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In a variety of solid cancers, missense mutations in the well-established TP53 tumor

suppressor gene may lead to the presence of a partially-functioning protein molecule,

whereas mutations affecting the protein encoding reading frame, often referred to as

null mutations, result in the absence of p53 protein. Both types of mutations have

been observed in the same cancer type. As the resulting tumor biology may be quite

different between these two groups, we used RNA-sequencing data from The Cancer

Genome Atlas (TCGA) from four different cancers with poor prognosis, namely ovarian,

breast, lung and skin cancers, to compare the patterns of coexpression of genes in

tumors grouped according to their TP53 missense or null mutation status. We used

Weighted Gene Coexpression Network analysis (WGCNA) and a new test statistic

built on differences between groups in the measures of gene connectivity. For each

cancer, our analysis identified a set of genes showing differential coexpression patterns

between the TP53 missense- and null mutation-carrying groups that was robust to the

choice of the tuning parameter in WGCNA. After comparing these sets of genes across

the four cancers, one gene (KIR3DL2) consistently showed differential coexpression

patterns between the null and missense groups. KIR3DL2 is known to play an important

role in regulating the immune response, which is consistent with our observation that

this gene’s strongly-correlated partners implicated many immune-related pathways.

Examining mutation-type-related changes in correlations between sets of genes may

provide new insight into tumor biology.

Keywords: TP53, ovarian cancer, breast cancer, lung cancer, melanoma, weighted gene expression network,

KIR3DL2, immune pathways

INTRODUCTION

The TP53 Gene and Cancer
It is well-established that mutations of the TP53 gene, which renders loss of function of encoded
p53 tumor suppressor protein, is the most frequent somatic genetic anomaly observed in human
cancers (Muller and Vousden, 2013). This has recently been verified by the application of whole
exome sequencing technology to identify the mutational spectrum of a variety of cancers as
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exemplified by The Cancer Genome Atlas (TCGA) Research
Network (http://cancergenome.nih.gov). The TP53 mutation
frequency varies across cancer types, with high-grade serous
ovarian carcinomas exhibiting the highest frequency at 96% (Bell
et al., 2011; Cerami et al., 2012; Gao et al., 2013), suggesting that
TP53 mutations are critical drivers for the development of this
subtype of ovarian cancer (Ahmed et al., 2010).

TP53 encodes a DNA-binding transcription factor that
induces cell growth arrest, senescence and cell death by apoptosis
upon cellular stress (Freed-Pastor and Prives, 2012; Muller
and Vousden, 2013). This process serves to eliminate severely
damaged or emerging tumor cells. As a consequence of acquiring
somatic TP53 mutations, tumor cells are thus able to evade
apoptosis and senescence, and progress to more malignant
phenotypes. However, unlike other established tumor suppressor
genes, such as RB1, which are most commonly inactivated by
frame-shift or nonsense mutations, TP53 often encodes mutant
proteins as a consequence of missense mutations with a single
base-pair change in the coding sequence. The mutant p53
protein, having a prolonged half-life relative to the normal
isoform, is able to accumulate in tumor cells, and thus is
readily detectable by immunohistochemistry. The majority of
missense variants are a consequence of mutations occurring in
exons 4-9 which would affect the DNA-binding domain of the
protein. The functional consequences of mutant p53 protein
are the subject of intense research (reviewed in Brosh and
Rotter, 2009; Freed-Pastor and Prives, 2012;Muller andVousden,
2013), which has shown, using various cell line models, that
mutant p53 protein can bind and inactivate p53-related proteins.
Moreover, it has been shown that some mutant p53 proteins
have acquired new oncogenic functions through interactions
with other transcription factors. The consequences of a missense
mutation are in stark contrast to frame-shift, nonsense and
splice-site mutations in TP53 that have also been observed in a
significant fraction of human tumors. This latter set of variants
is collectively referred to as p53-null mutations, as they affect the
reading frame, resulting in the absence of an encoded protein.
Both types of mutations have been detected in the same cancer
type, where missense mutations are more commonly observed
than the other types. In high-grade serous ovarian carcinomas,
we and others have shown that among TP53 mutation-positive
tumor samples, between 60 and 70% harbor TP53 missense
mutations, and the remaining 30–40%harbor p53-null mutations
(Ahmed et al., 2010; Cancer Genome Atlas Research, 2011;
Wojnarowicz et al., 2012).

Links between TP53 Mutation Subtypes
and Clinical Outcomes
Past attempts to correlate TP53 mutation status with various
clinical parameters, such as overall outcome or response to
therapy, has often resulted in conflicting results. This is in large
part due to an overly superficial examination of the mutations,
i.e., by limiting mutation analyses to those exons that encode
the DNA binding domain, or by inferring mutation status by
immunohistochemistry, which detects tumor cells harboring
stable mutant p53 protein but does not readily distinguish those

harboring p53 null variants from wild-type variants. However,
evidence is emerging that the type of TP53 mutation is associated
with differences in clinical outcome. Older studies also did
not consider the biological consequences resulting from the
nature of the somatic TP53 mutation, which would distinguish
cancer cases with TP53 missense mutations from those with
null mutations. For example, our group has shown that the
subgroup of high-grade serous ovarian carcinomas expressing
mutant p53 protein exhibited significantly prolonged overall
disease-free survival as compared with carcinomas harboring
p53 null mutations (Wojnarowicz et al., 2012). Our results were
consistent with earlier reports associating high-grade serous
ovarian carcinomas harboring p53 null mutations with poorer
overall outcome (Kobel et al., 2008) or distant metastasis (Sood
et al., 1999). In contrast, a recent study using a subset of the
gene expression data from TCGA set for high grade serous
ovarian cancers, has provided some evidence that patients
with gain-of function p53 mutant proteins are characterized
by a greater likelihood of platinum treatment resistance and
distance metastasis (Kang et al., 2013). Thus TP53 mutations
may exert different effects on tumor progression and possible
chemoresistance in the development of ovarian cancer. This
notion is supported in part by our observation of significant
genomic copy number differences of specific chromosomal
regions in a comparative analysis of high grade serous ovarian
cancer harboring p53 missense with those harboring p53 null
mutations (Wojnarowicz et al., 2012).

