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Deep scanning lysine metabolism in Escherichia coli
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Abstract

Our limited ability to predict genotype–phenotype relationships
has called for strategies that allow testing of thousands of
hypotheses in parallel. Deep scanning mutagenesis has been
successfully implemented to map genotype–phenotype relation-
ships at a single-protein scale, allowing scientists to elucidate
properties that are difficult to predict. However, most phenotypes
are dictated by several proteins that are interconnected through
complex and robust regulatory and metabolic networks. These
sophisticated networks hinder our understanding of the phenotype
of interest and limit our capabilities to rewire cellular functions.
Here, we leveraged CRISPR-EnAbled Trackable genome Engineering
to attempt a parallel and high-resolution interrogation of complex
networks, deep scanning multiple proteins associated with lysine
metabolism in Escherichia coli. We designed over 16,000 mutations
to perturb this pathway and mapped their contribution toward
resistance to an amino acid analog. By doing so, we identified dif-
ferent routes that can alter pathway function and flux, uncovering
mechanisms that would be difficult to rationally design. This
approach sets a framework for forward investigation of complex
multigenic phenotypes.
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Introduction

Evolution has selected for efficient and robust metabolic and regula-

tory networks that prevent unnecessary metabolite biosynthesis and

optimally distribute resources to maximize overall cellular fitness.

The complexity of such networks, coupled with limited approaches

to understand their structure and function, has broadly limited capa-

bilities for understanding and rewiring cellular networks across a

range of applications (Martin et al, 2003; Temme et al, 2012;

Nielsen & Keasling, 2016). Network and pathway engineering

strategies have relied primarily upon coarse approaches for modu-

lating function (e.g., promoter swaps or complete gene knockouts)

at a limited number of loci. Alternatively, adaptive laboratory evolu-

tion (ALE) approaches are often employed to produce more refined

adjustments (e.g., SNPs) for manipulating pathway flux. However,

ALE also leads to a larger number of unintended passenger muta-

tions and limited mechanistic understanding of the improved pheno-

type (Lee & Kim, 2015). Moreover, both strategies massively under

sample the combinatorial space of interest. As such, network and

pathway engineering would benefit from improved approaches

capable of generating a broad range of targeted mutations that can

be mapped with high resolution to the pathway–network-level func-

tion, mirroring deep scanning mutagenesis strategies that have revo-

lutionized protein engineering (Fowler & Fields, 2014; Butterfield

et al, 2017; Chevalier et al, 2017; Rocklin et al, 2017). This capabil-

ity would provide for entirely new paradigms to study and engineer

complex multigenic phenotypes, exploring sophisticated hypotheses

to optimize function through transcription, translation, stability,

and kinetics among others that encompass the breadth of what is

found in nature. Here, we take a step toward this capability by

demonstrating sequence-to-function mapping at a pathway scale.

Amino acid metabolism is fundamental to all domains of life,

consisting of highly evolved pathways with extensive kinetic and

regulatory features, making them an ideal model system for our

demonstration studies (Fig 1A). Additionally, amino acids

comprise large industrial product markets—lysine, for example, is

used in the animal feedstock, pharmaceutical, and cosmetics

industries, comprising a multibillion-dollar market (Yokota &

Ikeda, 2017). Lysine overproducers were traditionally identified via

adaptation in the presence of antimetabolites such as the analog

S-(2-aminoethyl)-L-cysteine (AEC). Derepression of lysine biosyn-

thesis has been previously implicated as a mechanism of resistance

to AEC (Blount & Breaker, 2006; Blount et al, 2007); however, the

complexity of this phenotype has also implicated other mecha-

nisms such as improper discrimination by the lysyl-tRNA synthe-

tase machinery (Ataide et al, 2007). Ultimately, the underlying

genetic basis of lysine overproduction and its relationship to dereg-

ulation and antimetabolite resistance provides a challenging

system for genetic study. As an example, sequencing of a lysine-

overproducing industrial strain of Corynebacterium glutamicum

revealed that more than 1,000 mutations have accumulated in the
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genome after decades of adaptive evolution (Yang & Yang, 2017;

Yokota & Ikeda, 2017). Although recent system-based approaches

(Koffas & Stephanopoulos, 2005; Becker et al, 2011; Lee & Kim,

2015) are being used to elucidate the biochemical and regulatory

mechanisms of lysine overproduction, current strategies rely on indi-

vidually constructing and testing single sequence-to-activity

hypotheses, requiring substantial investment in time and resources.

A powerful tool to overcome our limited ability to predict the

phenotypic consequences of mutations in single proteins is to intro-

duce every possible mutation and couple that to a genotype–pheno-

type assay platform, such as in the case of deep scanning

mutagenesis (Fowler & Fields, 2014). As an example, Sarkisyan and

collaborators (Sarkisyan et al, 2016) investigated tens of thousands

of single and multiple mutations in the coding sequence of GFP to

report a local fitness landscape for this protein. Saturation mutagene-

sis has also been employed in a variety of different contexts to

address a range of biological and engineering questions (Findlay

et al, 2014; Canver et al, 2015; Jeschek et al, 2016; Chevalier et al,

2017). Expanding this concept to a repertoire of proteins connected

to one another through a phenotype of interest would allow the

parallel investigation of pathways and networks on a system scale.

This requires, however, the ability to individually measure geno-

type–phenotype relationships for each of the designed mutants

across all targeted proteins. We recently reported a method (CRISPR-

EnAbled Trackable genome Engineering or CREATE) (Garst et al,

2017) that allows parallel mapping of mutations in a massively

multiplex scale. CREATE leverages array-based oligo technologies to

synthesize and clone hundreds of thousands of cassettes containing

a genome-targeting gRNA covalently linked to a dsDNA repair

cassette encoding a designed mutation. After CRISPR/Cas9 genome

editing, the frequency of each designed mutant can be tracked by

high-throughput sequencing using the CREATE plasmid as a

barcode. We envisioned that with this technology, all proteins asso-

ciated with a metabolic pathway could be interrogated in parallel at
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Figure 1. Library design and selection strategy.

A Overview of the lysine metabolism in E. coli. The arrows are color coded according to the different metabolic categories, as defined in the figure legend. Genes
targeted in the library are highlighted in green. The insets represent examples of library designs for two targeted proteins, with the targeted residues included inside
the gray surface representation.

B For each targeted gene, the number of variants (black bars, left y-axis) and the fraction of the single substitution sequence space (green bars, right y-axis) are plotted.
The total library size across all genes sums to 16,300 variants.

C Description of the two main mechanisms of AEC toxicity. The structural differences between canonical lysine and AEC are shown in the left, with the orange sphere
highlighting the sulfur group present in AEC. Lysine binding is shown in the top panels, and AEC is shown in the bottom panels. Mutations described to confer AEC
resistance are highlighted in the bottom panels.

D Workflow of the strategy to map trajectories of AEC resistance using CREATE. Briefly, designed cassettes were cloned, miniprepped, and transformed into strains
expressing Cas9 and the lambda red machinery. The library culture was grown for 8 h in LB media with proper antibiotics, washed with PBS, and inoculated into M9
minimal media containing the AEC selective pressure and antibiotics. An aliquot was stored for initial plasmid barcode sequencing counts. After growth, cells were
harvested for deep sequencing of the plasmid barcodes, which were used to map the enrichment scores of the designed mutants.
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single nucleotide resolution, thus demonstrating deep scanning

mutagenesis at the pathway scale.

