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Abstract
Staphylococcus aureus infection is a leading cause of mortality and morbidity in community, hospital and live-stock sectors, 
especially with the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. To identify new drug molecules 
to treat MRSA patients, we have undertaken to search essential proteins that are indispensable for their survival but non-
homologous to human host proteins. The current study utilizes a subtractive genome and proteome approach to screen the 
possible therapeutic targets against S. aureus USA300. Bacterial essential genes are obtained from the DEG database and are 
compared to avoid cross-reactivity with human host genes. In silico analysis shows 198 proteins that may be considered as 
therapeutic candidates. Depending on their sub-cellular localization, proteins are grouped as either vaccine or drug targets or 
both. Extracellular proteins such as cell division proteins (Q2FZ91, Q2FZ95), penicillin-binding proteins (Q2FZ94, Q2FYI0) 
of the bacterial cell wall, phosphoglucomutase (Q2FE11) and lipoteichoic acid synthase (Q2FIS2) are considered as vaccine 
targets, and their epitopes have been mapped. Altogether, 53 drug targets are identified, which have shown similarity with the 
drug targets available in the DrugBank database. Predicted drug targets belong to the common metabolic pathways of MRSA, 
such as fatty acid biosynthesis, folate biosynthesis, peptidoglycan biosynthesis, ribosome, etc. Protein–protein interaction 
analysis emphasizing peptidoglycan biosynthesis reveals the connection between penicillin-binding proteins, mur-family 
proteins and FemXAB proteins. In this study, staphylococcal FemA protein (P0A0A5) is subjected to structure-based virtual 
screening for the drug repurposing approach. There are 20 residues missing in the crystal structure of FemA, and 12 of these 
residues are located at the catalytic site. The missing residues are modelled, and stereochemistry is checked. FDA approved 
drugs available in the DrugBank database have been used in virtual screening with FemA in search of potential repurposed 
molecules. This approach provides us with 10 drugs that may be used in the treatment of methicillin-resistant staphylococ-
cal mediated diseases. AutoDock 4.2 is used for in silico screening and shows a comparable inhibition constant (Ki) for all 
10 FDA-approved drugs towards FemA. Most of these drugs are used in the treatment of various cancers, migraines and 
leukaemia. Protein–drug interaction analysis shows that the drugs mostly interact with hydrophobic residues of FemA. 
Moreover, Tyr328 and Lys383 contribute largely to hydrogen bondings during interactions. All interacting amino acids that 
bind to the drugs are part of the active site cavity of FemA.

Keywords Staphylococcus aureus · Methicillin-resistance · USA300 · USA300_tch1516 · FemA protein · Repurposing 
drugs

Introduction

Staphylococcus aureus is a catalase-positive, facultative 
anaerobic bacterium responsible for causing a wide variety 
of pus-forming infections of the skin in humans (Carleton 
et al. 2004). S. aureus secretes a bunch of superantigens into 
blood called enterotoxins, thereby causing food poisoning, 
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toxic shock syndrome, etc. (Lina et al. 2004; Diekema et al. 
2001). S. aureus primarily colonizes in anterior nares of 
the nose, skins, guts and intestinal tracts (Kluytmans et al. 
1997; Sibbald et al. 2006). Up to 30% of the human popu-
lation is the relentless carrier of S. aureus in our society 
(Peacock et al. 2001). Pathogenicity islands of S. aureus 
express adhesin and coagulase that causes host blood clot-
ting, thereby making the bacteria resistant to phagocytic 
killing (Ko et al. 2013). Besides, S. aureus also produces 
hyaluronidase and lipases that are actively involved in drug 
resistance (Ibberson et al. 2014; Cadieux et al. 2014).

Among the drug-resistant strains, Methicillin-resist-
ant Staphylococcus aureus (MRSA) has been included in 
the global priority list of antibiotic-resistant bacteria by the 
World Health Organization (WHO), considering the high 
mortality and morbidity associated with invasive infections. 
MRSA became more threatening when it started showing 
resistance to multiple antibiotics, including penicillin, oxa-
cillin, amoxicillin, quinolones, macrolides, cephalosporins, 
tetracycline and chloramphenicol (Chopra and Roberts 2001; 
Weese and van Duijkeren 2010). Despite the diversity, ~ 70% 
of MRSA isolates belong to the major five sequence types 
(STs: ST22, ST8, ST5, ST239 and ST398) (Giulieri et al. 
2020). Nowadays, half of the S. aureus strains have become 
methicillin-resistant. Methicillin-susceptible S. aureus 
(MSSA) acquired the methicillin-resistant gene mecA by 
a mobile genetic element staphylococcus cassette chromo-
some (SCC) during the horizontal gene transfer and gave 
rise to the MRSA (Ito et al. 1999). The SCC element car-
ries the mecA designated as SCCmec, integrated into the 
chromosome of MRSA strains (Ito et al. 2001), and thirteen 
variants of SCCmec can be found to date (Kaya et al. 2018). 
It was immediately discovered that methicillin resistance is 
different from penicillin resistance in the MRSA phenotype 
as it does not involve direct inactivation of the antibiotics. 
Instead, the alternative penicillin-binding protein (PBP2a), a 
membrane-associated protein, interacts with β-lactam drugs 
and brings about resistance (Otero et al. 2013).

One of the Methicillin-resistant Staphylococcus aureus 
strains, USA300, first emerged in the late 1990s as a commu-
nity-associated MRSA (CA-MRSA) in the USA (Diekema 
et al. 2014). USA300 evolved from a less virulent and less 
resistant ancestor circulating in Central Europe around 
160 years ago (Strauß et al. 2017). Over time, it became 
a significant cause of skin and soft-tissue infections and 
added an overall burden to the MRSA disease (Talan et al. 
2011; Moran et al. 2006). Also, for its virulence, USA300 
has emerged as a major cause of healthcare-associated (HA) 
infections (Jenkins et al. 2009). Recently an outbreak of 
MRSA USA300 among HIV patients has been observed in 
Japan (Ikeuchi et al. 2021). Classical USA300 clone belongs 
to ST8 type and is characterized by specific genetic features 
like possession of SCCmecIV, Panton-Valentine leucocidin 

(PVL) and the arginine catabolic mobile element (ACME) 
(Planet et al. 2013). Although pulse-field-gel-electropho-
resis (PFGE) patterns initially defined USA300, S. aureus 
USA300 strain gave rise to several variants worldwide over 
the years (Laupland et al. 2008; Simor et al. 2010; Alva-
rez et al. 2006; Rajan et al. 2015; Takadama et al. 2020). 
USA300_TCH1516 represents the hypervirulent strain of 
USA300 lineage from the ST8 group of MRSA (Coe et al. 
2019).