Network-Based Analyses of Gene
Expression
When many genes in a co-regulated set are altered subtly
but in a coordinated fashion, tests of differential expression
performed separately on each gene may have low statistical
power to detect differences of interest. In contrast, analyses that
explicitly examine evidence for coexpression might provide a
clearer picture of how cell regulation has been affected.

Starting from a point of view inspired by knowledge of
metabolism, Ravasz et al. (2002) used network theory arguments
to develop a new metric of similarity for metabolic networks.
They showed that such networks were neither completely
modular, nor did they follow a completely scale-free network,
but that they demonstrated hierarchical network modularity.
Through this work, they proposed use of the Topological Overlap
Matrix (TOM), which measures how strongly two nodes are
connected to the same set of neighbor nodes. The TOM matrix
concept was then applied to gene expression data (Zhang and
Horvath, 2005), who showed that an appropriately transformed
TOM matrix, built from gene expression correlations, could
demonstrate scale-free network properties. These authors
developed a clustering method, Weighted Gene Coexpression
Network Analysis (WGCNA), for identification of gene modules
showing high coexpression, i.e., strong network connectivity.

To give a heuristic description of this idea, examine Figure 1
where we assume gene expression is measured at four genes,
represented by colored circles. In the top left diagram, pairwise
correlations between gene expression levels are represented by

Frontiers in Genetics | www.frontiersin.org 2 August 2016 | Volume 7 | Article 137

http://cancergenome.nih.gov
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Oros Klein et al. Coexpression in TP53 Mutated Cancers

FIGURE 1 | Schema exemplifying the advantage of using TOMs to identify the relationships in the expression of various genes. Four genes are

represented by colored circles. Assume gene expression is measured in samples from two groups, and the strength of the relationships between genes is indicated by

the width of the connecting lines. In Group 1, there is very little correlation between the (blue, green) and (yellow, orange) pairs, as can be seen in the top row of

diagrams. Since TOMs also capture indirect relationships between genes, the lower row of TOM-connectivity shows that in fact these theses pairs can be considered

as strongly connected. For example, between the green and blue genes, connection can be established via green-yellow-blue and green-orange-blue. In Group 2,

correlation between (green, orange) is reduced. There is still a TOM connection between green and blue, via yellow, but it is reduced in strength when compared to

Group 1. An examination of differences (last column) would highlight only the (green, orange) pair when using correlations, whereas by using TOMs, a larger set of

differentially-connected genes is captured.

the widths of the lines, and it can be seen that there is very
little pairwise correlation between the (blue, green) and (yellow,
orange) pairs. However, indirect relationships between these
pairs of genes exist; for example, between the green and blue
genes, a relationship can be established via green-yellow-blue
and green-orange-blue. Hence, the concept behind the TOM
is represented schematically in the bottom left diagram, where
the strong blue-green relationship is formed by summing the
strengths of the two indirect paths.

In order to explore how co-regulated sets differ between
groups, several methods have been proposed. Lai et al. (2004)
constructed an extended F test that includes consideration of
the correlations between the members of the sets, however this
is built on a multivariate normal model and may be sensitive
to distributional assumptions. Then in 2005, a correlation-
based score was developed that highlights genes where
correlations are particularly different between groups(Dettling
et al., 2005). In parallel, in a series of papers by Yakovlev
and colleagues (Szabo et al., 2003; Xiao et al., 2004), a
non-parametric measure of variability in correlations was
developed; this approach includes clustering to find subsets of
genes showing variability. Their measure is built on Fisher-
transformed correlations, considered both within and between
groups, and was extended in 2009 (Hu R. et al., 2009)
to allow comparisons between two groups. In contrast to
these methods that are based on correlations, in 2010, a
redefined TOM matrix was constructed from differences in

correlations between groups (Tesson et al., 2010), i.e., weighted,
signed differences in gene expression correlations (between
two groups) were used to construct a new TOM matrix that
would allow clustering of genes based on notable inter-group
network alterations.