Here, we specifically investigate lysine metabolism in Escheri-

chia coli. We constructed a saturation mutagenesis library in bind-

ing pockets of key proteins involved in four main categories that

affect lysine homeostasis: (i) biosynthesis, (ii) degradation, (iii)

regulation, and (iv) transport (Fig 1A). By challenging this library

with the antimetabolite AEC, we hypothesized that we could eval-

uate in parallel the contribution of these 16,300 targeted mutations

toward antimetabolite resistance and thus overall pathway flux. In

testing his hypothesis, we demonstrated the ability to identify

mutations beyond dominant selection winners and to uncover

mechanisms for altering pathway flux that would have been diffi-

cult to predict a priori. We also identified important factors that

must be taken into consideration when attempting genotype–

phenotype mapping at a pathway scale. As such, this work

provides a framework for directed engineering of complex multi-

genic phenotypes.

Results

Lysine library design and selection strategy

We designed 16,300 mutations targeting four primary routes that

affect lysine flux: lysine biosynthesis (12 genes), lysine degradation

(two decarboxylation genes), lysine transport (three genes), and

regulation of genes in such pathways (two genes; Fig 1A). For each

targeted gene, we designed and constructed full saturation mutagen-

esis libraries of all residues within a 6 Å shell from known or

model-predicted binding sites, encompassing substrate, co-factor,

DNA binding, or allosteric factors. A comprehensive description of

all targeted sites and the respective cassette sequences are listed in

Dataset EV1. This strategy allowed us to scan probable targets for

proteins with no known functional sites, and an average higher than

50% of known functional sites in the remaining proteins (Dataset

EV1). Overall, 3.5–32% of all residues for each of the 19 genes

involved in lysine metabolism were fully saturated (Fig 1B). The

constructed plasmid libraries were deep sequenced to confirm

coverage. We observed that 99% of the designs were cloned

successfully into the plasmid backbone, with 91–93% surviving

after exposure to Cas9 across two biological replicates (Fig EV1).

In order to assess coverage at the genomic level and confirm that

edits are indeed introduced in the genome, we deep sequenced one

targeted genomic window from each of five genes across biological

replicates. Overall, we measured 22.6–61.6% of the designed edits

in these regions (Fig EV2, Table 1). Further calculation suggests

that the overall genomic editing efficiency can be estimated at 1.6–

3.7%, taking in consideration the ratio of edited reads to wild-type,

as well as the probability of cells being edited at that specific locus

versus the other targeted loci (Dataset EV4). These results demon-

strate that we are effectively introducing edits at the targeted

genomic loci.

To map mutations to lysine pathway function, we exposed this

library to the lysine analog S-(2-aminoethyl)-L-cysteine or AEC. This

analog competes with canonical lysine for binding to the lysyl-tRNA

synthetase (LysRS; Ataide et al, 2007), leading to protein misfolding

and reduced growth. Additionally, AEC blocks lysine biosynthesis

by interacting with riboswitches, inhibiting bacterial growth in the

absence of an external lysine source (Blount & Breaker, 2006;

Blount et al, 2007; Fig 1C). We reasoned that designer mutations

that influence lysine regulation and overproduction would allow

lysine to outcompete AEC and thereby restore cell growth. Sequenc-

ing of the plasmid cassettes (herein referenced as barcodes) before

and after growth in the presence of AEC allows parallel tracking of

each designed mutant in the library, allowing us to perform highly

parallel mapping of their contribution to tolerance and by inference

to lysine flux (Fig 1D).

Mapping the impact of each pathway category on tolerance
and function

The lysine deep scanning mutagenesis library exhibited enhanced

growth when compared to wild-type cells transformed with either a

Table 1. Deep sequencing of selected genomic regions to confirm editing.

Gene Replicate Total edits designed Number of edits observed Fraction covered (%)a Editing efficiency (%)b

lysP I 260 59 22.7 1.9

lysP II 260 65 25.0 1.6

lysC I 380 132 34.7 2.7

lysC II 380 161 42.4 1.8

dapF I 320 103 32.2 2.2

dapF II 320 130 40.6 2.0

lysR I 820 358 43.7 2.8

lysR II 820 433 52.8 3.7

argP I 560 265 47.3 2.9

argP II 560 345 61.6 2.7

a“Fraction covered” is calculated by dividing the “Number of edits observed” by the “Total edits designed”.
bEditing efficiency is an estimation that takes in consideration the fraction of the total library represented by the sequenced region, according to the
equation Eff ¼ ðedits/totalÞ / (w / 16,300), with “Eff” being the estimated editing efficiency, “edits” being the number of sequencing reads that mapped to a
genomic edit in the targeted window, “total” being the total number of sequencing reads, and “w” being the “Total edits designed”. The full list of all these values
can be found in Dataset EV4.
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non-targeting gRNA or a gRNA targeting the unrelated loci galK

(double-stranded break control or DSB) across a range of AEC

concentrations (Fig 2A). There were no significant growth dif-

ferences between the non-target and DSB controls under AEC selec-

tion, suggesting that the improved growth phenotype observed in

the library is not a consequence of DSB-induced adaptation (Shee

et al, 2011). After 30 h, both negative controls began to grow in up

to 1,000 lM AEC, suggesting that spontaneous mutations can also

confer AEC tolerance.

After sequencing the lysine library barcodes before and after

selection, the fitness contribution of each designer mutation to AEC

resistance can be inferred in parallel (Fig 2B, Dataset EV2) and then

summarized at the gene level. Mutations in several genes demon-

strate consistent enrichment across several selective conditions

(e.g., lysP and dapF). The majority of genes, however, demonstrate

concentration-dependent enrichment, consistent with the expecta-

tion that different genes will affect network function to differing

levels. Mutations in dapB, lysA, and lysU were not significantly

enriched in any of the selections performed. Note that when grown

in the absence of AEC, the library has an enrichment score centered

around 0 (Appendix Fig S1), indicating that growth in minimal

media is not strongly biasing the library. However, the longer left

tail toward negative enrichment scores suggests that some muta-

tions in this pathway are likely deleterious.

Gene summaries were then mapped to the four design cate-

gories described earlier, resulting in a comprehensive map of

trajectories leading to AEC resistance (Fig 2C and D). Mutations in

transporters are the most effective resistance route, which is not

surprising as any loss-of-function mutation could prevent cellular

uptake of AEC from the media. The use of barcodes for each

mutant enabled us to characterize beyond the dominant selection

winner, uncovering the contribution of the remaining categories,

as will be discussed below. This analysis provides a comprehen-

sive map of the various strategies typically pursued in pathway–

network engineering, highlighting what pathway features need to

be optimized and which specific mutations could lead to
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Figure 2. Mapping the effect of each category to the lysine pathway tolerance-flux.