Methicillin-resistant S. aureus is a threat to humankind. 
Despite all the clinical significance, there is a lack of readily 
available vaccines in the market against the S. aureus bacte-
ria. This bacterium expresses an extensive array of virulence 
factors such that a vaccine against any one of them may not 
be sufficient. Though there are many drugs available, but 
most of them are becoming ineffective with time. Hence 
it is required to find new drugs which may be used to treat 
infections caused by methicillin-resistant S. aureus. In this 
study, genomics and proteomics data of 14 virulent strains 
of Staphylococcus aureus have been used to understand their 
genetic features by an integrated interface for computational 
identification and visualization of genomic islands. Further, 
the metabolic pathway information of community-acquired 
methicillin-resistant S. aureus USA300_TCH1516 (KEGG 
organism: sax) strain is curated from Kyoto Encyclopaedia 
of Genes and Genomes (KEGG) in search of unique and 
common pathways between pathogen and host. Non-homol-
ogous essential proteins from the pathogen are screened 
against the DrugBank database for drug repurposing. These 
proteins have been docked with 1918 FDA-approved drugs 
obtained from the DrugBank database. This study presents 
the first approach to predict potential drug and vaccine tar-
gets for methicillin-resistant S. aureus USA300, applying 
the comprehensive subtractive genomics and proteomics 
computational approach (Fig. 1).

Materials and Methods

Evaluation of Genetic Diversity

Although S. aureus subsp. NCTC 8325 is the refer-
ence strain for the bacteria, but it may not represent the 
genetic features of every virulent strain. To understand 
the genetic features of all the S. aureus virulent strains, 
genomics and proteomics data of 14 virulent strains of 
Staphylococcus aureus; S. aureus RF122 (NC_007622), 
S. aureus  subsp. aureus COL (NC_002951), S. aureus 
subsp. aureus JH1 (NC_009632), S. aureus subsp. aureus 
JH9 (NC_009487), S. aureus subsp. aureus MRSA252 
(NC_002952), S. aureus subsp. aureus MSSA476 
(NC_002953), S. aureus subsp. aureus Mu3 (NC_009782), 
S. aureus subsp. aureus Mu50 (NC_002758), S. aureus 
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subsp. aureus MW2 (NC_003923), S. aureus subsp. 
aureus N315 (NC_002745), S. aureus subsp. aureus 
NCTC 8325 (NC_007795), S. aureus subsp. aureus str. 
Newman (NC_009641), S. aureus subsp. aureus USA300_
FPR3757 (NC_007793), and  S. aureus subsp. aureus 
USA300_TCH1516 (NC_010079) were obtained by man-
ual inspection from the virulence factor database (VFDB) 
(http:// www. mgc. ac. cn/ VFs/ main. htm) (Liu et al. 2019). 
To understand the existence and positions of the virulent 
factors in these 14 genomes, the genomic visualization 
of these curated virulence factors was performed using 
IslandViewer 4: an integrated interface for computational 
identification and visualization of genomic islands (http:// 
www. patho genom ics. sfu. ca/ islan dview er/) (Bertelli et al. 
2017). NCBI blastn (Johnson et al. 2008) was performed to 

check the percentage of genomic similarity of the other 13 
pathogenic strains with USA300_TCH1516 of S. aureus.

Identification of Metabolic Pathways

In search of unique and common pathways between patho-
gen and host, metabolic pathway information of commu-
nity-acquired methicillin-resistant S. aureus USA300_
TCH1516 (KEGG organism: sax) strain was curated from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG; 
https:// www. kegg. jp/) (Kanehisa et al. 2021) and manu-
ally compared with the human (KEGG organism: hsa) 
metabolic pathways. Information of proteins involved in 
both the unique and common pathways was extracted from 
the UniProt (Proteome ID: UP000000793) (https:// www. 

Fig. 1  The schematic workflow 
of subtractive genome proteome 
analysis for predicting potential 
therapeutic targets for Staphy-
lococcus aureus USA300. 
This study involves four steps, 
including Pre-screening, where 
genome, proteome data of S. 
aureus USA300_TCH1516 was 
retrieved from various data-
bases followed by Screening. 
Bacterial essential proteins are 
checked for non-homologous 
to the human host, and sub-
cellular localization analysis 
was performed in the Screening 
step. In the next step, B-cell 
epitopes were predicted for 
the extracellular proteins, and 
drug targets are identified from 
the pool of bacterial essential 
non-homologous proteins by 
searching in the DrugBank 
database for which the experi-
mental evidence of binding with 
proteins similar to the target 
proteins are available. The final 
step involves the Structure-
based drug designing and drug 
repurposing approach for an 
essential non-homologous pro-
tein selected based on protein–
protein interaction analysis

http://www.mgc.ac.cn/VFs/main.htm
http://www.pathogenomics.sfu.ca/islandviewer/
http://www.pathogenomics.sfu.ca/islandviewer/
https://www.kegg.jp/
https://www.uniprot.org/
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unipr ot. org/) (Bateman 2019) database and NCBI database 
(RefSeq: NC_010079.1; https:// www. ncbi. nlm. nih. gov) 
(O’Leary et al. 2016) for USA300_TCH1516.

Assessment of Essential Pathogenic Genes

Database of essential genes (DEG; http:// origin. tubic. org/ 
deg/ public/ index. php/ index) contains genomic information 
from bacteria, archaea and eukaryotic organisms necessary 
for maintaining their lives (Luo et al. 2014). Currently, 
30,878 essential bacterial genes are present in the database 
(Updated on 1st September 2020). To identify the essen-
tial proteins of the MRSA USA300_TCH1516 strain, the 
BLASTP analysis that is integrated with the DEG data-
base, was performed. Proteins with e-value < 0.0001 and 
bit score > 100 were considered as essential proteins for 
bacteria (Jadhav et al. 2013).

Identification of Non‑homologous Genes

Host proteins were avoided to circumvent side effects while 
searching for possible therapeutic targets. Initially, the meta-
bolic pathway information of the host and pathogen were 
collected and compared manually. To determine the non-
homologous genes, protein sequences were subjected to 
NCBI BLASTp server (https:// blast. ncbi. nlm. nih. gov/ Blast. 
cgi) (Boratyn et al. 2012). A similarity search of S. aureus 
essential genes was performed against the human proteome. 
Proteins with e-value < 0.005 and sequence similarity < 35% 
(Pearson 1995, 1996) were considered as non-homologous 
to the human host. This analysis is an essential determining 
step since it helps to avoid cross-reactivity with the host pro-
teome for designing vaccines and drugs (Sarkar et al. 2012).