TP53 Mutation Types and Coexpression in
Four Common Cancers
To further explore the biological consequences of the TP53
mutation type, we began by examining the gene expression
profiles of high-grade serous ovarian carcinomas available from
TCGA. We focused our analysis only on samples with TP53
mutations and compared profiles parsed according to the major
consequences of TP53 mutation. Although we did test for
differential expression between the TP53 mutation types, we
felt that such an analysis did not tell a complete story about
the patterns of gene expression. Therefore, we hypothesized
that differences in gene regulation in the context of TP53
missense or null tumors might be better captured by an
alternative analysis based on changes in gene coexpression
patterns. We built TOM matrices using the WGCNA method
and software (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008), and examined their differences using a novel
measure. Hence, we identified an interesting set of differentially
coexpressed genes. To determine if our observations were
unique to this cancer type, we repeated our analyses with three
very different types of solid cancers: breast (triple negative),
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lung (adenocarcinomas), and skin cutaneous melanomas. These
cancer types were selected because they exhibit a high
frequency of somatic TP53 mutations and RNA-sequencing
data were available from TCGA. Although the etiology of
high-grade serous ovarian cancer is unknown, breast cancers
that are negative for biomarkers that detect the expression
of receptors for estrogen (ER), progesterone (PR), and the
hormone epidermal growth factor receptor 2 (HER) (i.e., triple
negative breast cancers) exhibit molecular genetic features
overlapping this subtype of ovarian cancer (Cancer Genome
Atlas, 2012; http://www.cancer.gov/types). In contrast, both
lung (non small cell) adenocarcinomas and skin cutaneous
melanomas are largely caused by environmental factors, i.e.,
smoking and ultraviolet radiation, respectively (http://www.
cancer.gov/types). Finally, our approach suggests a cross-cancer
role for one gene in the immune system (KIR3DL2), with
TP53 mutation-type- and cancer-type-dependent co-regulation
partners.

MATERIALS AND METHODS

Gene Expression Measures
Gene summary expression files from RSEM-normalized(Li and
Dewey, 2011) (https://wiki.nci.nih.gov/display/TCGA/RNASeq+
Version+2) RNA sequencing experiments, obtained with the
Illumina HiSeq platform, were downloaded from The Cancer
Genome Atlas (TCGA) portal (http://cancergenome.nih.gov)
for each of our four cancers types of interest: high grade
serous ovarian cancer (OV), triple negative breast cancer
(BRCA), skin cutaneous melanoma (SKCM), and lung (non
small cell) cell adenocarcinoma (LUAD). Ovarian cancer data
was obtained December 10, 2012, and data for the other cancers
in January 28, 2015 (Supplemental Table S1). Table 1 shows
the number of samples for which RNA-sequencing data were
available for each cancer type. The somatic TP53 mutation
status has been reported for most of the cancer types, and
this information was obtained from the Open-Access Validated

Somatic Mutation Data available from the TCGA portal. For
the breast cancer samples, we focused on the triple negative
subgroup where the prognosis is poor, as inferred from the
immunohistochemistry results for biomarkers that detect the
expression of the receptors ER, PR and HER, available from the
clinical data.

Classifying TP53 Missense and Null
Mutations
The mutations were classified into two groups, either null
or missense mutations, based on a review of the somatic
mutations reported for each cancer. The p53 null group
contained frame-shift, nonsense and splice-site mutations, as
a consequence of intragenic nucleotide insertions or deletions
and/or single base-pair substitutions, which are expected to
affect protein encoding reading frames and have been associated
with unstable transcripts and lack of protein (Wojnarowicz
et al., 2012). Most of the remaining mutations were expected
to be p53-expressing missense isoforms which would largely
exhibit stable gene and protein expression (Wojnarowicz et al.,
2012), and these were assigned to our p53-missense group. Only
samples with known TP53 mutations were used in our analyses
(Table 1).

Identifying Changes in Coexpression of
Genes
For each dataset we removed genes with very low variability by
filtering using the coefficient of variation (standard deviation
divided by the mean); genes with coefficient of variation below
the first quartile were removed, and we applied a log2(x+1)
transformation to the expression data. Then, for each cancer type,
we used WGCNA software to calculate matrices of coexpression
of size GxG, for G genes, separately for the missense and
null groups, by calculating the unsigned topological overlap
matrices (TOM) using the WGCNA package available from
http://bioconductor.org. The overlap measure in a TOM matrix

TABLE 1 | Number of samples, characteristics of the samples, and results of some analyses, by cancer type.

Cancer type High grade serous Triple negative Skin cutaneous Lung

Ovarian carcinomas breast cancers** melanoma* adenocarcinoma

TCGA label OV BRCA SKCM LUAD

Number of samples with RNA-sequencing data 536 106 470 516

Number of samples with TP53 mutations 171 80 59 260

Number Male/Female 0/171 0/80 38/21 122/138

Number of samples with missense/null mutations 106/65 37/43 33/26 154/106

Number of genes analyzed after removing quartile with lowest

coefficient of variation

14,939 14,788 14,683 14,967

Number of genes with P < 0.05 for Sg, showing evidence of

differential coexpression, for different soft threshold parameter

(SP) choices

SP3: 327 SP4: 911 SP3: 1385 SP4: 316

SP4: 333 SP5: 910 SP4: 1282 SP5: 371

SP5: 343 SP6: 901 SP5: 1296 SP6: 407

SP6: 378 SP7: 930 SP6: 1345 SP7: 435

SP8: 1013

*51 of the 59 SKCM samples were metastatic melanoma; **Negative for ER, PR, and HER.
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of expression, Tgj between genes g and j, is defined as

Tgj =

∑G
l= 1 aglalj + agj

min
(

∑G
l= 1 agl

∑G
l= 1 alj

)

+ 1− agj

(1)

where agj =
∣

∣rgj
∣

∣

β
is a power transformation of the correlation,

rgj, between the expression levels of genes g and j. The numerator
measures the network strength between genes g and j by
summing the product of the strengths of the connections to all
potential partners. The exponent, β , is referred to as the soft
threshold (Zhang and Horvath, 2005), and if β > 1, this has
the effect of down-weighting small correlations relative to large
ones, and hence giving most importance to the strongest pairwise
correlations.

