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Abstract
The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure

with widespread connectivity to cortical and subcortical motor structures, as well as the spi-

nal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN

and the pulvinar. Moreover, there is intense connectivity with sensory structures of the teg-

mentum in particular with the superior colliculus (SC). Given the existence and abundance

of projections to visual sensory structures, it is likely that activity in the PPN has some mod-

ulatory influence on visual sensory selection. Here we address this possibility by measuring

the visual discrimination performance (luminance contrast thresholds) in a group of patients

with Parkinson’s Disease (PD) treated with deep-brain stimulation (DBS) of the PPN to con-

trol gait and postural motor deficits. In each patient we measured the luminance-contrast

threshold of being able to discriminate an orientation-target (Gabor-grating) as a function of

stimulation frequency (high 60Hz, low 8/10, no stimulation). Thresholds were determined

using a standard staircase-protocol that is based on parameter estimation by sequential

testing (PEST). We observed that under low frequency stimulation thresholds increased rel-

ative to no and high frequency stimulation in five out of six patients, suggesting that DBS of

the PPN has a frequency-dependent impact on visual selection processes at a rather ele-

mentary perceptual level.

Introduction
The pedunculopontine tegmental nucleus (PPN) is an important component of the general
reticular activation system (RAS) involved in the regulation of wakefulness, REM sleep, loco-
motion, as well as a variety of other cognitive functions (for overviews see [1–4]. Its wide range
of modulatory influences is paralleled by a distributed connectivity to many subcortical and
cortical areas in mammals [5, 6] including the human [7, 8]. The PPN shows strong
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connectivity with the basal ganglia (globus pallidus internus GPi) [2], the subthalamic nucleus
(STN), the substantia nigra (SN) [5, 6, 9], as well as with the spinal chord. Stimulation of the
PPN revealed an influence on locomotion and postural control in the monkey [10–12] with
reversible inactivation and lesions producing Parkinson-like symptoms [13, 14]. These and
clinical observations in patients suggested that the PPN may be a relevant brain structure
involved in producing symptoms of Parkinson’s disease (PD) in humans [15–18]. The PPN
was accordingly selected as a target site for deep brain stimulation with the goal to control PD
associated gait and postural disturbances [15, 16, 19–23].

Beyond its role in locomotion, the PPN has been shown to influence oculomotor perfor-
mance and attention in rodents and monkeys [24–27]. In the latter, PPN neurons displaying
saccade- and fixation-related firing patterns could be documented [26]. Moreover, the PPN is
known to project to all thalamic nuclei including sensory relay nuclei [28]. Hence, there is a
potential role for the PPN in modulating attention and perceptual processes more directly via
cholinergic connectivity with relay nuclei of the thalamus as the lateral and medial geniculate
nucleus (LGN, MGN) or the pulvinar [29]. The majority of cholinergic brain-stem projections
to the LGN in fact come from the PPN [30] and it has been hypothesized that respective pro-
jections contribute to the modulation of thalamo-cortical transmission (thalamic gating)
underlying selective attention [28]. One such gating pathway could rely on projections to the
thalamic reticular nucleus (TRN). The TRN, a structure closely linked to the ARAS, has been
suggested to act as a ‘guardian of the gateway to the cortex’ [31]. The ‘guardian’ role of the
TRN was recently confirmed by direct experimental evidence in the monkey [32, 33]. Another
pathway could involve the PPN’s cholinergic connectivity with the superior colliculus (SC) [25,
34]. The pivotal role of the SC in visual attention has been well documented in animals [35–
37]. In particular, it was shown that subthreshold microstimulation of the SC can increase the
monkey’s contrast sensitivity of discriminating motion direction [38]–a stimulation effect
mimicking the operation of selective visual attention. Furthermore, the SC has been implied to
mediate perceptual and emotional sensitivity in non-conscious vision like in blindsight [39,
40]. Finally, PPN effects on perceptual sensitivity and attention may arise from its connectivity
with the SN, where dopaminergic projections to the frontal lobe (in particular the frontal eye
field, FEF) and/or other structures (e.g. the SC) modulate attentional selectivity in extrastriate
visual cortex areas. For example, subthreshold stimulation of FEF neurons was shown to mod-
ulate the firing response of extrastriate neurons (V4) whose receptive field (RF) corresponded
with the RF of the stimulated FEF neurons [41, 42]. Moreover, microiontophorectic adminis-
tration of a D1-receptor antagonist in the FEF increased the magnitude and selectivity (to ori-
entation) of responses in corresponding V4 neurons [43].