Identification of Subcellular Localization of Target 
Proteins

In general, extracellular, periplasmic and surface proteins 
are treated as potential vaccine targets. Additionally, the 
inner membrane and cytoplasmic proteins are considered 
as drug targets (Solanki et al. 2019). Therefore, subcellular 
localization screening was performed for all the resultant 
target proteins using PSORTb v3.0 server (https:// www. 
psort. org/ psortb/) (Yu et al. 2010) and CELLO v2.5 server 
(http:// cello. life. nctu. edu. tw/) (Yu et al. 2006). Predicted 
extracellular proteins were further cross-verified for their 
transmembrane domain using TMHMM v2.0 server (http:// 
www. cbs. dtu. dk/ servi ces/ TMHMM/) (Moller et al. 2001). 
The extracellular and surface-expressed proteins so obtained 
were further subjected to antigenicity checking.

Evaluation of Antigenicity of Extracellular 
and Surface‑Expressed Proteins

Validating immunogenic protein targets is essential before 
vaccine designing. The VaxiJen v2.0 server (http:// www. 
ddg- pharm fac. net/ vaxij en/ VaxiJ en/ VaxiJ en. html) was used 
for computationally predicting the potential of a protein to 
induce antigenicity in the host where the threshold value 
was set to 0.4 (Doytchinova and Flower 2007). The target 
proteins with a higher value above the threshold limit were 
considered as immunogenic. The resultant antigenic proteins 
were then subjected to epitope mapping.

Prediction of Linear B‑Cell Epitopes of Antigenic 
Vaccine Targets

Proteins obtained from VaxiJen v2.0 were analysed for lin-
ear B-cell epitope prediction. In general, peptide vaccines 
are better than whole organisms or large proteins because 
peptide fragments confer a highly targeted immune response 
and avoid unnecessary antigenic load. Peptide vaccine 
only includes antigenic epitope despite using the complete 
antigen protein (Li et al. 2014). Epitope identification is a 
costly and time-consuming process as it requires experimen-
tal screening of large datasets of potential epitope candi-
dates. The B-cell epitope is a linear peptide fragment of 
the antigen that binds to the immunoglobulin or antibody 
(Sanchez-Trincado et al. 2017). B-cells recognize solvent-
exposed antigens through the B-cell receptors (Jespersen 
et al. 2019). Protein sequences of vaccine targets were used 
to predict B-cell epitopes using, artificial neural network-
based ABCpred server (http:// crdd. osdd. net/ ragha va/ abcpr 
ed/) (Saha and Raghava 2006), and three-dimensional struc-
ture-based BepiPred 2.0 server (http:// www. cbs. dtu. dk/ servi 
ces/ BepiP red/) (Jespersen et al. 2017) and IEDB antibody 
epitope prediction server (http:// tools. iedb. org/ main/ bcell/) 
(Vita et al. 2019) with an epitope threshold setting of 0.51. 
The most common epitopes from the three servers were then 
selected as vaccine targets.

Druggability Analysis of Essential Non‑homologous 
Proteins

The most reliable way to identify the druggability of proteins 
is to identify the similar proteins which can bind to the drug-
like compound (Hajduk et al. 2005). Non-homologous essen-
tial proteins were searched against the DrugBank database to 
find out the FDA-approved drugs in the DrugBank database 
(https:// go. drugb ank. com/) (Wishart et al. 2018) using the 
inbuilt BLAST tool. Druggability analysis was performed 
for all the essential non-homologous protein targets with 
default search parameters (e-value < 0.00001). DrugBank 

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov
http://origin.tubic.org/deg/public/index.php/index
http://origin.tubic.org/deg/public/index.php/index
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.psort.org/psortb/
https://www.psort.org/psortb/
http://cello.life.nctu.edu.tw/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://crdd.osdd.net/raghava/abcpred/
http://crdd.osdd.net/raghava/abcpred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.cbs.dtu.dk/services/BepiPred/
http://tools.iedb.org/main/bcell/
https://go.drugbank.com/
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database contains a comprehensive molecular informa-
tion about drugs, their mechanisms, their interactions and 
their targets. Based on this, hits found with DrugBank were 
considered as druggable targets with FDA-approved drugs, 
whereas others were considered as novel drug targets.

Protein–Protein Interactions (PPIs)

Peptidoglycan is the main component of S. aureus cell 
wall, a complex, three-dimensional mesh surrounding the 
entire cell (Vollmer et al. 2008). It maintains the cell shape, 
integrity and protects the bacteria; thereby, the biosynthetic 
machinery of peptidoglycan has been a preferred target for 
the discovery of antibacterials (Nikolaidis et al. 2014). To 
understand the involvement of proteins towards peptidogly-
can biosynthesis, protein–protein interaction (PPI) studies 
were performed. Thus, the essential non-homologous pro-
teins that were obtained from the previous analysis were 
accounted for PPI studies, and the peptidoglycan synthesis 
pathway was analysed further. This study provides informa-
tion about their potential roles in metabolic, biological and 
functional aspects. Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING v11.0) (https:// string- db. org/) 
(Szklarczyk et al. 2019) was used for mapping the interac-
tions between non-homologous target proteins to create an 
intra-species protein–protein interaction network.

Selection of Crystal Structure and Fixing Missing 
Residues

Drug resistance is governed by genomic factors that are 
involved in cell wall metabolism (Berger-Bächi and Tschier-
ske 1998); thereby, this study focused on targeting cell-wall 
biosynthesis proteins. Studies show that Staphylococcal 
FemXAB family proteins play a vital role in the later stages 
of peptidoglycan biosynthesis and may serve as suitable tar-
gets for therapeutic agents (Monteiro et al. 2019). Structure-
based virtual screening requires the crystal structure of the 
target protein. The crystal structure of the staphylococcal 
FemA protein was retrieved from the Protein Data Bank 
(https:// www. rcsb. org/) (Goodsell et al. 2020) under code 
1LRZ (Benson et al. 2002). The missing residues 209–220 
and 413–420 of FemA were fixed by Robetta (Kim et al. 
2004), phyre2 (Kelley et al. 2015) and SWISS-MODEL 
(Waterhouse et al. 2018). The quality of the model structures 
was validated using QMEAN (Qualitative Model Energy 
ANalysis) (https:// swiss model. expasy. org/ qmean/) (Benkert 
et al. 2011), prosa (https:// prosa. servi ces. came. sbg. ac. at/ 

prosa. php) (Wiederstein and Sippl 2007) and PROCHECK 
(Laskowski et al. 1993). The best model was optimized by 
200 steps steepest descent energy minimization using the 
Swiss-PdbViewer (Guex et al. 2009).