Let Tgjm and Tgjn denote the elements of these TOM matrices
for null- (n) and missense- (m) carrying tumors, for a pair of
genes (g, j); these are calculated after choosing a value for the
soft threshold, β , and this will be discussed further below. We
have defined a statistic for gene g, g = 1, . . .G, that captures the
difference in the coexpression patterns between null andmissense
tumors by:

Sg =
∑G

j= 1

∣

∣Tgjm − Tgjn

∣

∣ (2)

The motivation for this statistic is represented schematically in
Figure 1. Since the distribution of this statistic is unknown, and
will depend partially on the level of expression of gene g as
well as its variability and correlation, we estimated statistical
significance, separately for each cancer type, by performing 1000
permutations of the null and missense labels across tumors
within the same cancer type, and recalculating the Sg statistics
for each gene. Genes with statistical evidence for differential
coexpression were defined as those with empirical p < 0.05.

The Impact of the Soft Threshold
Parameter
During the construction of the TOM matrices, that are built on

the transformed correlation measures, agj =
∣

∣rgj
∣

∣

β
, the WGCNA

authors recommend that the soft threshold, β , should be chosen
so that the TOM matrix resembles a scale-free network, i.e.,
containing a small number of hub genes that are connected
to many others, and where the majority of the genes display
only sparse connections. Since our statistics, Sg , are calculated
from two TOM matrices, the best choice of the soft threshold
might differ between the TOMmatrices of the null and missense
groups, however it would not make sense to compare overlap
measures Tgjm and Tgjn if they were calculated with different
soft thresholds. We performed some simulations to study the
behavior of the Sg statistics with a range of soft threshold
choices—albeit the same threshold for the two matrices within
one simulation (see Supplemental Methods and Supplemental
Figure S1), and found substantially different scales and skewness
in the distributions of Sg with different soft thresholds.

Therefore, when calculating our Sg statistics on the
tumor sample data, we were careful to use the same value
of the tuning parameter, β , for both mutation types. Given

that different optimal values for β might apply to the
null- and missense-carrying groups, we constructed both
groups’ TOM matrices with the same β , and repeated this
construction for a range of values. The lower bound for β

followed the suggestion by the WGCNA authors, based on
the function “pickSoftThreshold” (the minimum suggested
value from separate analyses of null- and missense-carrying
tumors). As the WGCNA tutorial (https://labs.genetics.ucla.
edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutori
als/FemaleLiver-02-networkConstr-auto.pdf) suggests, the
upper bound for β was lowest value for which the curve of the
scale-free topology fit indices appears to reach an asymptote;
here we chose the maximum of the two upper bounds between
null and missense tumors. Our choice of upper bound ensured
that both networks maintained a reasonably high mean number
of connections. If the soft threshold were set too high, then the
network would demonstrate very few connections (Zhang and
Horvath, 2005). We also defined an “optimal” soft threshold
when both the coexpression overlap matrices for missense
and null tumors reached at least an R2 of 0.90 when assessing
fit to expectation derived from a scale-free topology (see also
Supplemental Methods).

We, therefore, performed analyses of each tumor type with
a range of values for the soft threshold. In order to assess
significance, we permuted the mutation type across tumors,
and repeated the calculations of the two TOM matrices and
the statistic Sg for the same range of soft thresholds, and
for each cancer type. Statistical significance was first estimated
by comparing Sg to the empirical distribution from 1000
permutations using the same soft threshold value and the same
cancer type, and then by looking for consistency of significance
across soft threshold values.

Gene Set Enrichment Analyses of Selected
Genes
Genes that were identified as differentially connected or
coexpressed, for all soft thresholds and across all cancer types,
were selected for gene set enrichment analysis. We performed
gene set enrichment analysis using both Kyoto Encyclopedia of
Genes andGenomes (KEGG) pathways andGeneOntology (GO)
terms for biological processes for each cancer type using the
Bioconductor “clusterProfiler” package (Yu et al., 2012).

RESULTS

Overview of Sample Sets for Data Analyses
and Mutation Types
The number of samples harboring somatic TP53 mutations
available for our study ranged from 59 for SKCM to 260 for LUAD
(Table 1). OV had the largest number of samples where missense
variants were found, at 62% of all TP53 mutation-positive cases.
However, the distribution of each of the two categories of
TP53 mutations for each type of cancer was similar, ranging
from 46 to 62% for the number of cases harboring missense
variants (Table 1). Although immunohistochemistry staining for
p53 protein would further distinguish null and missense mutated
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samples, in the absence of such data, our method of classification
shows good separation of gene expression distributions for each
cancer type (Figure 2).

Analyses of Each Cancer Type Parsed
According to TP53 Mutation Type
We had previously found interesting differences in chromosome
copy number in several genomic intervals when comparing
groups with different TP53 mutation types in high grade
serous ovarian cancer samples, and in that work we also
found that the TP53 mutation types showed association with
overall/progression free survival (Wojnarowicz et al., 2012).
Therefore, we first calculated our Sg statistics in the same
histological subtype of TP53 mutation-positive ovarian cancer
samples from the TCGA data. We analyzed 14,939 genes
after filtering to remove genes with low variability, selected
from 19,919 genes reported in the RNA-sequencing data.
Permutation analyses (1000 permutations) were undertaken to
assess statistical significance of the differential coexpression for
each gene and for a range of soft thresholds, and then we
examined overlap between the genes with unadjusted empirical
p < 0.05 across the soft threshold range. Figure 3 shows that

although over 300 genes were identified with p < 0.05 in each of
the analyses with soft thresholds between 3 and 6 (range 327–378
genes), there is a core set of 176 genes that consistently display
significantly distinct relationships (or network connectivity) in
the tumor groups parsed according to TP53 missense or null
mutation type.