A Growth curves of the library (black) compared to two different controls under increasing selective pressures. DSB (double-stranded break) negative control is a
cassette designed to introduce a stop codon at the unrelated gene galK. n = 3 for each curve. Error bars show mean value � SD.

B Plasmid barcode-based mapping of enriched variants across all targeted genes under AEC selection. The innermost circle represents the ORFs in the E. coli genome,
with the green bars highlighting regions that were zoomed 50×. Positive log2 enrichment scores of variants under increasing selective pressures are plotted as orange
bars facing outward. Not enriched variants are plotted in gray bars facing inward. Two distinct biological replicates are combined in this plot, using a weighted
enrichment score (described in the methods section).

C Mapping the number of enriched mutations in genes that were classified under the different categories. The classification of each gene is the same as shown in
Fig 1A.

D Log2 enrichment scores for each gene under each category.
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phenotypic improvement. We emphasize that this map is inferred

from the plasmid barcodes, which can lead to a rate of false posi-

tives as discussed in later sections. Therefore, although this

approach can provide powerful insights and narrow the search

space to specific targets, genomic reconstruction and validation

are essential in order to be certain of the phenotypic improvement.

Below, we focus on different aspects and mutations of this map,

highlighting important features and limitations that need to be

taken into consideration when attempting genotype–phenotype

mapping at such scale.

Transporter loss-of-function dominates the selected population

Lysine uptake is mediated by three different transporter systems in

E. coli (Fig 1A). ArgT codes for a periplasmic binding protein speci-

fic to lysine, arginine, and ornithine, interacting with the ABC trans-

porter coded by the hisJQMP operon (Nikaido & Ames, 1992). CadB

is part of the Cad system, which plays a role in pH homeostasis

under acidic conditions. This transporter imports lysine and excretes

the decarboxylated product cadaverine in conditions of low external

pH and presence of exogenous lysine (Soksawatmaekhin et al,

2004). Finally, LysP is a specific transporter for lysine, but also has

a regulatory role in activating the Cad system through transmem-

brane interactions with CadC (Steffes et al, 1992; Tetsch et al,

2008). Mutations in lysP were identified as the most highly enriched,

comprising the dominant selection winner (Fig 2B–D, Appendix Fig

S2). No enrichment for lysP mutations was observed when cells

were grown in the absence of AEC (Appendix Fig S2). This is in

accordance with previous findings that identified lysP mutations in

AEC-resistant strains (Steffes et al, 1992).

When mapped at single amino acid resolution, we observed

significantly enriched mutations across all targeted regions in lysP

(Fig 3A). The relatively even distribution of enriched mutations

across all targeted positions in the gene suggests loss-of-function

and thereby abrogated AEC transport. These mutations map across

a substantial spatial fraction of the modeled structure (Fig 3D),

further supporting our speculation that they disrupt LysP function.

We individually reconstructed genome-modified strains for two

highly enriched mutations, T33F and Q219I. These two mutants

grow similarly to wild-type cells (transformed with a non-targeting

gRNA) in the absence of AEC, but exhibit superior growth under

increasing AEC concentrations (Fig 3B and C).

Notably, we also observed enrichment of synonymous mutations

in lysP under AEC selection. It is well established that synonymous

mutations can have an effect on the levels, stability, and folding of

both mRNA and proteins (Kudla et al, 2009; Hunt et al, 2014). As

such, some synonymous mutations might alter expression or stabil-

ity of LysP and thereby confer AEC tolerance. Several synonymous

mutations were enriched under weak selective pressure (10 lM
AEC), suggesting that small fluctuations in LysP levels may be suffi-

cient to confer low levels of resistance (Fig 3E). As selective pres-

sure is increased up to 10,000 lM AEC, fewer synonymous

mutations were still enriched, suggesting that these mutations are

introducing more drastic effects on LysP levels. Overall, the

frequency of synonymous mutations affecting LysP activity is

substantially higher than that observed for other targeted proteins
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A Mapping of enrichment across the positions targeted in lysP. The gray regions in the gene cartoon at the bottom highlight the windows containing targeted residues,
with the enrichment map shown above for increasing AEC concentrations. Enrichments are color coded according to the legend at the bottom. A histogram plot of
enrichment is shown at the right.

B Growth of the reconstructed LysP T33F mutant compared to wild-type cells transformed with a non-target gRNA. n = 3. Error bars show mean value � SD.
C Growth of the reconstructed LysP Q219I mutant compared to wild-type cells transformed with a non-target gRNA. n = 3. Error bars show mean value � SD.
D Map of enriched mutations (green) to the modeled structure of LysP.
E Enrichment of synonymous mutations observed for LysP. Each synonymous mutation site is shown as a sphere in the structure and is color coded according to the

enrichment score bar shown on the right. The bottom chart represents the fraction of all synonymous mutations in the gene that displayed positive enrichment
scores under each AEC concentration tested. For comparison, data on LysR and DapF are also shown.
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(Fig 3E), highlighting an unusually strong effect of synonymous

substitutions on this transporter. Since this effect is not restricted to

the beginning of the gene (commonly associated with regulation of

translation initiation), this result could indicate that co-translational

folding is essential for LysP function. That way, changes in codon

usage or disruption of important transcript secondary structures

would alter ribosome attenuation sites required for proper folding

(Zhang et al, 2009; Gorochowski et al, 2015). However, further

studies are required to elucidate the exact mechanism.

Collectively, these results demonstrate that our deep scanning

strategy maps tolerance mutations consistent with expectations

(Steffes et al, 1992). The high fraction of lysP mutants in the selected

population (> 95%) suggest that this is the main trajectory to evolve

AEC resistance in our laboratory experiments. Directed evolution

studies have demonstrated that the vast majority of mutations within

a protein are known to negatively affect protein function and stability

(ca. 30–50% are strongly deleterious, and 50–70% are slightly delete-

rious or neutral), with only a handful (0.01–1%) typically improving-

altering function (Guo et al, 2004; Romero & Arnold, 2009; Barrick &

Lenski, 2013). As such, it is not surprising that the dominant clones in

our selections involved loss-of-function mutations. More importantly,

this outcome highlights the importance of the use of barcoding or

another method for deeply scanning selected libraries to identify a

plurality of mechanisms for altering the phenotype of interest (e.g.,

increased pathway flux vs. decreased inhibitor flux), allowing explo-

ration beyond a local optimum in the fitness landscape.

Beyond the dominant selection winner: a non-obvious
mechanism in DapF

With the strong dominance of lysP mutations (> 95%) in the

selected population, identifying hits beyond the main selection

winner would be challenging with traditional approaches. To

demonstrate parallel tracking in this technology, we set out to vali-

date hits in the remainder (< 5%) of the population. Among the

biosynthetic genes, mutations in dapF were highly enriched across

multiple selective pressures. This gene encodes an epimerase

catalyzing the penultimate step in the biosynthetic pathway, a

conversion of LL-diaminopimelate (LL-DAP) to meso-diaminopime-

late (meso-DAP). DapF mutations were ranked as the most enriched

non-lysP mutant under 100 lM AEC and the second most under

1,000 lM AEC, although no strong enrichment was observed under

10,000 lM AEC. We selected two highly enriched mutants, G210D

and M260Y, for further analysis (Fig 4A).