In summary, several lines of experimental evidence hint at the possibility that neuromodula-
tory projections from the PPN have specific influence on attention and visual sensory selection.
This possibility, however, has not been experimentally investigated yet. Here we address this
possibility in patients suffering from Parkinson’s disease, which underwent deep-brain stimu-
lation (DBS) of the PPN to alleviate severe gait/postural disturbances. Specifically, we devel-
oped an experimental test design that allowed us to determine the discrimination threshold of
a noise-embedded visual stimulus under different DBS frequencies. Subjects were to report the
orientation of a Gabor grating embedded in random pixel noise (Fig 1A). The luminance-con-
trast of the Gabor varied from trial to trial following a staircase protocol (PEST procedure, see
Methods). Below a certain luminance contrast, the grating ‘vanished’ into the noise with the
subjects’ discrimination performance approaching chance level. The staircase was constructed
to converge at the threshold contrast at which subjects were just able to perform the orientation
discrimination correctly. We asked whether microstimulation of the PPN would affect detec-
tion thresholds, and if yes, how the effect on thresholds would vary with stimulation frequency.
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Materials and Methods

Participants
Eight patients (5 female, 3 male) suffering from PD participated in the study. Two subjects
could not be included in the final data analysis due to insufficient data collection (performance
breakup after a few runs). All patients were inpatients of the Department of Stereotactic Sur-
gery of the University Clinic for Neurology, Magdeburg. All participating patients gave written
consent, volunteered and were free to stop the experiment at any time. None of the patients
had a history of psychiatric or neurological diseases other than PD. No patient showed signs of
depression or dementia at the time of experimentation (all MDRS scores> 131). All patient
were medicated with L-Dopa and were tested under on-going medication. Three patients
received additional bilateral DBS (Table 1) of the subthalamic nucleus (STN), which was
always on during testing. Ethics Statement: The experiment was approved by the Ethics Coun-
cil of the Medical Department of the University of Magdeburg.

DBS-electrodes (Metronic Model 3389, 4 platinum–iridium cylindrical contacts, diameter/
length 1.27/1.5 mm each, edge-to-edge separation 0.5 mm) were placed bilaterally in all but

Fig 1. Example stimuli and staircasemeasurement. (A) Example stimuli showing oriented Gabor-gratings
embedded in pixel noise at decreasing luminance contrast (100%, 50%, 15%, 5%). (B) Example of one
staircase measurement in patient P1. The staircase protocol was based on a modified version of the PEST
(Parameter Estimation by Sequential Testing) procedure. The last contrast-value (arrow) was taken as the
measure of the contrast-threshold of a given staircase run.

doi:10.1371/journal.pone.0155206.g001
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one patient (P3), where only a right-side electrode was implanted. Electrode placement fol-
lowed standard stereotactic techniques [44, 45] which involved MRI-guided stereotaxy
together with microelectrode recordings to aid localization physiologically. The position of
macroelectrodes was determined using coordinates of the Atlas for Stereotaxy of the Human
Brain [46] which were then individually adjusted through visualization of the patient’s PPN
region in a Proton-density weighted MR image [47]. Fig 2 summarizes the position of active
electrode contacts in axial slices of each patient. The ultimate stimulation contacts and parame-
ters were individually defined (Table 1) to gain best results in alleviating motor/postural perfor-
mance deficits.

DBS protocol
Table 1 summarizes the time of surgery prior to behavioural testing as well as the stimulation
protocol and parameters for each subject. Five patients (P1, P3, P6, P7, and P8) were tested

Table 1. Summary of stimulation schedule and parameters of each patient included in the data analysis.

Pat. Age Stim. @t Dur. Int. Site AaS Co-DBS

1. 2. 3. 1.-2. 2.-3.