Using these 176 genes showing differential coexpression at
all soft thresholds, we performed gene set enrichment analysis
to begin to identify molecular pathways/processes that could
distinguish the two TP53 mutation-type tumor groups. We
identified a few KEGG pathways, such as pyrimidine and
purine metabolism and DNA replication (Supplemental Table
S2), and GO terms associated with metabolic processes, telomere
maintenance and DNA replication (Supplemental Table S3) that
appeared to be over-represented (adjusted p < 0.05).

We then repeated the same analytic pipeline for triple negative
breast cancer, skin cutaneous melanoma (amongst which most
tumors were metastatic), and lung adenocarcinoma in order to
verify our initial findings with the ovarian cancer set. Using the
same method, we identified the genes that showed statistically
significant evidence for differential coexpression at all soft
thresholds between our low and high limits (Table 1), for each
cancer. The number of genes identified as significant showed

FIGURE 2 | Smoothed density plots display distributions of TP53 expression separated by assigned mutation classification (p53 missense or null), for

ovarian (OV), breast (BRCA), and lung (LUAD) cancers, and skin melanomas (SKCM).
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FIGURE 3 | Venn diagram showing how many genes were identified as significantly differentially coexpressed between the p53 missense and null

mutations groups of ovarian cancers, based on our Sg statistic. Significance was defined by p < 0.05 after 1000 permutations. Each of the four independent

analyses is based on different soft thresholds ranging from 3 (PERM.SP3) to 6 (PERM.SP6).

limited variability across the soft thresholds within a cancer
type, but varied quite substantially across different cancers, with
over 1200 significant genes for SKCM and closer to 300 for OV
and LUAD.

Finding Communalities in Differential
Coexpression among Cancer Types
We then examined the overlap between the genes identified
in our analyses of each cancer type to search for pathways
that might indicate some communalities in the differential
coexpression networks based on TP53 mutation type. Only one
gene, KIR3DL2, displayed prominent differential coexpression
across all cancers and soft thresholds. For three cancers
(OV, BRCA, LUAD), differential coexpression was nominally
significant (p < 0.05) for all soft thresholds. For our fourth
cancer, SKCM, KIR3DL2 showed significant evidence (nominal
p < 0.05) for differential coexpression with 3 of the 4 soft
thresholds analyzed, and was non-significant at the threshold of
0.05 (nominal p = 0.069) for the fourth soft threshold. It should
be noted that power was lowest for the analysis of SKCM since

there were only 59 cancer samples harboring TP53mutations that
were available for our analyses, in contrast to the larger data sets
available for each of the other cancer types which ranged from 80
to 260 samples (Table 1).

The marginal expression levels of KIR3DL2 vary from one
cancer type to another (Figure 4). For example, there is very
little expression in OV, but a long-tailed distribution in LUAD.
However, there is no evidence for differential expression between
the p53 null and missense tumors (Figure 4): univariate tests
for differential expression of KIR3DL2 using the Bioconductor
package “limma” (Smyth, 2004) were non-significant. In contrast,
the absolute values of the overlap measures between KIR3DL2
and other genes show distinct distributions depending on the
TP53 mutation type (Figure 5). Using our optimal soft threshold
for each cancer, the empirical p-values testing for differences in
coexpression at KIR3DL2 were 0.02 for OV, 0.03 for BRCA, 0.002
for LUAD, and 0.05 for SKCM.

For OV and LUAD, tumors with missense mutations
in TP53 tended to show stronger coexpression between
KIR3DL2 and other genes, whereas the tumors with null
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FIGURE 4 | Violin plots showing expression distributions for KIR3DL2 by p53 missense or null mutation type in ovarian (OV), breast (BRCA), and lung

(LUAD) cancers and skin melanomas (SKCM). P-values of 0.62 for OV, 0.45 for BRCA, 0.46 for LUAD, and 0.73 for SKCM were obtained from differential

expression analysis comparing KIR3DL2 expression levels between p53 null and missense tumors.

mutations in TP53 showed stronger coexpression in BRCA
and SKCM.

Finding Differentially-Coexpressed Genes
To find the key partner genes of KIR3DL2, i.e., the genes with
the most differential coexpression between TP53 mutation types,
we extracted the genes that had overlap measures greater than
“expected” for the optimized soft-thresholds. In this context, we
defined expected thresholds, separately for each cancer, as the
maximum overlap measure in the group with lower coexpression
range in Figure 5. For OV and LUAD this was the maximum of
the range of the overlap measure found in the tumors with null
mutations (0.04), whereas we defined the expected range from
tumors with missense mutations for BRCA (maximum 0.13) and
SKCM (maximum 0.17). After finding these thresholds, we then
selected genes with overlap measures higher than these cutoffs in
the other mutation-type group.

Using the above selection criteria, we selected 600 genes with
strong overlap measures between KIR3DL2 and other genes in
OV. In Figure 6, the differences (Tgjm − Tgjn) are shown for
g = KIR3DL2 and these ovarian-cancer selected genes, j =

1, . . . 600, but these differences are shown for all four cancers.
Evidently, the missense-null differences in overlap measure vary

substantially across cancers, even though many of the same
partner genes are highlighted in more than one cancer.