Both G210D and M260Y substitutions lie close to the protein

catalytic site (Fig 4B and C), suggesting an effect on catalytic activ-

ity. After genomic reconstruction, both mutants grew similarly to

wild-type cells in the absence of AEC, but displayed distinct

phenotypes when put under selective pressure. DapF G210D

mutants had high growth rates up to 10,000 lM AEC (Fig EV3),

confirming the barcode enrichment previously observed. However,

DapF M260Y grew similarly to wild-type cells in the presence of

AEC (Fig EV4). We independently retested the growth of the DapF

G210D mutant, observing consistently the same phenotype of

superior growth in the presence of AEC. In order to rule out adap-

tive mutations in lysP, we sequenced this locus after the selective

growth and observed no mutations in this region. Mass spectrome-

try quantification revealed a significantly higher intracellular level

of lysine in both mutants compared to wild-type cells (Fig 4D),

with G210D accumulating 51% more lysine and M260Y accumulat-

ing 111% more.

To further investigate the mechanism behind these dapF muta-

tions, we purified wild-type and the mutant DapF variants

(Appendix Fig S3) and measured their kinetics in vitro (Cox et al,

2002; Appendix Fig S4). Surprisingly, both DapF mutants are kineti-

cally impaired relative to the wild-type variant (Fig 4E). We specu-

lated that altered levels of the intermediates LL-DAP and meso-DAP

could counterintuitively result in increased lysine accumulation

through regulatory interactions. qPCR profiling of the entire biosyn-

thetic pathway revealed one gene with statistically significant

increase in gene expression, the diaminopimelate decarboxylase

lysA (Fig 4F). LysA is responsible for the last enzymatic step in

lysine biosynthesis, and it is known to be repressed by lysine (Ou

et al, 2008; Marbaniang & Gowrishankar, 2011) and induced by

diaminopimelic acid (Stragier et al, 1983b) through the regulator

LysR. As such, the increased expression of lysA (Fig 4F) in a dapF-

impaired background suggests that a larger pool of LL-DAP (previ-

ously observed in a dapF mutant background; Richaud et al, 1987)

works as a stronger co-effector to activate lysA than the wild-type

mixture of both LL-DAP and meso-DAP.

Overall, these results uncovered a counterintuitive interplay

between lower kinetics and lysine overproduction. This finding

highlights our limited ability to predict genotype–phenotype rela-

tionships in the context of an entire pathway, similar to what

has been observed in the protein engineering field. Therefore,

deep scanning mutagenesis proves to be a valuable strategy to

identify novel regulatory mechanisms on pathway scale. Further

studies are required in order to investigate the mechanistic basis

for the differences in AEC tolerance between the G210D and

M260Y substitutions. Other biosynthetic genes identified in our

screen include lysC, serC, and dapD, but were not investigated

in detail.

Validating other hits: decoupling noise from real enrichment

Since plasmid barcodes are used as a proxy for genomic edits, lack

of correlation introduces noise that can lead to false positives in the

enrichment scores. In theory, plasmid-genome correlation should be

strong for real hits with strong enrichment and weaker for non-

enriched variants. To investigate this further, we focused now on

the regulator category and investigated a weakly enriched mutation

in LysR, as well as a strongly enriched mutation in ArgP.

Regulatory mutations are well known to confer AEC resistance

(Blount et al, 2007; Marbaniang & Gowrishankar, 2011), mainly

in the lysine-regulated riboswitch controlling expression of the

aspartokinase lysC (Di Girolamo et al, 1988; Patte et al, 1998; Garst

et al, 2008; Fig 1C). The regulator LysR, which upon binding to

diaminopimelic acid activates the last enzymatic step in lysine biosyn-

thesis (Stragier et al, 1983a; lysA, Fig 1A), exhibited few weakly

enriched mutations in our library (Fig 5A). We focused on the LysR

S36R substitution, a mutant that had significant enrichment scores at

1,000 lM AEC (P-value: 0.007), while at lower concentrations enrich-

ment was not significant (P-value of 0.14 at 10 lM AEC and 0.12 at

100 lM AEC).

The LysR family of transcription regulators is ubiquitous in

bacteria and comprises a conserved N-terminal helix-turn-helix
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(HTH) DNA-binding domain and a less conserved C-terminal

co-inducer binding domain (Maddocks & Oyston, 2008). The LysR

S36R mutation lies on the DNA-binding (HTH) domain (Fig 5B).

However, after reconstruction and genomic verification of this edit,

we observed that mutants do not display any alteration in intracellu-

lar lysine levels (Fig 5C). Further, we noted that strains harboring

the S36R mutation grew slower than wild-type cells transformed

with a non-targeting gRNA (Fig EV5). These results suggest that the

enrichment observed at the plasmid barcode level for LysR is possi-

bly a false positive.

On the other hand, the ArgP regulator displayed much stronger

enrichment scores for a E246Q substitution (Fig 5D), with a P-value

of 1.6 × 10�6 at 100 lM AEC, 8.1 × 10�8 at 1,000 lM AEC, and

1.59 × 10�5 at 10,000 lM AEC. ArgP, which also belongs to the

LysR family of transcriptional regulators, can bind to lysine in order

to inhibit transcription of several genes in the biosynthetic lysine

pathway (Fig 1A), acting as one of the main negative feedback

mechanisms (Marbaniang & Gowrishankar, 2011). The E246Q

substitution lies on the C-terminal co-inducer binding domain

(Fig 5E), although the apparent role for this residue is unclear. After

genomic reconstruction, we observed that strains harboring the

ArgP E246Q mutation accumulated 124% more intracellular lysine

(Fig 5F), likely responsible for the barcode enrichment previously

observed, although the reconstructed mutant could also not

E
nr

ic
hm

en
t (

lo
g 2)

Fraction

dapF

Position (AA)

0 80 120 160 190 27410

M260YG210D

Significantly Enriched Not Enriched Synonymous Mutations Significance Threshold- - -

10 µM AEC

100 µM AEC

1000 µM AEC

10000 µM AEC

B

F

A

C

E

In
iti

al
 R

at
e

D

**
*

pvalue < 0.001

pvalue = 0.01

N.S.
N.S.

pvalue = 0.011

*

C73 C73

M260M260

G210 G210

Figure 4. Investigating the biosynthetic gene dapF.

A Mapping of enrichment across the positions targeted in dapF. The gray regions in the gene cartoon at the bottom highlight the windows containing targeted
residues, with the enrichment map shown above for increasing AEC concentrations. Enrichments are color coded according to the legend at the bottom. A histogram
plot of enrichment is shown at the right.

B Structure of the DapF dimer (PDB ID: 4IJZ) with the G210 and M260 sites highlighted in green. Diaminopimelate binding is shown in red.
C Zoom in the catalytic site highlighting the G210 and M260 sites relative to the catalytic cysteines. The G210D and M260Y substitutions are shown in the right panel.
D Absolute quantification of intracellular lysine concentration in wild-type and the reconstructed DapF mutants. Quantification was performed using LC-MS, as

described in the methods section. n = 3. Error bars show mean value � SD. A two-sample Student’s t-test assuming unequal variances was performed to calculate
statistical significance. Concentrations are reported as fold change relative to the wild-type control samples.