P1 50 60 10 no 3 2 60 1.5 l/r 3 STN(l/r)

P3 56 no 10 60 4 2 60 2.0 r 4 STN(l/r)

P4 71 20 no / 0 / 60 2.0 l/r 6

P6 67 60 no 8 1 1 60 2.5 l/r 13

P7 73 8 60 no 2 2 60 1.0 l/r 13

P8 68 8 no 60 1 2 60 2.0 l/r 9 STN(l/r)

Pat., patient; Stim., frequency of stimulation (Hz) at the first (1.) second (2.) and third (3.) test session; @t, time (days) between the first and second (1.-2.)

and the second and third session (2.-3.); Dur., duration of stimulation (μs); Int., intensity of stimulation (V); Site, electrode placement in right (r) or both (l/r)

hemispheres; AaS, assessment after surgery, the time (months) testing was performed after placing the electrodes; STN, subthalamic nucleus

doi:10.1371/journal.pone.0155206.t001

Fig 2. DBS electrode contact locations. The location of the active electrode contacts in the right (green
dots) and left (red dots) PPN region. Shown are axial MRI transsections in each patient. Left and right side
transsections display different planes along the rostro-caudal axis in P4, P6, and P7. Respective planes are
highlighted by green (right side) and red lines (left side) in the inserts showing midline sagittal transsections.

doi:10.1371/journal.pone.0155206.g002
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under low-frequency stimulation (LFS, 8 or 10 Hz), high-frequency stimulation (HFS, 60 Hz),
or no stimulation (NoS) on different days. For clinical reasons, one patient (P4) was not avail-
able for testing under 10Hz conditions. Instead, we could obtain performance data under 20
Hz LFS and under NoS conditions. Note, the stimulation protocol and parameters as well as
their changes followed therapeutic considerations aiming at improving gait disturbances in the
patients. Parameter settings, their variation and randomization as well as the time of testing
were not under direct control by the experimenters.

Stimuli and Procedure
Examples of stimulus frames containing Gabor gratings with different luminance contrast are
shown in Fig 1A. The Gabor patch was always embedded in independent pixel noise (random
distribution of pixels with grey values from black to white), with each patch containing 250 x
250 pixels (on screen extension: 6.6° x 6.6° of visual angle). The orientation of the Gabor grat-
ing was either tilted 45° clockwise or counter-clockwise from vertical, with subjects being
required to report the orientation with a two-alternative button press of the right hand (left vs.
right: index vs. middle finger). On twenty percent of the trials the target was absent and sub-
jects had to press a third button. Target-absent trials were included to control for the possibility
that subjects performed in a random manner when approaching lower contrast levels. Accu-
racy but not response time was stressed. The duration of stimulus frame presentation was var-
ied from patient to patient (ranging from 1200–2500 ms) to guarantee that the task could be
performed properly. Subjects responded in a self-paced trial-by-trial manner, with subsequent
frames appearing after a randomized ISI of 800–1300 ms (rectangular distribution) after the
manual response. On each trial the luminance contrast of the Gabor was varied according to a
staircase-protocol (PEST, Parameter Estimation by Sequential Testing), allowing us to deter-
mine the individual contrast level (discrimination threshold) at which the subject could just
detect and discriminate the Gabor reliably. The PEST protocol [48] was slightly modified in
that each staircase started at the 80% contrast level with the first downward step being a 33%
reduction of contrast instead of a 50% reduction. Fig 1B shows one example of a staircase per-
formed by patient P1. To obtain reliable estimates, each subject performed at least 14 staircases
per stimulation condition. The contrast level at which the given staircase settled was taken as
estimate of the discrimination threshold. As summarized in Table 1 the stimulation conditions
(NoS, LFS, HFS) were run on separate days, with the order of stimulation condition changing
between subjects.

Statistical data validation
Statistical validation of the grand average responses over subjects was performed using the
Friedman test with the 3-level factor stimulation (HFS,LFS,NoS). Subsequent post-hoc pairwise
comparisons were performed using Wilcoxon signed-rank tests. The subjects’ individual
response patterns were statistically analysed using one-way repeated measures ANOVAs with
the 3-level factor stimulation condition (HFS,LFS,NoS) and individual staircases serving as
samples. Violations of data sphericity were corrected with the Greenhouse-Geisser epsilon.
Corrected alpha-levels are reported.