After repeating a similar selection of genes for all four
cancers, we examined the overlap among the selected gene
lists across the four cancers, and identified 164 genes that
were differentially correlated to KIR3DL2 in all four cancer
types. KEGG pathway analyses of these 164 genes implicated
37 significant pathways (Table 2), and it is interesting to note
that many immune-related pathways appear to show evidence
of differential overlap measures with our core gene KIR3DL2.
In contrast, when we examined these 164 genes for evidence of
changes in the mean levels of expression between the missense
and null mutation-carrying tumors, no particular patterns are
detectable. Supplemental Figure S2 shows a heatmap simply
of expression levels for OV at these 164 genes indicating no
clustering of the two mutation types; the other cancer types show
similar patterns.

DISCUSSION

High throughput differential gene expression analysis has been
able to identify and re-affirm the importance of specific
molecular pathways in cancers over the last 20 years. A 2003
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FIGURE 5 | Violin plots showing coexpression distributions for KIR3DL2 by p53 missense or null mutation type in ovarian (OV), breast (BRCA), and

lung (LUAD) cancers and skin melanomas (SKCM). Distributions of the absolute values of overlap measures between KIR3DL2 and all other genes, using the

optimized soft-threshold value for each cancer type. The soft thresholds used were 4 for OV, 6 for BRCA, 5 for LUAD, and 5 for SKCM. With these soft thresholds,

there was evidence of statistically significant differences in coexpression of KIR3DL2 based on permutation analysis: P-values were 0.02 for OV, 0.03 for BRCA, 0.002

for LUAD and 0.05 for SKCM.

review (Liang and Pardee, 2003) predicted substantial potential
for the technology, and today this is illustrated by the vast
array of publications resulting from TCGA endeavors (https://
tcga-data.nci.nih.gov/docs/publications/) describing expression
profiles of numerous cancer types in detail. A consistent
observation across independent studies is the significant
heterogeneity observed by the analysis of gene expression
profiles even among cancers classified by histological subtype.
Thus a major focus of research has been (and is) using
gene expression profiling data for subtype classification of
cancers with the eventual goal of enabling the development
or re-purposing of therapies suitable for each subtype. For
example, TCGA reported significant heterogeneity among
the high grade serous ovarian carcinomas profiled for gene
expression, where they used (non-negative matrix factorization-
based) clustering to delineate at least four transcriptional
subtypes (Cancer Genome Atlas Research, 2011), which was
subsequently validated in a subsequent study that highlighted
the therapeutic relevance of the molecular subtypes (Konecny
et al., 2014). The significance of these findings are currently
unknown, however could explain in part the heterogeneity
in response to first-line therapeutics observed for women

with high grade serous ovarian cancer (Ovarian Epithelial,
Fallopian Tube, and Primary Peritoneal Cancer Treatment–
for health professionals (PDQ R©), http://www.cancer.gov/types/
ovarian/hp/ovarian-epithelial-treatment-pdq). The translational
potential of any of the gene expression signatures to predict
survival and subtype in clinical settings is currently uncertain,
though promising results have been demonstrated when applied
to fresh and paraffin embedded ovarian tumors (Sfakianos
et al., 2013). However the potential of molecular subtyping to
guide therapy decision has yet to be realized not only due to
the limited arsenal for therapeutics currently available for this
disease but because questions remain about the consistency and
interpretability of gene-expression-based signatures as a clinical
tool.

However, different analytic perspectives can often lead to new
insights especially when combined with additional molecular
genetic information such as the nature of TP53 mutation. Here,
we have proposed a test statistic that highlights differential
coexpression between two groups defined by the presence of
TP53 missense and null mutations, and hence finding genes
that show very different patterns of the overlap measures (built
on the weighted correlations) and connectivity. This approach,
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FIGURE 6 | Heatmap of differences (missense − null) in overlap measures between KIR3DL2 and 600 genes with strong connections to this gene in

OV. The same 600 genes are shown for all four cancers, in the same order.

combined with the sets of genes that we identified, provides
suggestive evidence that genes are being regulated and controlled
differently in the two mutation groups in several different
cancers.

As mentioned in the Introduction, several authors have
addressed the question of how to compare coexpression patterns
between groups. One proposed method (Miller et al., 2010),
used WGCNA to cluster the TOM matrices separately for
the two groups, and then examined the overlap in cluster
membership. Another WGCNA-derived method (Tesson et al.,
2010), was designed to findmodules of genes showing differential
coexpression. In contrast to both these papers, our perspective
here is distinct, since we have created a measure of differential
coexpression for each gene (Sg), allowing us to rank individual
genes with respect to their differences in connectivity, or said
differently, to look for whether some genes have varying roles
in coordinating coexpression. We find it interesting to note
that single genes display quite different evidence of connectivity
between our two mutation groups, and this feature is not
highlighted in the same way by a clustering analysis. When
comparing our approach to (Dettling et al., 2005) and (Hu R.

et al., 2009), we have worked with the TOM matrices rather
than with the pairwise correlations. The former identifies the
gene pairs that show evidence of large differences between
groups, and they use permutation of samples to obtain a null
distribution for their gene pair difference measure. In the latter,
the N statistic of (Hu P. et al., 2009) compares the distributions
of correlations between the two groups to the distributions of
correlations within each of these groups. This requires either
resampling or subgrouping in order to create sets of correlations
that can be jointly examined. The idea of examining the joint
distribution of correlations, which is encapsulated in this N-
statistic, is important since it provides a more global view of the
relationships. In fact, the overlap measure (Ravasz et al., 2002)
used in WGCNA can be considered to have the same goal, since
the measure of similarity for each pair of genes is calculated as
a function of the connections between all other genes and each
member of the pair.