E DapF assay showing kinetics of the wild-type, G210D and M260Y mutants. Assay was performed as described in the methods section. n = 5. Error bars show mean
value � SD.

F Differential gene expression quantified via qPCR for the dapF and lysA genes on a WT, DapF G210D, and DapF M260Y backgrounds. Error bars represent 95%
confidence intervals. A two-tailed Student’s t-distribution was used to calculate P-values, which were adjusted using the Benjamin–Hochberg statistical method for
false discovery rates.
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outcompete the wild-type strain (Fig EV6), similarly to the results

observed for the DapF M260Y mutation.

In all, these results support our initial hypothesis that strongly

enriched mutations are more likely to yield a real signal than muta-

tions displaying weak enrichment scores. However, as discussed in

the next section, adaptive mutations could also introduce noise in

the form of strong enrichment scores. Therefore, genomic recon-

struction and validation are essential in order to confirm targets

identified by this approach. Further, a more stringent P-value

threshold with improved statistical methods could filter a larger

fraction of false positives in the sample. In the discussion, we high-

light important practices and advances that can improve the signal-

to-noise ratio in future implementations of this technology.

Deep scanning mutagenesis provides better genotype–phenotype
mapping than adaptive evolution

The data presented herein demonstrate an ability to investigate

specific sequence-to-activity hypotheses at a scale orders of magni-

tude beyond alternative strategies. To further justify this claim, we

performed adaptive laboratory evolution and whole genome

sequencing under a selective AEC concentration (1,000 lM). Specifi-

cally, we adapted wild-type E. coli cells and fully sequenced the

genomes from 15 isolates after 2 days (single-batch) or 5 days (se-

rial transfer) of selection. As expected, multiple SNPs (2-7 SNPs per

genome post-filtering) were identified (Fig 6A, Dataset EV3). Only

one gene in the lysine pathway was found to be mutated (lysP), with
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Figure 5. Investigating noise and real enrichment in the plasmid barcodes.

A Mapping of enrichment across the positions targeted in lysR. The gray regions in the gene cartoon at the bottom highlight the windows containing targeted residues,
with the enrichment map shown above for increasing AEC concentrations. Enrichments are color coded according to the legend at the bottom. A histogram plot of
enrichment is shown at the right.

B Modeled structure of LysR, with the HTH DNA-binding domains colored in blue and the co-inducer binding domain in gray. The S36 site is highlighted in green. The
right panel zooms to the S36 site, showing close proximity to the DNA phosphate backbone.

C Absolute quantification of intracellular lysine levels in wild-type and the reconstructed LysR S36R mutant. Quantification was performed using LC-MS, as described in
the methods section. n = 2. Error bars show mean value � SD. A two-sample Student’s t-test assuming unequal variances was performed to calculate statistical
significance. Concentrations are reported as fold change relative to the wild-type control samples.

D Mapping of enrichment across the positions targeted in argP. Representation is the same as described in (A).
E Modeled structure of ArgP, highlighting the E246 residue in the co-inducer binding domain (gray).
F Absolute quantification of intracellular lysine levels in wild-type and the reconstructed ArgP E246 mutant. Quantification was performed using LC-MS, as described in

the methods section. n = 2. Error bars show mean value � SD. A two-sample Student’s t-test assuming unequal variances was performed to calculate statistical
significance. Concentrations are reported as fold change relative to the wild-type control samples.
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five distinct SNPs identified in a total of eight occurrences. The

remaining 21 distinct SNPs totaled 48 occurrences and were spread

across a broad range of categories (Fig 6B).

Overall, these whole genome sequencing studies affirm the well-

established ratio of positive to neutral to negative mutations

observed in laboratory evolution. The low fraction < 0.5–1% of

positive mutations increases the subsequent screening burden (all

individual mutants must be reconstructed and tested) by 2 orders of

magnitude (1/(0.5–1%) = 100–200×). Moreover, most (80%) of the

identified mutations do not map to genes reasonably linked to the

pathway (Fig 6C), thus challenging any rational strategies for reduc-

ing the reconstruction and screening burden. While only the domi-

nant selection winner (lysP) was uncovered using adaptive

evolution, CREATE provided much higher depth for the regions

targeted in the library, effectively scanning these pre-selected

hotspots (Fig 6D). We emphasize the value of a combination of

such approaches: Adaptive evolution could be leveraged to evolve

complex phenotypes and inform putative target genes, and CREATE

could be leveraged to reconstruct the identified mutations and inves-

tigate their individual contributions in parallel.

Discussion

Complex phenotypes are often engineered through directed evolu-

tion or other random mutagenic strategies. While successful for

phenotype optimization in industrial strains, off-target mutations

can decrease overall cell fitness and lead to “dead-end” phenotypes,

preventing further improvement of the evolved strain (Lee & Kim,

2015). New tools (Garst et al, 2017; Bao et al, 2018; Guo et al,

2018; Roy et al, 2018; Sadhu et al, 2018) that combine targeted deep

scanning mutagenesis with genotype–phenotype mapping provide a

powerful framework to explore distinct hypotheses in parallel,

uncovering mechanisms that would be difficult to rationalize in

complex systems. This concept was evident for the DapF mutations

investigated here, in which lower kinetics counterintuitively

improved lysine accumulation in the strains.

Further, the ability to map deeply, through the use of barcodes,

enabled quantification beyond the main selection winner. Trans-

porter loss-of-function was a clear solution to the AEC challenge,

dominating most of the selected population. Therefore, looking

beyond lysP mutations would be challenging with traditional strate-

gies (Fig 6). However, we could correctly identify other hits that

were being masked by the enrichment of lysP mutations, highlight-

ing the value of parallel genotype–phenotype mapping. We note that

some of the mutants described here could not outcompete adaptive

mutations that inactivated lysP, growing similarly to wild-type cells

even though a clear improvement in lysine accumulation was

observed. This finding underlines the complex relationship between

the selection environment and the fitness effect. In unicellular asex-

ual organisms such as bacteria, fitness in a competitive environment

can be mainly attributed to three parameters: (i) lag phase duration,

(ii) exponential growth rate, and (iii) maximum yield at saturation.

Mutations can affect fitness through differing degrees on each of

these parameters (Gall et al, 2008; Adkar et al, 2017). Moreover,

the effect of each parameter is further confounded in more complex

populations, in which clonal interference has a strong effect on

shaping the adaptation dynamics and evolutionary outcomes (Bar-

rick & Lenski, 2013; Lang et al, 2013). These different adaptive

niches could explain the results observed here, and recently devel-

oped tools could aid in the elucidation of these evolutionary niches

at the population scale (Wong et al, 2018).

Although successful in mapping different AEC resistance routes

in parallel, several false-positive mutants were identified in our

studies. These could have been a consequence of background adap-

tive evolution, or potentially from imperfect plasmid barcode to

genome-edit correlation. Additionally, a key limitation on this

process is the generally low editing efficiency on a library scale
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Figure 6. Comparison of mapping depth using adaptive evolution and the deep scanning mutagenesis library.