Structure‑Based Virtual Screening

The active site of FemA was analysed and screened for drug 
identification (Benson et al. 2002). The receptor structure 
was prepared for virtual screening by adding the polar hydro-
gen atoms and Kollman charges. One thousand nine hun-
dred and eighteen FDA-approved drugs were downloaded in 
SDF file format from DrugBank Database for screening. No 
ligand–bound FemA crystal structure is available in Protein 
Data Bank (PDB). So, it was necessary to proceed with the 
active site pocket for virtual screening. During ligand prepara-
tion, the prepareligand4.py python script supplied by the Auto-
Dock developers (Morris et al. 2009), was used. Open Babel 
was used to convert all drug compound files into PDBQT for-
mat (O’Boyle et al. 2011). A receptor grid-box was generated 
with grid box dimensions of 90 Å × 90 Å × 90 Å with centre at 
x = 42.075, y = 62.493, z = 90.597. AutoDock Vina (Trott and 
Olson 2009) was used for virtual screening of processed drugs 
against S. aureus FemA. Further, the top ten drugs obtained 
from the virtual screening were accounted for docking analysis 
using AutoDock 4.2 (Morris et al. 2009).

Molecular Docking

The receptor was subjected to pre-processing to be used in 
AutoDock 4.2 (Morris et al. 2009) for docking. Polar hydro-
gens followed by Kollman charges were added to FemA. 
Non-polar hydrogens were merged, and Gasteiger charges 
were added to the selected ligands using AutoDock 4.2. 
The same gridbox with a centre at x = 42.075, y = 62.493, 
z = 90.597 and dimensions of 90 Å × 90 Å × 90 Å with a 
grid space of 0.375 was used for molecular docking using 
the AutoDock 4.2 tool, which was earlier used in virtual-
screening. Lamarckian Genetic Algorithm (GA) was used to 
perform a total of 10 runs. Autodock estimates free energy 
of binding (∆G), which is the sum of the intermolecular 
energy (vdW + H-bond + desolv Energy + Electrostatic 
Energy), the internal energy, and the torsional energy minus 
the unbound system’s internal energy (Morris et al. 2008). 
AutoDock calculates the inhibition constant (Ki) value 
using the equation [Ki = exp(∆G/(R*T)]. The final result of 
docking was visualized by UCSF Chimera v1.15 (Pettersen 
et al. 2004), and the structures were analyzed manually by 
 LigPlot+ (Laskowski and Swindells 2011) to decrypt the 
receptor–ligand interactions.

https://string-db.org/
https://www.rcsb.org/
https://swissmodel.expasy.org/qmean/
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
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Results

Genomic Features of Pathogenic Strains

S. aureus USA300_TCH1516 strain (NC_010079) had 
a circular genome of ~ 2.87 Mbp (Supplementary Fig. 1) 
with ~ 32.7% GC content also contained 2,763 coding genes 
(Supplementary Table 1). The genome size of 14 strains 
ranged between 2.7 and 2.9 Mbp, and their GC content 
varied between 32.7 and 32.9% (Supplementary Table 1). 
IslandViewer4 presented the respective positions of curated 
virulence factors, homologs of virulence factors, curated 
resistance genes, homologs of resistance genes in S. aureus 
USA300_TCH1516 based on codon usage, dinucleotide bias 
and phylogenetically related genome information. Genome 
island visualization of all fourteen strains was in the sup-
plementary document (Supplementary Fig. 1).

Pathogenic USA300 Strain has 29 Unique 
Pathogenic Pathways

The KEGG database contained 337 metabolic pathways 
from human and 105 metabolic pathways from S. aureus 
USA300_TCH1516. Out of the 105 metabolic pathways, 29 
pathways were found to be unique to S. aureus USA300_
TCH1516 (Supplementary Table 2), and the remaining 76 
pathways were shared by both pathogen and host (Supple-
mentary Table 3).

Identification of 198 Essential Non‑homologous 
Pathogenic Proteins

Out of the 295 essential proteins present in the DEG data-
base, 198 essential proteins were identified as non-homol-
ogous to the host, thereby defined as “NON-HOST” (Sup-
plementary Table 4). Essential proteins possess a significant 
role in the pathogenicity and survival of the organism 
(Lewin et al. 2019). So, these 198 essential non-homologous 
proteins are very crucial for S. aureus-mediated pathogen-
esis. These proteins can be exploited as potential therapeutic 
candidates.

Identification of Eight Extracellular Proteins 
as Potential Vaccine Targets

Sub-cellular localization of protein plays a vital role in 
understanding the protein function, providing breakthrough 
information for drug designing and discovery. A total of 190 
cytoplasmic and inner membrane proteins were identified as 
drug targets, and eight extracellular proteins were identified 
as potential vaccine targets (Supplementary Table 4).

Identification of Seven Antigenic Extracellular 
Proteins

Antigenicity is the ability to be recognized explicitly by 
the antibodies generated due to the immune response to 
the given substance (Ilinskaya and Dobrovolskaia 2016). 
VaxiJen v2.0 provided the antigenicity information of the 
epitopes to understand the immunomodulatory effect of 
epitopes that were identified from immunogenic regions. 
Epitopes with a higher than VaxiJen cut-off value (0.4) were 
selected as potential epitopes, and their antigenicity values 
range from 0.5 to 0.8 (Supplementary Table 5). Out of 8 
extracellular proteins, seven proteins except Diadenylate 
cyclase (Q2FW92) meet the threshold value (> 0.4), and 
possess antigenicity (Table 2).

Prediction of Linear B‑Cell Epitopes in Extracellular 
Proteins

A total of seven antigenic extracellular proteins were iden-
tified from the bacterial membrane of S. aureus USA300_
TCH1516. Two cell division proteins (Q2FZ91, Q2FZ95), 
two penicillin-binding proteins (Q2FZ94, Q2FYI0) of 
bacterial cell wall, pentose phosphate pathway component 
phosphoglucomutase (Q2FE11), glycerolipid metabolism 
pathway component lipoteichoic acid synthase (Q2FIS2) 
and an uncharacterized protein; are the vaccine targets onto 
which B-cell epitopes were mapped (Table 1). Predicted 
epitopes fall into the solvent-accessible part of the proteins 
recognized by respective antibodies (Jespersen et al. 2019). 
Here, five anticipated epitopes are the mixtures of secondary 
structures such as helix and coil (cell division protein DivIB, 
penicillin-binding protein-1 and phosphoglucomutase), 
β-sheet and coil (penicillin-binding protein-2). However, 
lipoteichoic acid synthase epitope lies only in coil structure, 
and cell division protein ftsL lies only in a helical structure. 
At most penicillin-binding protein-2 and lipoteichoic acid 
synthase crystal structures are available in Protein DataBank 
with PDB ID: 3DWK and 2W5Q, respectively.