Our direct use of the TOM matrix for calculating differences
in overlap measures required an investigation into the impact
of the soft threshold parameter, and we found that the
distribution of the test statistics Sg was quite sensitive to
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TABLE 2 | Significantly enriched KEGG pathways resulting from the analysis of 164 genes differentially correlated to KIR3DL2 between p53 missense and

null mutation groups for all cancer types.

ID Description GeneRatioa BgRatiob P-valuec p.adjustd Q-valuee

hsa04514 Cell adhesion molecules (CAMs) 20/89 142/6971 4.71E-16 6.13E-14 4.57E-14

hsa05330 Allograft rejection 12/89 37/6971 1.25E-14 8.12E-13 6.05E-13

hsa04940 Type I diabetes mellitus 12/89 43/6971 9.72E-14 4.21E-12 3.14E-12

hsa05340 Primary immunodeficiency 11/89 36/6971 3.61E-13 1.17E-11 8.74E-12

hsa05332 Graft-vs.-host disease 11/89 41/6971 1.80E-12 4.69E-11 3.49E-11

hsa04660 T cell receptor signaling pathway 15/89 104/6971 2.21E-12 4.79E-11 3.57E-11

hsa04060 Cytokine-cytokine receptor interaction 21/89 265/6971 8.81E-12 1.64E-10 1.22E-10

hsa05320 Autoimmune thyroid disease 11/89 52/6971 3.08E-11 5.00E-10 3.72E-10

hsa05416 Viral myocarditis 11/89 58/6971 1.09E-10 1.57E-09 1.17E-09

hsa05321 Inflammatory bowel disease (IBD) 11/89 65/6971 3.98E-10 5.18E-09 3.86E-09

hsa04650 Natural killer cell mediated cytotoxicity 14/89 134/6971 1.06E-09 1.26E-08 9.36E-09

hsa04672 Intestinal immune network for IgA production 9/89 47/6971 5.47E-09 5.93E-08 4.42E-08

hsa05150 Staphylococcus aureus infection 9/89 55/6971 2.35E-08 2.35E-07 1.75E-07

hsa04612 Antigen processing and presentation 10/89 77/6971 3.75E-08 3.48E-07 2.59E-07

hsa04640 Hematopoietic cell lineage 10/89 87/6971 1.23E-07 1.07E-06 7.96E-07

hsa05323 Rheumatoid arthritis 10/89 89/6971 1.53E-07 1.25E-06 9.28E-07

hsa05145 Toxoplasmosis 11/89 118/6971 2.46E-07 1.88E-06 1.40E-06

hsa04062 Chemokine signaling pathway 13/89 187/6971 5.80E-07 4.19E-06 3.12E-06

hsa05142 Chagas disease (American trypanosomiasis) 10/89 104/6971 6.74E-07 4.61E-06 3.43E-06

hsa05322 Systemic lupus erythematosus 11/89 134/6971 8.94E-07 5.81E-06 4.33E-06

hsa05310 Asthma 6/89 30/6971 1.70E-06 1.05E-05 7.82E-06

hsa05166 HTLV-I infection 14/89 258/6971 4.04E-06 2.39E-05 1.78E-05

hsa05162 Measles 10/89 134/6971 6.89E-06 3.89E-05 2.90E-05

hsa05140 Leishmaniasis 7/89 72/6971 3.28E-05 1.77E-04 1.32E-04

hsa05164 Influenza A 10/89 175/6971 7.04E-05 3.66E-04 2.73E-04

hsa05152 Tuberculosis 10/89 177/6971 7.75E-05 3.87E-04 2.89E-04

hsa05168 Herpes simplex infection 10/89 184/6971 1.07E-04 5.16E-04 3.84E-04

hsa05144 Malaria 5/89 49/6971 3.71E-04 1.72E-03 1.28E-03

hsa04630 Jak-STAT signaling pathway 8/89 158/6971 8.69E-04 3.90E-03 2.90E-03

hsa05169 Epstein-Barr virus infection 10/89 200/6971 9.61E-04 4.16E-03 3.10E-03

hsa04380 Osteoclast differentiation 7/89 131/6971 1.35E-03 5.67E-03 4.22E-03

hsa04145 Phagosome 7/89 153/6971 3.27E-03 1.33E-02 9.90E-03

hsa04670 Leukocyte transendothelial migration 6/89 118/6971 3.84E-03 1.51E-02 1.13E-02

hsa04666 Fc gamma R-mediated phagocytosis 5/89 92/6971 6.23E-03 2.38E-02 1.78E-02

hsa05020 Prion diseases 5/89 35/6971 9.80E-03 3.64E-02 2.71E-02

aGeneRatio: # significant genes in the pathway/# significant genes.
bBgRatio: # genes in pathway/# genes in all pathways.
cP-value: Test of enrichment for pathways based on the hypergeometric distribution.
dp.adjust: Benjamini and Hochberg adjusted p-value (Benjamini and Hochberg, 1995).
eQ-value: False discovery rate (Storey, 2002).

this tuning parameter. Simulations showed better agreement
among the significant results when the scale-free network
assessment showed adequate goodness of fit (see Supplemental
Methods). For assessing statistical significance, we performed
1000 permutations and re-analyzed the data with the same soft
thresholds, to find sets of genes, at each value of β , that showed
empirical p < 0.05. Naively, given that we analyzed over 14,000
genes, one might expect ∼700 genes to show significance by
chance at significance level α = 0.05 (for one soft threshold),
and in fact we found fewer than this. Although we have analyzed

each cancer data set with a range of soft thresholds, if the optimal
choice of β differs between the groups, then the permuted data
will not be optimally transformed, and this is likely to influence
the test statistic distribution and hence, the power.