A Map of SNPs positions observed in each sequenced genome after 48-h adaptation (n = 9) and 5-day adaptation with one passage per day (n = 6). SNPs were mapped
to the parent strain, sequenced after growth in minimal media in the absence of AEC.

B Categories of the SNPs found in Fig 6A, with the categories from genes that are directly linked to the lysine pathway highlighted in green.
C Circos plot of the SNPs found after 48-hour adaptation relative to the lysine metabolism genes. The bar plots of each SNP represent the frequency across sequenced
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D Map of enriched mutations found for the same selective pressure (1,000 lM AEC) using our deep scanning mutagenesis library. The bar plots represent log2
enrichment scores.
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(Table 1), which is a consequence of multiple variables in the edit-

ing process. First, variations between gRNA activity and the ability

to rescue double-stranded breaks (DSB) via homology-directed

repair are major drivers of fluctuations on editing efficiency. Addi-

tionally, many different escape mechanisms can prevent proper

function of the CRISPR/Cas9 machinery, such as mutations in the

Cas9 or the gRNA itself. Errors in oligo synthesis can further prevent

the introduction of a DSB, by incorporating mutations in the gRNA

sequence for example. Finally, wild-type cells that escape the DSB

process through any of the mechanisms above are inherently more

fit, since they do not undergo the toxicity and stresses caused by

DNA damage.

With these identified limitations, a few parameters must be taken

into consideration when attempting genotype–phenotype mapping

on a pathway scale. First, applications that include strong selective

pressures are more likely to succeed. With the relatively low (2–

4%) editing efficiencies reported herein, the screening burden

would be too high for most screening throughputs. Second, while

these technologies efficiently narrow the search space to a few

hypotheses (genes and specific mutants) of interest, reconstruction

in wild-type backgrounds and subsequent validation are essential.

Third, the use of multiple biological replicates is fundamental to

deconvolute designed edits from adaptive evolution background, so

that barcodes displaying enrichment in different samples are more

likely to be real. Fourth, sequencing depth remains an important

consideration. In this study, the selective dominance of lysP muta-

tions likely prohibited the investigation of every single designed

edit. A rarefaction curve should be included in future studies in

order to assess the required sequencing depth. Finally, strategies to

improve map accuracy would be valuable additions. As an example,

the use of single cell-specific barcodes could improve the confidence

of mapping, so that each single mutation is mapped as a population

of cells (Zeitoun et al, 2017). Transferring barcodes from plasmids

to genomes (Roy et al, 2018) could also decrease cell-to-cell varia-

tion and hence decrease noise in barcode enrichments. In the speci-

fic case of lysine metabolism, comparing mutations identified in the

presence of different antimetabolites or with screening-based

approaches using lysine biosensors (Yang et al, 2013; Wang et al,

2015, 2016) would be a valuable contribution.

Overall, we demonstrated the expansion of deep scanning muta-

genesis strategies from a single gene to an entire metabolic pathway.

We identified in parallel multiple routes of AEC resistance, encom-

passing mutations in transporters, regulators, and biosynthetic

genes. This technology, as well as future implementations that

address some of the limitations described above, should accelerate

our ability to investigate complex multigenic phenotypes, providing

knowledge that will contribute to the forward engineering of these

traits.

Materials and Methods

Genome-edited strains, plasmids, and general cloning procedures

Genome editing and individual mutant validation were performed in

a wild-type Escherichia coli str. K-12 substr. MG1655 strain. A

custom pSIM5-Cas9 dual vector was built by cloning the araC-

pBAD-Cas9 fragment from pX2-Cas9 vector (Addgene #85811) into

the temperature-sensitive pSIM5 plasmid (Datta et al, 2006) contain-

ing the lambda red genes. This pSIM5-Cas9 dual vector was trans-

formed into E. coli MG1655 prior to the library introduction. The

editing cassettes containing the homology arm and genome-

targeting gRNA were cloned in the same backbone previously used

for CREATE (Garst et al, 2017) (example vector can be visualized

here: https://benchling.com/s/seq-mrFmtCypVLPiiJ4lJk3T).

Cloning procedures that did not involve libraries were performed

using CPEC (Quan & Tian, 2011). Briefly, fragments containing

40bp homology arms were PCR amplified using Phusion High-Fide-

lity PCR Master Mix (New England Biolabs), treated with DpnI to

remove methylated plasmid templates when necessary, and purified

from 1% agarose gels using the QIAquick Gel Extraction Kit

(QIAGEN). CPEC assembly was performed using 300 ng of back-

bone and equimolar insert amounts. After 10 cycles of reaction, the

product was dialyzed and transformed via electroporation into E.

cloni 10GF’ ELITE Electrocompetent Cells (Lucigen). Cloning proce-

dures for the library preparation will be detailed below.

Library design

For each targeted protein in this study, 3D structures were collected

from the RCSB Protein Data Bank (Berman et al, 2000) if available

or modeled using SWISS-MODEL (Arnold et al, 2006) or I-TASSER

(Roy et al, 2010). A 6 Å shell from binding sites was built using

PyMOL (v.1.8.6.2) scripts to select sites for mutagenesis. A compre-

hensive list of all selected sites and structure details can be found in

Dataset EV1. In total, 19 genes and 815 sites were selected. For each

selected site, a full codon saturation mutagenesis was introduced

using the most frequent codons, resulting in a total of 16,300 vari-

ants. For each variant, the gRNA and homology arm designs were

automated using previously described Python scripts (Garst et al,

2017). Briefly, the cassette design included the following features: a

library-specific 18 nt priming site for subpooling, a 12 nt variant-

specific priming site (not used in this study), a 118 nt homology

arm encoding the specific genomic edit and a synonymous PAM

mutation in close proximity, the constitutive promoter J23119

(35 nt), a 3 bp spacing sequence (ATC), the 20 nt spacer region

required for Cas9 targeting, followed by 24 nt of the 50 end of the

canonical S. pyogenes gRNA. The full list of cassette sequences can

be found in Dataset EV1.

Library construction

The designed library was synthesized as 230-mers by Agilent Tech-

nologies in a custom array and delivered pooled as lyophilized

single-stranded DNA. As described in more details previously (Garst

et al, 2017), the oligo pool was subjected to an Alexa Fluor 488-

labeled strand extension reaction and purified in a 6% SDS–PAGE

gel to remove indels introduced in the synthesis process. From the

resulting purified oligo pool, the lysine library was amplified as a

single subpool using predefined library-specific priming sites

included in the cassette design. The amplification was optimized to

minimize overamplification in an effort to reduce product crossover.

The PCR was performed using Phusion High-Fidelity PCR Master

Mix (New England Biolabs) and the following reaction conditions:

98˚C for 60 seconds, followed by eight cycles of 98°C30s/68°C30s/

72°C90s, followed by 10 cycles of 98°C30s/72°C90s, and then a
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final extension at 72°C for 3 min. The library product was purified

from 1% agarose gels using the QIAquick Gel Extraction Kit

(QIAGEN).

