basis of the error values.

The used classification algorithm is based on amodified faster version
of the original ANFIS classifier [32] that has been proposed in [33]. The
speed-up of the supervised learning algorithm has been achieved by
estimating one of the first-order gradients from the previously calculated
gradients without using the training dataset. To estimate this gradient, a
least square error estimator has been calculated. The cost in time for the
execution of the estimator has been proven to be smaller than the
computation complexity of original algorithm especially for large-scale
datasets [33].

3. Experimental

3.1. Experimental setup

As it is well known in the literature [3, 4], bearings faults have a
higher occurrence rate in rotating machinery compared to other types of
faults. Consequently, this study is carried out in an industrial field in
order to propose a fault diagnosis algorithm for the bearing components.
The tests are performed in welded steel pipes manufacturing factory,
destined for the transport of gas and hydrocarbons. The displacement of
these pipes in the workshop is performed using wheeled gear motors as
illustrated in Fig. 2.

Fig. 2 shows the importance of the gear motor as a strategic equip-
ment in the production line of the workshop. Its shutdown due to failure
may have devastating economic consequences on the production process.
To remedy to such problem (unexpected shutdown) as part of preventive
maintenance plan, we have conducted a series of experimental tests on
the behavior of the bearing (fan side) of the geared motor in different
states (without defects and faulted). These tests were performed at
different speeds of the electric motor.

The technical characteristics and the kinematic diagram of the gear
motor are respectively shown in Table 2 and Fig. 3.
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Fig. 8. Scalar indicators extracted from vibration signals.
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The tests were carried out on the bearing (type 6306-2RS1/C3) of the
electric motor (fan side) in different states (healthy and in the presence of
defects) and at variable speeds (460, 840, 1220 and 1570 rev/min). The
defects (Ø 4.5mm drilled holes) are created artificially on three different
bearings. The first bearing has a defect on the outer race, the second on
the inner race and the third on the outer and inner race simultaneously
(combined) (Fig. 4 b, c, d). The drilled holes (defects) were made using a
metal carbide drill.

Vibration analysis is used technique for fault detection. The vibra-
tions were acquired at a variable acquisition frequency using a VM 6360
digital vibrometer interfaced with a computer. The latter has an
accelerometer-type vibration sensor placed on the motor fan bearing in
the vertical direction (Fig. 5). The vibration variables measured by the
acquisition device are expressed as the RMS value of the acceleration.
Numeric data is collected for each state of the bearing with an acquisition
length of 2400 samples which represents the concatenation of 600
samples of the vibration signals for a fixed operation condition and
rotating speed.

4. Results and discussion

In order to study the effects of bearing defects on the gear motor vi-
brations, vibration signals have been collected in the healthy state and at
various faulted states by varying the rotation speed of the geared motor
as shown in (Fig. 6). The data collected for each bearing condition con-
tains 2400 samples.

The analysis of the obtained results (Fig. 6) shows that the combined
defect (d) is characterized by relatively higher vibrations compared to
6

other defects and this is valid for the different speeds of rotation of the
geared motor. In addition, it is also noted that the defect of the inner ring
(c) causes vibrations lower than those of the combined defect, but higher
than those caused by the defect of the outer race (b). The analysis also
shows that the vibrations caused by the failure of the outer race are
relatively higher compared to those generated by the bearing in the
healthy state (a).

The intensity of the vibrations is more pronounced as the frequency of
rotation of the gear motor increases. By referring to the previous analysis,
it appears that: the impact of defects (b, c, d) and rotational speeds on the
amplitude of vibrations (RMS) has a considerable influence. Indeed, the
quantification of this influence by the ratio of each defect to the healthy
state gives us the following ratios: (8–49), (4–21), (6–27) and (7–20)
times, respectively for 460, 840, 1220 and 1580 rpm.

The visual distinction between the vibration signals in the time
domain at the different rolling states is difficult. In order to overcome this
difficulty, we proceed to the extraction of different statistical indicators,
which will be analyzed later for each type of defect. This will make
possible the definition of relevant indicators which will be the input
vectors of the defect classification approach, according to the flowchart
Fig. 7.

The conventional indicators to be studied for the different bearing
conditions are extracted from the vibration signals in order to test their
ability to identify each of the defects. These indicators are illustrated in
Fig. 8.

The analysis of Fig. 8 shows that the curves of the various defects of
the STD indicator overlap, therefore this makes possible the detection of
faults without being able to identify them. On the other hand, the curves
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Fig. 11. Membership functions: (a) before training, (b) after training.

Fig. 12. Classification results using the trained ANFIS structure using 960 training samples: (a) Desired outputs, (b) ANFIS outputs, (c) classification absolute error.
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Fig. 13. Classification results using the trained ANFIS structure using 280 testing samples: (a) Desired training outputs, (b) ANFIS outputs, (c) Classification abso-
lute error.

Table 3
Confusion matrix for the training data.

Desired class

ANFIS output 1 2 3 4
1 240 0 0 0
2 0 234 0 8
3 0 5 240 12
4 0 1 0 220

Table 4
Confusion matrix for test data.

Desired class

ANFIS output 1 2 3 4
1 70 0 0 0
2 0 65 0 3
3 0 2 70 4
4 0 3 0 63

Table 5
Comparison of the proposed technique with other ANFIS-based works.