Results
Fig 3 shows average (n = 5 subjects, P4 not included) contrast thresholds of the LFS (black), the
HFS (bright grey), and the NoS (dark grey) condition for subsequent staircases (n = 14) of the
experimental sessions. Note, subject P1 performed 20 staircases, for consistency only the first
14 staircases entered into the average. The most obvious effect of stimulation is an overall
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threshold increase for the LFS relative to the NoS and HFS conditions which is consistently
present throughout the experiment. That is, LFS shows an average contrast-threshold level
(31.5%) that is roughly 10% higher than for the NoS (23%) and HFS condition (19.7%). For
statistical data validation a Friedman test with the 3-level factor Stimulation (LFS, HFS, NoS)
was computed, which yielded a significant effect (p = 0.041). Post-hoc pairwise comparisons
(Wilcoxon signed-rank test) revealed that there was a significant difference between LFS and
HFS (p = 0.043) and a trend towards a difference between LFS and NoS (p = 0.08). HFS and
NoS, however, were not statistically different (p = 0.345).

Considering the performance in individual patients, the effect of stimulation condition
(HFS,LFS,NoS) was significant (p<0.05) in all (P1, P4, P6, P7, P8) but one patient (P3) in
which the effect did not reach significance (p = 0.102). The performance decrement for the LFS
relative to the NoS condition was present in four patients (P1, P3, P6, P8) tested with 8/10 Hz
and 60 Hz stimulation. In the one patient (P4) tested under 20 Hz and NoS conditions, a clear
performance decrement was seen for the 20 Hz stimulation (arguably a low frequency condi-
tion) relative to the NoS condition. Only P7 showed a performance pattern where LFS was

Fig 3. Contrast-threshold measures. Average contrast-threshold measures (over patients, n = 5) on fourteen successive staircase
runs under low-frequency (LFS, black), high-frequency (HFS, bright grey) and no stimulation (NoS, dark grey). Grand average (Gav)
threshold measures over all subjects and staircases are shown on the right side.

doi:10.1371/journal.pone.0155206.g003
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associated with reduced and HFS with increased contrast thresholds relative to NoS, respec-
tively. As visible in Fig 1 the electrode placement in P7 and P4 was slightly more caudal relative
to the other patients. The stimulation parameters in P7 were, however, not special. We can
therefore only speculate (see Discussion) about what accounts for the ‘reverse’ response pattern
in this patient.

Discussion
In this study we aimed at investigating whether DBS of the PPN influences visual discrimina-
tion performance as indexed by the threshold of detecting a Gabor grating embedded in visual
noise. We reasoned that PPN stimulation may influence discrimination performance, because
it is part of the RAS with widespread cholinergic connections to many subcortical and cortical
structures directly or indirectly involved in visual attention [2, 5, 6, 9]. We indeed observed
that DBS influenced discrimination performance in form of a decrement (elevated contrast
thresholds) under LFS in four patients. In one patient such decrement was also present, but did
not reach significance. One patient showed a performance increment under LFS.