Identification of 53 Bacterial Essential 
Non‑homologous Proteins as Targets for Drug 
Repurposing

This study considered the importance of essential non-
homologous characteristics of proteins, thereby reduced 
the number of prioritized sequences as therapeutic tar-
gets. Therefore, the comparative computational genom-
ics approach was implemented here to shortlist potential 
drug targets stepwise. Sequence similarity search with all 
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available drug targets in the DrugBank database provided 
53 prioritized drug targets within the USA300_TCH1516 
proteome (Table 2). FDA-approved drugs for which the 
experimental evidence of binding with proteins similar to 
S. aureus was available in the DrugBank database. All these 
prioritized targets belonged to the common metabolic path-
ways of MRSA, such as fatty acid biosynthesis (Q93QD4, 
A8Z088, Q6GI75), folate biosynthesis (Q2FY51, Q2G0Q7, 
Q2FXR9), peptidoglycan biosynthesis (Q2FZ94, Q2FYI0, 
A8Z4Y6, A8Z012), and ribosome (Q2FEP5, A8YZP4, 
A8Z2N6, A8YZN7), etc.

Peptidoglycan Biosynthesis Proteins as Drug Targets

Cellular and molecular life depends on a complex network 
of interactions between the biomolecules. Among these 
interactions, protein–protein associations are fundamental 
due to their versatility, specificity and adaptability. Resultant 
198 essential non-homologous proteins generated a complex 
interaction network for S. aureus USA300_TCH1516 pro-
teins (Supplementary Fig. 2). This study was emphasized 
on proteins involved with antibiotic resistance, thereby 
the peptidoglycan biosynthesis protein cluster was exclu-
sively analysed (Fig. 2). In this network, it was found that 
penicillin-binding protein 2 (pbp2) was interacting with the 
staphylococcal FemA (P0A0A5), FemB (P0A0A8) and the 
FemX (Q2FEM9). Pbp2 (Q2FYI0) was also found to be 

interacting with murB to murG, mraY and ddl proteins in the 
multi-node network. Ddl and Mur family proteins are crucial 
for peptidoglycan synthesis, thereby found interacting with 
pbpA (Q2FZ94), another penicillin-binding protein encoded 
by the pbpA gene. Protein pbp2 was indirectly involved in 
Biological processes (GO) cell division (GO: 0051301) and 
cell cycle mechanisms (GO: 0007049). Mur family proteins 
participated in the peptidoglycan biosynthesis process (GO: 
0009252), regulation of cell shape (GO: 0008360), and cell 
wall organization (GO: 0071555). The mraY (A8Z3M3) and 
ddl (A8Z4Y6) proteins were crucial players of the pepti-
doglycan biosynthesis pathway (00550) and the vancomycin 
resistance pathway (01502). Both pbp2 and pbpA proteins 
manifested a combined role in peptidoglycan biosynthesis 
(00550) and β-lactam resistance (01501).

Homology Model of Staphylococcal FemA

Phyre2 used a one-to-one threading approach, whereas 
Robetta utilized comparative modelling using the crystal 
structure of FemA (PDB: 1LRZ). The best structure was pro-
vided from each server based on their scoring function. Each 
structure was checked for its reliability based on QMEAN 
score, Prosa Z-score and Ramachandran plot analysis. A 
more positive QMEAN score indicated a better model after 
evaluating the quality of a protein model. Prosa evaluated 
the model structure quality by scanning and comparing them 

Table 1  Vaccine targets with mapped epitopes against S. aureus USA300_TCH1516 strain

Seven extracellular proteins are selected for epitope prediction after checking their antigenicity

Sl. Protein Name Gene UniProt Pathway VaxiJen value Epitope Structure

1 Cell division protein DivIB divIB Q2FZ91 Sax04112 Sulfur relay system 0.70 NNHVSTSKI No
2 Hypothetical protein – Q2G0R4 Unknown 0.68 RDDYYLSNKGE No
3 Penicillin-binding protein 1 pbpA Q2FZ94 Sax00550 Peptidoglycan biosyn-

thesis
Sax01100 Metabolic pathways
Sax01501 β-Lactam resistance

0.63 KMKSWYERFGFGKS No

4 Penicillin-binding protein 2 pbp2 Q2FYI0 Sax00550 Peptidoglycan biosyn-
thesis

Sax01100 Metabolic pathways
Sax01501 β-Lactam resistance

0.58 SSYQVDGSTFRNYDTK 3DWK

5 Lipoteichoic acid synthase ltaS Q2FIS2 Sax00561 Glycerolipid metabolism
Sax01100 Metabolic pathways

0.50 KTFWNRDQVYKHFG 2W5Q

6 Phosphoglucomutase pgcA Q2FE11 Sax00010 Glycolysis/Gluconeogen-
esis

Sax00030 Pentose phosphate 
pathway

Sax00230 Purine metabolism
Sax00500 Starch and sucrose 

metabolism
Sax01100 Metabolic pathways
Sax01110 Biosynthesis of secondary 

metabolites

0.47 FSSVQSANPEDHRAFD No

7 Cell division protein FtsL ftsL Q2FZ95 Unknown 0.75 IDKQSSENSA No
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with the crystal structures available in PDB. Based on the 
QMEAN and Prosa Z-score, the best model was predicted 
by Robetta (Supplementary Table 6).

Drug Binding with Staphylococcal FemA

Top ten hits were obtained from virtual screening based 
on their binding energies to the receptor (Fig.  3). All 
drugs had binding energy of more than − 11.0 kcal/mol 

(Table 3). These repurposing drugs are used to treat a wide 
range of diseases such as hyponatremia, migraine head-
aches and many types of cancers; Irinotecan in colorectal 
cancer (Fujita et al. 2015), Conivaptan in hyponatremia 
(Ghali 2009), Dutasteride in benign prostatic hyperplasia 
(Wu and Kapoor 2013), Midostaurin in acute myeloid leu-
kaemia (Fischer et al. 2010), Rupatadine in symptomatic 
relief (Keam and Plosker 2007), Ergotamine, Rimegepant 
and Dihydroergotamine in migraine (Tfelt-Hansen 2000; 

Table 2  Predicted drug targets against S. aureus USA300_TCH1516 strain

Essential non-homologous proteins are introduced to the DrugBank database search whether FDA-approved drugs are available for which the 
experimental evidence of binding with proteins similar to the target proteins

Sl No. UniProt Protein name Sl No. UniProt Protein name

1 A8Z2L6 Acetyl-coenzyme A carboxylase carboxyl trans-
ferase subunit β (accD)

28 Q2FYI0 Penicillin-binding protein 2 (pbp2)

2 Q2G268 Coenzyme A biosynthesis bifunctional protein 
(coaBC)

29 Q2G2Q2 Riboflavin biosynthesis protein

3 Q2FZY5 Cysteine desulfurase 30 A8YZN7 50S ribosomal protein L10 (rplJ)
4 A8Z4Y6 D-alanine–D-alanine ligase (ddl) 31 Q2FEP6 50S ribosomal protein L16 (rplP)
5 Q93QD4 Malonyl CoA-acyl carrier protein transacylase 