Paper Considered
fault

Domain Used Features Results Remarks

[23] Bearings:
Outer race,
Ball, Inner
race

Time,
Spectral

N.A. Training:
94.78%
Testing:
83.42%

Variable
severity,
fixed speed.
Case
Western
database.

[35] Bearings:
Outer race,
Ball, Inner
race

Spectral Frequency of
detects,
Spectrum
peak ratio

Training:
97%

Variable
severity
and speed.
Case
Western
database.

[36] Bearings:
Outer race,
Ball, Inner
race

Time Multi-scale
Permutation
Entropy

Training:
92.5%

Variable
severity
and speed.
Case
Western
database.

Current
study

Bearings:
Outer race,
Inner race,
Combined

Time Mean, Max,
Geomean,
Min, Speed

Training:
97.3%
Testing:
95.71%

Variable
speed.
Industrial
equipment.
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of the other indicators (Mean, Max, Min, Geomean) are quite distinct for
the different states, which makes possible the detection and identifica-
tion the presence of failures. In order to illustrate the influence of each
bearing fault on the scalar indicators, Fig. 9 clearly shows their evolution.

The in-depth analysis of the scalar indicators of Fig. 9 shows that only
the STD indicator has an overlap between the combined defect and the
9

defect of the inner race which confirms the analysis previously discussed
(Fig. 8).
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In addition, the confirmation of the choice of relevance of the in-
dicators was highlighted by expressing the effect of the speed of rotation
on the studied scalar indicators (Fig. 10). It appears that only the STD
indicator has an overlap.

From the indicator analysis results shown in Figs. 8, 9, and 10, it is
clear that the STD indicator is unreliable for fault detection and identi-
fication due to the overlapping curves. On the other hand, the remaining
indicators allow the detection and identification of the studied defects.

After identifying relevant indicators as feature vectors and for the aim
of facilitating industrial exploitation, an adaptive neuro-fuzzy inference
system (ANFIS) will be configured to perform automated fault diagnosis
in order to minimize uncertainty in the diagnosis process. For this pur-
pose, the four characteristic indicators as input vectors (Mean, Max, Min,
Geomean) and gear motor rotational speed were used for neuro-fuzzy
structure training and testing.

The database is separated to form a set of training data (960 samples)
and test data (280 samples). The ANFIS model is trained using the
training data set, so that the fuzzy logic inference is able to give the ex-
pected results. The input domain is partitioned using the membership
function into sixteen segments. Modifications of the bell-shaped mem-
bership functions after training from the initial membership functions are
given in Fig. 11.

Fig. 11 (a) shows the initial membership functions for the inputs of
the ANFIS network with 16 Gaussian membership functions for each
input. The final membership functions of each entry after training are
shown in Fig. 11 (b). Examination of the initial and final membership
functions indicates that the membership functions can be modified ac-
cording to the current condition of the training data and the training
process. The changes in the membership functions after training is pro-
portional to the effect of the corresponding indicator (Mean, Max, Min,
Geomean). The larger the change in membership function contributes
also to better classification results.

In the test phase, the membership functions resulting from the
training procedure are used to give the evaluation of each input. The
classification accuracy of the trained ANFIS structure is estimated using
the testing data. The purpose of the classification is to determine an
input/output mapping that estimates the operating conditions studied in
this work. The results of the classification procedure applied for fault
diagnosis is divided in two evaulations: one for the same training data is
shown in Fig. 12 and the other classification for test set which is not
included in the training data (Fig. 13).

Fig. 12 (a) shows the desired classes and the corresponding output of
the ANFIS structure. Fig. 12 (b) shows the calculated absolute error be-
tween the desired output and the ANFIS output which is equal to 2.708
%. When the absolute error is greater than or equal to 0.5, the corre-
sponding sample is considered as misclassified (Fig. 12b). Indeed, for the
second level (outer race fault) there are 6 samples (red) misclassified,
while for the fourth level (combined defect), 20 samples are mis-
classified. The total precision of the classification of the proposed
approach for all of the training and test data is in the order of 97.3%.
Table 3 shows detailed classification results for the training data.

The second classification for the test database is illustrated in Fig. 13.
Knowing that these data are other than the training data. Fig. 13 (b)
shows the absolute error of the ANFIS output relative to the desired
output which is equal to 4.285 %. As a result, the total accuracy of the
proposed approach classification for the test data set is 95.71%.Table 4
shows the confusion matrix for the test data with detailed classification
samples.

A comparison with previous research works that uses the ANFIS
classifier for bearing faults diagnosis is given in Table 5. The current
study uses a time-based approach that accelerates the processing of the
feature extraction procedure as it does not require the calculation of the
spectrum of the raw data as in other spectral based methods. In addition
the features used in this work are characterized by simple formulas which
do not require long processing time compared to entropy-based tech-
niques. The obtained results show excellent performance for a variable
10
speed drive operating in industrial production line.

5. Conclusion

This paper applies a soft computing approach to the diagnosis of
bearing faults in a geared motor of a strategic equipment in an industrial
welded steel pipe factory. The approach is based on the extraction of
statistical indicators from the acquired vibration signals and then the
classification of faults using a trained adaptive neuro-fuzz inference
system ANFIS.

The experimental results obtained at the different bearing states
(healthy and in the presence of faults) clearly show that the proposed
ANFIS approach to the detection and classification of bearing state of
operation in real industrial applications is reliable. The total classifica-
tion accuracy of the proposed approach for all training and testing data is
in the order of 97.38%.
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