The amplified library was cloned using Gibson Assembly HiFi 1-

Step Kit (SGI-DNA), with 300 ng of the linearized backbone and

30 ng of the library insert. The cloning reaction was dialyzed and

then transformed via electroporation into E. cloni 10GF’ ELITE

Electrocompetent Cells (Lucigen), in a single electroporation using a

0.2-cm-gap cuvette (Gene Pulser, Bio-Rad). Cloning efficiency was

estimated by counting colonies in LB agar plates. Overall, > 60×

coverage (total CFUs/number of library variants) was achieved at

the cloning stage. Subsequently, the library was grown in LB media

to saturation and plasmid was extracted using the QIAprep Spin

Miniprep Kit (QIAGEN). The plasmid library was then transformed

into E. coli MG1655 following a modified recombineering protocol

(Sharan et al, 2009). Briefly, the strain previously transformed with

the dual Cas9/pSIM5 vector was grown at 30°C in LB media in 250-

ml flasks under 200 rpm until mid-log phase (OD600 = 0.4–0.5).

Cells were then induced with 0.2% arabinose (for Cas9 induction)

and placed in a 42°C shaking water bath for 15 min (for lambda red

induction). Next, cells were kept on ice for 5 min and made electro-

competent. To ensure coverage, 2 lg of the plasmid library was

transformed in a single electroporation using a 0.2-cm-gap cuvette

(Gene Pulser, Bio-Rad). Two independent transformations were

performed for the library (biological duplicates), followed by recov-

ery in 5 ml of LB media supplemented with 0.2% arabinose for 3 h

at 30°C. Afterward, cells were plated in LB media with the proper

antibiotics to calculate transformation efficiency and transferred to

30 ml of liquid LB media with antibiotics for 8 h before proceeding

to selective conditions. Overall, > 300× coverage was achieved at

this stage (total CFUs/number of library variants). Both the cloning

and recombineered libraries were sequenced using an Illumina

MiSeq run to assess the real plasmid library coverage (threshold set

at 100% full matching cassettes, Fig EV1). Deep sequencing proce-

dures for plasmid libraries are detailed below.

AEC selections and high-throughput sequencing of the
library barcodes

Selection was performed in 30 ml of M9 minimal media containing

5X M9 Minimal Salts (BD Biosciences), 2 mM magnesium sulfate,

0.1 mM calcium chloride, 1% glucose, 100 lg/ml carbenicillin (to

select for the library plasmid), and varying S-(2-aminoethyl)-L-

cysteine (AEC) concentrations (0–10,000 lM). The library culture

growing for 8 h in LB media (described above) was washed with

PBS, and 10 ll was used to inoculate the selective media. Cultures

were kept at 37°C under 200 rpm. Two different selection controls

were included, all subjected to the same construction procedure

described above: (i) a non-targeting control, containing a plasmid

with a gRNA that does not target the E. coli genome and (ii) a

double-stranded break control, containing a plasmid with a CREATE

cassette designed to introduce a stop codon at the unrelated gene

galK.

Selections up to 1,000 lM AEC were harvested to sequence the

library barcodes at 30 h post-inoculation, and the 10,000 lM AEC

selections were harvested at 40 h post-inoculation. To do so, 3 ml

of the selection cultures was pelleted and plasmid DNA was

extracted using the QIAprep Spin Miniprep Kit (QIAGEN). Next,

custom Illumina-compatible primers (Garst et al, 2017) were used

to barcode each selection using Phusion High-Fidelity PCR Master

Mix (New England Biolabs), 300 ng of the plasmid prep, 3% DMSO,

and the following cycling conditions: 98°C for 30 s, 20 cycles of

98°C10s/68°C15s/72°C20s, followed by a final extension of 72°C for

5 min. PCR products were purified from 1% agarose gels using the

QIAquick Gel Extraction Kit (QIAGEN), pooled together in equimo-

lar amounts, and sequenced using an Illumina MiSeq 2x150 paired-

end reads run.

Processing of the library barcode reads and statistical analysis

Reads were demultiplexed and then merged using the PANDAseq

assembler (v2.10). Merged reads were matched to the database of

all designed cassettes using the usearch_global algorithm

(v9.2.64), with an identity threshold of 95% and minimal align-

ment length of 150 bp. These parameters were chosen so that

chimeras in the designs could be evaluated. Forty possible hits

were allowed for each query, which were subsequently sorted by

percent identity, and the best-matching cassette was chosen. To

generate read counts for each designed cassette, only reads that

had a full alignment and an identity higher than 99% were used.

The number of reads obtained at each processing step is outlined

in Dataset EV4.

The next processing steps of the read counts were done using the

Pandas data analysis Python package (v0.20.2). First, since low-

count variants are subject to counting error, variants with initial

counts (pre-selection) of less than 10 were not included in the indi-

vidual biological replicate analysis. Then, variants with 0 counts

post-selection were replaced to 0.5 in order to allow the subsequent

calculation steps. For each individual biological replicate, enrich-

ment scores were calculated as the logarithm (base 2) of the ratio of

frequencies between post-selection and pre-selection. Frequencies

were determined by dividing the read counts for each variant by the

total experimental counts. Finally, a weighted average was used to

combine the enrichment scores obtained in the two biological repli-

cates, according to the formula:

Wavg ¼
PN

i¼1 Ci �Wið Þ
PN

i¼1 Ci

where Wavg is the weighted average score, i is the biological repli-

cate, C is the read count obtained for the variant in the biological

replicate, and W is the enrichment score calculated for the variant

in the biological replicate.

To assess significance, the average of enrichment scores for all

synonymous mutations included in the library was calculated (av-

erage l of wild-type enrichment). Bootstrap analysis (resampled

with replacement 20,000 times) was performed to obtain a 95%

confidence interval for the wild-type enrichment average l. Vari-

ants were considered as significantly enriched if their weighted

enrichment scores were at least l � 2*r (i.e., P-value ≤ 0.05

assuming a normal distribution of synonymous mutations enrich-

ment scores), with r being the standard deviation. For individual

mutants chosen to be investigated further in this study, the P-

value of their respective enrichment scores was calculated using

the probability density function of all mutants under the specific

selective pressure.
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Deep sequencing of selected genomic regions

Genomic pockets were PCR amplified using primers annealing specifi-

cally to the target genomic region (Fig EV2). To these primers, the

Nextera adapter sequences were included as 50 overhangs, resulting in
the Forward primers: 50-TCGTCGGCAGCGTCAGATGTGTATAAGAGA
CAG-[priming site]-30 and Reverse primers: 50-GTCTCGTGGGCTCG
GAGATGTGTATAAGAGACAG-[priming site]-30. Samples were then

prepared with the Nextera XT DNA Library Prep Kit (Illumina) and

sequenced on an Illumina NextSeq 2x150 paired-end reads run.

Sequencing reads were merged using the PANDAseq assembler

(v2.10) and trimmed to the positions highlighted in Fig EV2 (these

positions exclude the primer binding site). A database was generated

containing all expected sequence variants for the full length between

the sequenced positions, which is the wild-type sequence and all

designed edits incorporated into the respective positions. Reads were

then matched at 100% identity to this database using custom Python

scripts. The number of reads obtained at each processing step is

outlined in Dataset EV4.