FabD (fabD)
32 Q2FEP4 50S ribosomal protein L22 (rplV)

6 A8Z088 3-oxoacyl-[acyl-carrier-protein] synthase 3 FabH 
(fabH)

33 Q2FER5 DNA-directed RNA polymerase subunit alpha 
(rpoA)

7 Q6GI75 Enoyl-[acyl-carrier-protein] reductase [NADPH] 
FabI (fabI)

34 A8YZP0 DNA-directed RNA polymerase subunit β (rpoB)

8 A8Z536 Isopentenyl-diphosphate delta-isomerase Fni (fni) 35 Q2FEP5 30S ribosomal protein S3 (rpsC)
9 Q2G0Q5 2-amino-4-hydroxy-6-hydroxymethyl-dihydro 

pteridine pyrophosphokinase
36 Q2FEN8 30S ribosomal protein S10 (rpsJ)

10 Q2G0Q7 Dihydropteroate synthase 37 A8Z333 30S ribosomal protein S13 (rpsM)
11 Q2FXR9 Dihydrofolate synthase (folC) 38 P0A0J0 RNA polymerase sigma factor SigA (sigA)
12 P0A040 Glutamine synthetase (glnA) 39 Q2FZY7 Fe-S cluster assembly ATPase SufC (sufC)
13 A8Z4T2 60 kDa chaperonin GroEL (groL) 40 Q2FJ01 Teichoic acids export ATP-binding protein TagH 

(tagH)
14 Q5HJZ0 DNA gyrase subunit A (gyrA) 41 Q2G041 Thioredoxin-disulfide reductase
15 Q2FYG6 Heptaprenyl diphosphate syntase component II 42 P0A017 Dihydrofolate reductase (folA)
16 A8Z012 UDP-N-acetylenolpyruvoylglucosamine reductase 

(murB)
43 Q2FIB3 Glucose-6-phosphate isomerase (pgi)

17 A8Z4D3 Nicotinate-nucleotide adenylyltransferase (nadD) 44 A8YZP4 30S ribosomal protein S7 (rpsG)
18 A8Z2S7 Ammonia-dependent NAD (+) synthetase (nadE) 45 A8Z1J1 D-alanine–D-alanyl carrier protein ligase (dltA)
19 Q2G078 Ribonucleoside-diphosphate reductase subunit 

alpha (nrdA)
46 Q2FY51 Dihydrolipoyl dehydrogenase

20 Q2G077 Ribonucleoside-diphosphate reductase subunit β 
(nrdF)

47 Q2FXN4 NADP-dependent isocitrate dehydrogenase

21 A8Z002 Ribonucleotide-diphosphate reductase subunit 
gamma (nrdI)

48 Q2FE05 UTP–glucose-1-phosphate uridylyltransferase 
(gtaB)

22 Q2G0W2 NADH dehydrogenase subunit 5 49 P64126 Ferrochelatase (cpfC)
23 Q2FYS4 DNA topoisomerase IV subunit A (parC) 50 Q2FE11 Phosphogluco mutase (pgcA)
24 P0C1S7 DNA topoisomerase IV subunit B (parE) 51 A8Z2N6 30S ribosomal protein S4 (rpsD)
25 Q2FZ94 Penicillin-binding protein 1 (pbpA) 52 A8Z343 30S ribosomal protein S8 (rpsH)
26 A8Z1R9 Phenylalanine–tRNA ligase subunit alpha (pheS) 53 A8Z344 30S ribosomal protein S14 type Z (rpsZ)
27 Q2FHU2 Phenylalanine–tRNA ligasesubunit β (pheT)
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Lipton et al. 2019; Schürks 2009) and Antrafenine as an 
anti-inflammatory (Berry et al. 1983).

Analysis of Molecular Interactions Between FemA 
and Drugs

AutoDock 4.2 generates a bunch of energy values (binding 
energy, ligand efficiency; inhibition constant; intermolecular 
energy; Van der Waals, electrostatic and total internal energy) 
using a Lamarckian program. The binding energy and inhi-
bition constant (Ki) indicate the overall strength of a given 

predicted interaction calculated by AutoDock 4.2 (Matossian 
et al. 2014). Molecular docking furnished further insights into 
the ligand–receptor interactions by providing information 
about the binding affinity as well as inhibition constant (Ki) for 
all 10 FDA-approved drugs. Docking results were analyzed to 
comprehend their interaction with amino acids using  LigPlot+ 
(Table 4). Structure-based virtual screening and docking were 
attempted focusing on the pocket of 1B domain of staphylo-
coccal FemA that is the only active site according to the litera-
ture (Benson et al. 2002). While analyzing the affinity of drugs 
for the receptor, it was found that Irinotecan possesses binding 

Fig. 2  The protein–protein interaction (PPI) network of essential bac-
terial non-homologous proteins involved with peptidoglycan biosyn-
thesis. Penicillin-binding proteins (pbp2, pbpA) are found interacting 
directly or indirectly with Ddl, FemXAB and Mur-family proteins to 
maintain the cell-wall integrity and render antibiotic resistance. The 
FemA protein contributes a high-level of methicillin resistance in S. 

aureus, thereby could be a potential therapeutic target to combat the 
MRSA USA300. Black lines indicate the co-expression, the blue line 
indicates the gene co-occurrence, the green line indicates gene neigh-
bourhood, the red line indicates gene fusions.  Figure is generated 
using STRING (Color figure online)

Fig. 3  The crystal structure of staphylococcal FemA curated from 
Protein Data Bank (PDB ID: 1LRZ). a Surface model of the cata-
lytic pocket. b Distribution of screened FDA-approved drugs in the 
catalytic pocket after the virtual screening. Grey ribbon represents the 

active site region of the protein, and grey sticks correspond to the cat-
alytic pocket residues. Ten screened drugs are represented using the 
coloured sticks of red, lime green, forest green, salmon, magenta, hot 
pink, yellow, blue, marine and cyan (Color figure online)
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energy (B.E.) of − 11.58 kcal/mol with the FemA, the highest 
binding energy among all selected drugs (Table 3). Usually, 
the smaller the inhibition constant (Ki) value corresponds to a 

more significant binding affinity, and interestingly Irinotecan 
also manifests the lowest inhibition constant (Ki). Besides, the 
highest number of hydrophobic interactions and the formation 

Table 3  List of repurposing drugs targeting S. aureus femA protein

These FDA-approved drugs are already clinically proven to treat various cancers, migraine and leukaemia, etc. Docking with AutoDock 4.2 ren-
ders the information about affinity as well as inhibition constant (Ki) for all 10 FDA-approved drugs towards the FemA protein.. Out of 10 drugs, 
7 drug molecules show binding energy of more than -10.0 kcal/mol