One popular way to improve power in gene expression
studies is achieved through restricting analysis to a smaller set
of genes, and hence alleviating the multiple testing adjustment.
Gene filtering is often based on variability in gene expression—
as we have done—although many other statistically-motivated
strategies have been proposed (Lazar et al., 2012). Alternatively,
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analysis can be restricted to genes that are thought be plausible
candidates, based on external information. In our study, although
quite a bit is known about differences in gene expression between
wild type andmutant p53 (e.g., O’Farrell et al., 2004), no previous
exploration has been undertaken of differences in expression
in cancer cells expressing mutant p53 proteins vs. no protein.
Furthermore, the coexpression behaviors are even less well-
understood. In order to maximize the set of possibly-coexpressed
genes, we decided not to further restrict our gene set prior to
analysis. This decision may have reduced our power.

Nevertheless, even if power for our approach is low, we have
taken care to implement a stringent approach for protecting our
results against false positives by selecting only genes showing
significance across all the soft thresholds used to analyze each
cancer type, and across all four cancers. We undertook a small
simulation study to obtain a rough estimate of our overall type
1 error rate, built around the results in Table 1. Specifically,
we generated multivariate normal deviates for 14,800 genes,
four cancers and 4 or 5 soft thresholds (following Table 1),
assuming dependence between the normal deviates across soft
thresholds with correlation= 0.8, but independence across genes
and cancers. We then transformed the z-values to p-values, and
applied significance thresholds in line with Table 1 assuming a
uniform distribution (i.e., p ≤ 350/14,800 for OV, p ≤ 930/14800
for BRCA, p ≤ 1200/14,800 for SKCM, p ≤ 370/14,800 for
LUAD). In none of 1000 simulations was the same gene selected
in all four cancers and all soft thresholds. While recognizing the
limitations of this simple simulation, it makes a strong case that
our identification of KIR3DL2 is very unlikely to occur by chance.

KIR3DL2 shows evidence of very different coexpression
patterns between tumors carrying TP53 null and missense
mutations. This gene and its associated network would not have
been identified by a traditional differential expression analysis, as
was demonstrated in Figure 4.

KIR3DL2, a member of a large and complex gene family,
encodes killer cell immunoglobulin-like receptors (KIR) that are
expressed by natural killer cells and subsets of T lymphocytes,
which modulate their effector functions through binding to
their cognate MHC class I ligands (Benson and Caligiuri, 2014).
KIR3DL2’s role in the regulation of the immune response
is intriguing in light of the tissue specific expression, and
perhaps the identification of this gene using our method is
an indication of the extent of the involvement of immune
cells in tumor samples. Thus, although it is of interest to
examine the potential role of KIR3DL2 in differentiating the
mutation types, given our analysis of coexpression it is more
interesting to examine the set of genes which show the most
evidence of different correlations with KIR3DL2 in the two
mutation type groups. Pathway analyses of the 164 genes
showing the most alterations in correlations led to evidence
of enrichment of a number of immune-related pathways
(Table 2). These findings are intriguing, as it is increasingly
becoming apparent that the tumor microenvironment with
respect to cells and molecules of the immune system are
important in the biology of cancer contributing to the tumor
initiation, tumor progression and response to therapy (see Nature
Reviews Rheumatology http://www.nature.com/reviews/focus/

tumourimmunology/index.html and references therein for this
special focus). Moreover, a number of studies have shown that
a variety of solid tumors exhibit evidence of T-cell infiltration,
chemokines and an interferon profile indicative of innate
immune activation by the host, which likely result in resistance
of immune attack through the dominant inhibitory effects of
immune system–suppressive pathways (reviewed in Gajewski
et al., 2013). This phenotype differs from cancer cells that lack this
T-cell inflamed phenotype, which appear to resist immune attack.
These phenotypes have been associated with response to therapy
and overall outcome (reviewed inGajewski et al., 2013). Although
the role of p53 in regulating immune-regulating gene expression
networks has been the subject of intense study, less is known
about the role of mutant p53 isoforms in this context. However,
there is evidence in cancer cell model systems that mutant
p53 can modulate the expression of immunoregulatory genes
(reviewed in Menendez et al., 2013). Further research associating
the major immune-phenotypes observed in solid tumors with
TP53mutation type rather than status alonemight clarify the role
of mutant p53 isoforms in tumor cell microenvironment. Our
implication of differential coexpression between TP53 mutation
types should perhaps be considered when studying the role of the
immune system.

We chose four different cancer types for analysis where
TP53 is fairly commonly mutated, but otherwise having very
different characteristics. Lung adenocarcinoma and (metastatic)
melanoma are largely attributable to environmental exposures,
and occur in both men and women. In contrast, ovarian cancers
are restricted to women, triple negative breast cancer occurs
primarily in women, and the role of environment is much
smaller. Our unique analytical approach as applied to these
diverse cancers grouped according to TP53 mutation type has
provided evidence for a new subgroup classification that warrants
further investigation. The overall prognosis is poor for all of
histological types of cancer investigated in this study, and hence
an improved understanding of the biology of these cancers will be
of great benefit as the findings are translated into clinical settings.

CONCLUSIONS

Considering patterns of coexpression in tumors carrying either
missense or null mutations in TP53 is a fruitful strategy that leads
to a set of genes showing evidence for differential coexpression
and enriched for many immune system pathways.
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