Individual mutant reconstruction

To individually reconstruct the mutants investigated in this study,

the same cassette sequence included in the library for that specific

variant was ordered separately as a gblock from Eurofins Genomics.

The cassette was then cloned, sequence verified, and introduced in

E. coli MG1655 using the same procedure described above. Then,

the specific genomic edit was confirmed through Sanger sequencing

of the target site.

Absolute quantification of intracellular lysine levels

Saturated overnight cultures of the reconstructed mutants were

used to inoculate 100 ml of the minimal media used for selections

(without any AEC present). Inoculums were made to an initial

OD600 of 0.01, and cultures were grown in shake flasks at 37°C

under 200 rpm until OD600 reached 0.5. At this stage, cells were

plated to calculate CFUs/ml, washed with PBS, pelleted by

centrifugation, and stored at �80°C for metabolite extraction. The

frozen cell pellets were extracted in ice-cold lysis buffer, a 5:3:2

ratio of MeOH:ACN:H2O, containing amino acid standard mix at a

final concentration of 1 lM (MSK-A2-1.2 standard amino acid mix,

purchased from Cambridge Isotope Laboratories, Inc., Tewksbury,

MA). Samples were vortexed for 30 min at 4°C with 1-mm glass

beads. Insoluble proteins and lipids were pelleted by centrifuga-

tion at 4°C for 10 min at 12,000 g. Supernatants were collected

and analyzed using a Thermo Vanquish UHPLC coupled online to

a Thermo Q Exactive mass spectrometer. UHPLC-MS methods and

data analysis approaches were performed as described previously

(Nemkov et al, 2015). The intracellular concentration of wild-type

control samples was normalized to 1, and the experimental

samples are reported as fold change relative to these wild-type

levels.

Expression and purification of the DapF mutants

The dapF variants were PCR amplified from boiled cells that

contained the desired mutation (wild-type E. coli MG1655 for the

wild-type dapF sequence; reconstructed dapF mutants for the

G210D and M260Y variants). The PCR products were then cloned

and sequence verified into a custom-made pET-3 backbone, contain-

ing the histidine tag (6×) on either the 50 or 30 end of the genes to

test for optimal expression. Corynebacterium glutamicum DAP dehy-

drogenase was synthesized from Eurofins Genomics and also cloned

in the pET-based vector. Expression was done in a E. coli BL21

strain using LB media, which was induced with 1 mM IPTG when

OD600 reached 0.6. Induced cultures were grown at 30°C overnight

under 200 rpm, harvested by centrifugation, and the pellet stored at

�80°C for protein purification.

Proteins were purified using the Ni-NTA Spin Kit (QIAGEN),

following the protocol for purification of tagged proteins under

native conditions. Purified samples were run on a denaturing PAGE

gel (Mini-PROTEAN TGX Stain-Free Precast Gels, Bio-Rad) to con-

firm purity and quantified using the Thermo Fisher Scientific Pierce

660 nm Protein Assay Reagent. Purified proteins were used fresh for

the kinetic assay (never frozen).

In vitro assay to measure DapF kinetics

Enzymatic activity of the DapF variants was determined in vitro

using a modified DAP epimerase–DAP dehydrogenase coupled spec-

trophotometric assay (Cox et al, 2002). Briefly, 100 mM Tris (pH

7.8), 0.1 mM diaminopimelic acid (racemic mixture), 0.44 mM

NADP+, and 1 mM DTT were added to a cuvette and incubated at

37°C for 10 min to equilibrate the temperature. Then, 1.8 mM DAP

dehydrogenase was added and the absorbance was recorded at

340 nm until it reached a plateau (i.e., all meso-DAP was depleted;

Appendix Fig S4). Next, varying amounts of the purified DapF vari-

ants were added, and the absorbance at 340 nm followed through

time. The assay was performed with 400 ll final volume in a Nano-

Drop OneC UV-Vis Spectrophotometer (Thermo Fisher Scientific

Inc.).

Quantitative analysis of gene expression

Wild-type E. coli MG1655 and the analyzed reconstructed mutants

were grown under the same conditions as described for absolute

intracellular lysine quantification. At the harvest stage

(OD600 = 0.5), 1 ml of the culture was treated with RNAprotect

Bacteria Reagent (QIAGEN) to stabilize the RNA and the resulting

pellet frozen at �80°C. Total RNA was then extracted using the

RNeasy Mini Kit (QIAGEN) with an on-column DNase digestion.

cDNA was synthesized using the SuperScript IV First-Strand Synthe-

sis System (Invitrogen). Power SYBR Green Master Mix (Thermo

Fisher Scientific Inc.) was then used for the qPCRs, which was run

on a QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher

Scientific Inc.) with the following conditions: 95°C for 30 s, 40

cycles of 95°C30s/65°C30s/72°C30s, followed by the standard melting

curve protocol. Three different housekeeping genes were tested as

qPCR endogenous controls: the 5S ribosomal RNA (rrfA), siroheme

synthase (cysG), and the integration host factor B (ihfB). After test-

ing each endogenous control, ihfB exhibited variability among

samples, and so rrfA and cysG were chosen as endogenous controls

for the analysis. Relative expression was calculated using the DDCt

method (Livak & Schmittgen, 2001) on the Thermo Fisher Cloud

Data Analysis Apps (qPCR Module).
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Adaptive evolution and whole genome sequencing

The adaptive evolution experiments were performed with wild-type

E. coli MG1655 (without any plasmids) in 30 ml of the same mini-

mal media used for selections, containing 1,000 lM AEC. Cells were

grown at 37°C under 200 rpm in two different regimes: (i) growth

for 48 h (single-batch) since the inoculation; (ii) growth for 5 days,

with passages to new media every 24 h (100 ll was transferred in

each passage). Additionally, wild-type E. coli MG1655 cells were

also grown for 48 h in minimal media without any AEC present

(parent strain genome). Next, the final cultures were streaked to

agar plates of the same selective media and single colonies were

processed for whole genome sequencing. To do so, genomic DNA

was extracted using the Wizard Genomic DNA Purification Kit

(Promega), libraries were prepared using the Nextera XT DNA

Library Prep Kit (Illumina) and sequenced on an Illumina MiSeq

2x150 paired-end reads run.

Reads were then mapped to the reference Escherichia coli str. K-

12 substr. MG1655 genome (RefSeq NC_000913.3), using Bowtie2

(v2.3.2) in the sensitive preset and end-to-end mode. After mapping,

SNP calling was done through SAMtools (v1.5) with the following

filtering parameters: (i) Phred quality score higher than 20, (ii) SNP

read depth higher than 10, and (iii) SNP frequency higher than

50%. Finally, the SNPs called in the sequenced parent genome were

subtracted from the SNPs called in the adapted strains, yielding the

final list of SNPs (Dataset EV3). The number of reads obtained at

each processing step is outlined in Dataset EV4.

Figure generation softwares

Figures in this work were generated using the matplotlib Python

plotting library package (v1.5.3) and Adobe Illustrator CC 2017.

Circos plots were generated using Circos (v0.69-3) (Krzywinski

et al, 2009). Figures with protein structures were generated in

PyMOL (v.1.8.6.2).

Expanded View for this article is available online.
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