DrugBank code Drug name AutoDock Vina
ΔG (kcal/mol)

AutoDock 4.2
ΔG (kcal/mol)

AutoDock 4.2
Inhibition constant 
(Ki) (nM)

Chemical structure

DB01126 Dutasteride − 11.70 − 9.88 57.58

DB06595 Midostaurin − 11.50 − 10.62 16.51

DB14703 Dexamethasone metasul-
fobenzoate

− 11.50 − 10.75 13.15

DB00696 Ergotamine − 11.30 − 10.54 18.88

DB11614 Rupatadine − 11.30 − 10.21 32.78

DB00762 Irinotecan − 11.20 − 11.58 3.23

DB12457 Rimegepant − 11.20 − 9.97 49.25

DB00320 Dihydroergotamine − 11.10 − 10.10 39.67

DB00872 Conivaptan − 11.10 − 10.34 26.25

DB01419 Antrafenine − 11.10 − 7.36 4050



2745International Journal of Peptide Research and Therapeutics (2021) 27:2735–2755 

1 3

Ta
bl

e 
4 

 In
te

ra
ct

io
ns

 b
et

w
ee

n 
am

in
o 

ac
id

s a
nd

 id
en

tifi
ed

 d
ru

gs
 p

re
di

ct
ed

 th
ro

ug
h 

th
e 

an
al

ys
is

 o
f A

ut
oD

oc
k 

4.
2 

do
ck

in
g 

re
su

lts
 u

si
ng

  L
ig

Pl
ot

+

Ph
e1

49
, T

ry
32

7,
 T

yr
32

8,
 P

he
36

3,
 T

yr
36

4 
an

d 
Ly

s3
83

 a
re

 th
e 

m
os

t c
om

m
on

 a
m

in
o 

ac
id

s 
th

at
 s

ho
w

 in
te

ra
ct

io
ns

 w
ith

 th
e 

hi
gh

es
t n

um
be

r o
f t

he
 d

ru
gs

. A
lo

ng
 w

ith
, T

yr
32

8 
an

d 
Ly

s3
83

 s
ho

w
ed

 
th

e 
hi

gh
es

t h
yd

ro
ge

n 
bo

nd
 in

te
ra

ct
io

ns
. A

ll 
in

te
ra

ct
in

g 
am

in
o 

ac
id

s t
ha

t b
in

d 
to

 th
e 

dr
ug

s a
re

 p
ar

t o
f t

he
 a

ct
iv

e 
si

te
 c

av
ity

A
m

in
o 

ac
id

s
D

ut
as

te
rid

e
M

id
os

ta
ur

in
D

ex
am

et
ha

so
ne

 
m

et
as

ul
fo

be
nz

oa
te

Er
go

ta
m

in
e

Ru
pa

ta
di

ne
Ir

in
ot

ec
an

R
im

eg
ep

an
t

D
ih

yd
ro

er
-

go
ta

m
in

e
C

on
iv

ap
ta

n
A

nt
ra

fe
ni

ne

Ph
e1

49
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
A

sp
15

0
✓

✓
✓

✓
✓

Pr
o1

51
✓

✓
Le

u1
53

✓
✓

✓
✓

G
ln

15
4

✓
✓

Ile
15

5
✓

✓
✓

✓
Ly

s2
15

✓
✓

✓
A

la
21

6
✓

✓
✓

✓
✓

✓
Ph

e2
17

✓
✓

✓
✓

✓
✓

✓
A

la
21

8
✓

✓
A

sp
22

1
✓

✓
✓

Se
r3

14
✓

A
la

31
5

✓
Ty

r3
27

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

Ty
r3

28
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
A

la
32

9
✓

✓
✓

✓
✓

✓
✓

✓
G

ly
33

0
✓

✓
✓

✓
✓

✓
✓

G
ly

33
1

✓
✓

✓
✓

Th
r3

32
✓

✓
✓

Se
r3

42
✓

✓
✓

G
ln

34
6

✓
✓

✓
✓

Ph
e3

63
✓

✓
✓

✓
✓

✓
✓

✓
✓

Ty
r3

64
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
G

ly
36

5
✓

✓
✓

✓
✓

✓
✓

A
sp

37
6

✓
✓

✓
✓

Va
l3

79
✓

✓
✓

✓
✓

✓
Ph

e3
82

✓
Ly

s3
83

✓
✓

✓
✓

✓
✓

✓
✓

✓



2746 International Journal of Peptide Research and Therapeutics (2021) 27:2735–2755

1 3

of four hydrogen bonds (H-bond), implying Gly330, Thr332, 
Ser342 and Gln346 between drug-receptor, probably justi-
fied the higher binding energy among all the predicted drugs 
(Figs. 4a and 5a). Dexamethasone metasulfobenzoate showed 
the second-highest binding energy, i.e., − 10.75 kcal/mol, 
with a lower inhibition constant value (Table 3). Other than 
Irinotecan, Dexamethasone metasulfobenzoate also possessed 
four H-bonds engaging Leu153, Tyr327, Gly365 and Lys383, 
indicating higher binding energy (Figs. 4b and 5b). Midostau-
rin exhibited the binding energy of − 10.62 kcal/mol though 
a single H-bond formed with the receptor implying Lys383, 
but the higher number of hydrophobic interactions explained 
the higher binding energy in drug–protein interaction (Figs. 4c 
and 5c). Molecular interaction analysis showed that Ergot-
amine possessed three H-bonds involving Asp150, Tyr328 
and Lys383, and several hydrophobic interactions (Figs. 4d 
and 5d) leading to the binding energy of − 10.54 kcal/mol. 
Conivaptan possessed four H-bonds involving the residues 
Ala216, Tyr364, Gly365 and Lys383 with a binding energy 
of − 10.34 kcal/mol (Supplementary Figs. 6a and 7a). Rupata-
dine showed the binding energy of − 10.21 kcal/mol, engaging 

Tyr328, Phe363 and Lys383 for H-bonding and several other 
residues in hydrophobic interactions (Supplementary Figs. 6b 
and 7b). In the case of Dihydroergotamine, three hydrogen 
bonds with the residues Asp150, Tyr328 and Gly330 and 
several hydrophobic interactions togetherly helped to achieve 
the binding energy of − 10.10 kcal/mol (Supplementary 
Figs. 6c and 7c). Rimegepant possessed two H-bonds involv-
ing the residues Tyr328 and Lys383 and several hydrophobic 
interactions that combinedly showed the binding energy of 
− 9.97 kcal/mol (Supplementary Figs. 6d and 7d). Dutasteride 
manifested two hydrogen bonds implying the residues Tyr328 
and Ser342 of FemA, and possessed the binding energy of 
− 9.88 kcal/mol (Supplementary Figs. 6e and 7e). Antrafe-
nine exhibited two H-bonds engaging Tyr328 and Lys383 
and less hydrophobic interactions, thereby showing the bind-
ing energy of − 7.36 kcal/mol (Supplementary Figs. 6f and 
7f), which is the lowest among all. Visual analysis of docked 
complexes displayed that Phe149, Tyr327, Tyr328, Phe363, 
Tyr364 and Lys383 are the most common amino acids that 
show interactions with most of the drugs (10, 10, 10, 9, 10 
and 9 drugs respectively) and followed by Ala329, Gly330 