The fact that discrimination performance decrements were seen under LFS instead of HFS
stimulation seems to be somewhat unexpected at first glance. Motor benefits including the
improvement of gait and postural deficits as well as faster response times are often seen under
lower ‘therapeutic’ frequencies around 20–35 Hz [19, 22, 49] (but see [50]). In the parkinsonian
monkey LSF of the PPN was shown to reduce akinesia [12]. Consistently, in the normal mon-
key high frequency stimulation (above 45Hz) caused akinesia, whereas low frequency stimula-
tion (10–30 Hz) produced positive motor symptoms [10]. Cognitive improvements, if
observed at all, were associated with LFS rather than HFS [51]. Explanations of the motor and
cognitive improvement with LFS of the PPN are limited by our scant knowledge about the
pathophysiological state of the PPN in PD [52, 53]. One possible explanation refers to overac-
tive inhibitory projections from the globus pallidus pars interna (GPi) in the parkinsonian state
[13, 52]. Those projections are assumed to cause over-inhibition of the PPN, with LFS relieving
this tonic inhibition. HFS in contrast would accentuate the inhibition presumably because
stimulation at 60Hz inactivates neurons by a depolarization block [3]. Following this model of
PPN dysfunction in PD, it is PPN activation instead of inactivation that deteriorates discrimi-
nation thresholds. Of course, based on the present data we can only speculate about the type of
modulations and pathways responsible for the observed response decrement under LFS. One
possibility is that the performance decrement is mediated mainly by GABAergig projections of
the PPN. GABAergig regions have been shown to segregate from cholinergic regions in the
rodent [54]. Moreover, a division into a predominantly inhibitory (GABAergic) rostral portion
and an excitatory (cholinergic/glutamatergic) caudal portion has been proposed to be a general
organization principle of the PPN [55]. Stronger GABAergic inhibition of the SC due to stimu-
lation in more rostral portions of the PPN could give rise to reduced visual discrimination per-
formance. This would also be consistent with the better performance under LFS in patient P7,
in which stimulation contacts were overall more caudal than in other patients showing perfor-
mance decrements under LFS. However, patient P4, in which contacts were also more caudal,
showed improved performance under LFS–a pattern that doesn’t align with this interpretation.

Alternatively, the performance decrement in the majority of our patients could arise from
activated cholinergic projections of the PPN. Direct cholinergic projections to sensory gating
structures like SC or LGN would then be unlikely to be responsible. Instead, the effect could be
brought about via indirect modulatory pathways where PPN stimulation causes a downstream
attenuation of the modulatory drive in attention gating structures. For example, the TRN, a
thalamic structure receiving strong cholinergic projections from the PPN [30], is known to
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display high background activity thereby providing inhibitory modulation of the LGN [32].
Increasing the tonic excitation of the TRN could reinforce its inhibitory impact on processing
in the LGN and consequently deteriorate discrimination performance.

As already mentioned, the present data cannot decide among the different ways of PPN’s
potential influence on visual attention and sensory selection. A much better understanding of
the physiological effects at the site of stimulation is required, and the pathways of PPN action
need to be detailed in humans (see caveats below). Nonetheless, the present observations sug-
gest that DBS of the PPN has an impact on visual selection processes at a rather elementary
perceptual level, and that this influence depends on stimulation frequency.

Caveats
While the present data provide some evidence for a specific influence of DBS on visual percep-
tual performance, they are at best preliminary and in demand of replication and further qualifi-
cation. First of all, while the reported effects could be statistically validated, the number of
subjects is fairly low. Confirming experimental evidence in a larger population of patients
would surely be desirable. Unfortunately, it turned out that in the small group of reported PD
patients DBS of the PPN was not associated with a significant improvement of gait and pos-
tural disturbances. Further surgical interventions in a larger patient group were therefore not
justified.

Aside from our limited knowledge about the exact way DBS influences neural activity in the
PPN, there are other limitations. One is the attainable specificity and precision of stimulating
the PPN. The PPN is a small midbrain region in comparison to the spatial extension of the
stimulation effect produced by the macroelectrode. It is therefore not unlikely that DBS in the
PPN region affects neighbouring structures to some extent. In humans the PPN overlaps with
the posterior part of the SN [56], so that it is presumably impossible to constrain stimulation to
the PPN without also altering the SN [3]. Hence, the observed effects on discrimination perfor-
mance may at least to some degree stem from a modulation of activity in the SN. The SN is a
structure projecting to frontal cortex (FEF) involved in the control of visual attention [41–43].
Furthermore, at its caudal extreme the PPN is bordered by the locus coeruleus (LC)—a norad-
renergic RAS nucleus with widespread efferent cortical and subcortical connectivity including
projections to thalamic nuclei. Importantly the LC has been proposed to contribute to the
selection of sensory information by modulating cortical and subcortical attention circuits [57].
Spill-over from PPN stimulation into the LC may therefore have effects on attention and
arousal and influence the discrimination performance assessed in the present experiment.
Finally as outlined in [3] 60 μs pulses as used in the present stimulation protocol may rather
activate passaging fibres than neurons in PPN which would make an interpretation of the ori-
gin of the modulation effect problematic.
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