Fig. 4  Docking of S. aureus FemA protein with ten FDA-approved 
drugs that are selected from the structure-based virtual screening. a 
Molecular interactions of Irinotecan with FemA protein. b Molecular 
interactions of Dexamethasone metasulfobenzoate with FemA pro-
tein. c Molecular interactions of Midostaurin with FemA protein. d 
Molecular interactions of Ergotamine with FemA protein. Grey rib-

bons represent the FemA protein, whereas yellow ball and stick mod-
els correspond to the drug molecules binding to the only active site. 
Hydrogen bonds between receptor and protein are represented using 
orange lines, and amino acids involved in the interaction are labelled. 
Figures are generated using UCSF Chimera v1.15 (Color figure 
online)
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and Gly365 (8, 7 and 7 drugs respectively). Besides, Tyr328 
and Lys383 showed the highest hydrogen bond interactions. 
Out of 10 drugs, 7 drug molecules possessed binding energy 
of more than − 10.0 kcal/mol (Table 3). All interacting amino 
acids binding to the drugs were found to be accumulated in the 
active site cavity. It was observed that the lower the Ki con-
centration, the higher the binding energy towards the recep-
tor. And low-affinity binding (high Ki level) implied that a 
relatively high ligand concentration was required for interac-
tion. Besides, hydrophobic interactions were abundant in the 
ligand–receptor binding, and all hydrophobic residues were 
part of domain 1B, the only active site of FemA.  

Discussion

Several significant variants of CA-MRSA in the spatial and 
temporal population structures distributed globally with 
different clones dominate different regions globally. But 
USA300, a multi-locus sequencing (MLST) sequence type 
(ST) 8-MRSA-IV strain, is relentlessly found worldwide. 
The CA-MRSA clone ST8 increases virulence in the animal 
model and clinical incidents of several diseases (Chua et al. 
2014). Even in vitro studies showed increased cytotoxicity 
of these clones against human macrophages (Laabei et al. 
2015). Staphylococcus aureus is very notorious for its ability 

Fig. 5  Visual representation of 
hydrogen bonds and hydropho-
bic interactions of selected drug 
compounds with FemA protein 
using  LigPlot+. a Irinotecan. b 
Dexamethasone metasulfoben-
zoate. c Midostaurin. d Ergot-
amine. The olive green dotted 
lines represent the hydrogen 
bond, whereas brick red stella-
tions correspond to the hydro-
phobic interactions. Olive green 
labelled amino acids involve 
hydrogen bonding and amino 
acids with brick red stellations 
representing the hydrophobic 
interacting residues in respec-
tive ligand–receptor connection 
surfaces (Color figure online)
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to become resistant to antibiotics. Unfortunately, very few 
antibiotics have been introduced in the past 30 years repre-
senting novel chemical classes (Silver 2011). The resistance 
rates of S. aureus and multidrug-resistant strains are increas-
ing gradually, making the clinical anti-infective treatment 
more difficult. The prospects for badly-needed new drugs to 
combat against staphylococcal bacteremia with novel mech-
anisms of action need to be assessed. For broader success, 
vaccine coverage is crucial to interrupt disease transmission.

Virulent factors and essential proteins of S. aureus 
USA300_TCH1516 and USA300_FPR3757 of USA300 
lineage are reported to date. USA300_TCH1516 isotype rep-
resents the hypervirulent strain of MRSA USA300 lineage 
(Coe et al. 2019). Understanding the evolutionary relation-
ships among pathogenic genomes is vital to target the viru-
lent factors of the methicillin-resistant S. aureus. BLASTn 
analysis shows that the genomic similarity among all these 
strains ranges between 98 and 100% (Table 1). USA300_
TCH1516 possesses 2920 genes and 2763 proteins though S. 
aureus JH1 hosts the highest number of genes and proteins 
(2957 genes, 2808 proteins) among all pathogenic S. aureus 
strains. Besides, the RF122 strain possesses the smallest 
gene size, genes and proteins during comparison, but inter-
estingly RF122 contains the highest number of pseudogenes 
(Supplementary Table 1). This study identifies 29 unique 
pathways such as streptomycin biosynthesis, peptidoglycan 
biosynthesis, β-lactam resistance, vancomycin resistance, 
two-component system and quorum sensing etc. Other than 
that, 76 common pathways are also identified, which are 
shared by USA300_TCH1516 strain and human. It is well 
known that essential proteins possess a significant role in 
the pathogenicity and survival of the organism (Lewin et al. 
2019). Hence, the objective of this study lies in finding out 
the essential genes of pathogenic S. aureus that have signifi-
cant dissimilarity with the human genome. The DEG data-
base contains information about 295 essential pathogenic 
genes for the S. aureus USA300_TCH1516 strain. Avoiding 
the cross-reactivity of potential therapeutics against human 
proteins is highly preferred. Upon sequence alignment of 
295 essential proteins with the human proteome, 198 patho-
genic proteins have been identified that are non-homologous 
to the host (Supplementary Table 2). Several cell division 
proteins, ribosomal proteins, uncharacterized proteins, cell-
wall biosynthesis proteins and proteins associated with DNA 
replication are recognized by this study. Among these, only 
WalR (A8YYU1), a transcriptional regulatory protein, 
belongs to the unique metabolic pathway (Two-component 
system; sax02020), thereby all other essential non-homol-
ogous proteins share common metabolic pathways with the 
human. All these essential non-host proteins are appraised as 
potential therapeutic targets towards an antibiotic approach.

This work focuses on identifying potential drug targets 
along with immunogenic vaccine targets. Sub-cellular 

localization of protein plays a significant role in understand-
ing the protein functions essential for therapeutics discov-
ery and development (Caragea et al. 2010). Extracellular, 
periplasmic and surface proteins are considered potential 
vaccine targets, whereas inner membrane and cytoplasmic 
proteins are considered drug targets (Solanki et al. 2019). 
Several bacterial systems are recently targeted for epitope 
mapping with this approach (Ain et al. 2018; Hizbullah 
et al. 2018; Ehsan et al. 2018). In this context, the sub-cel-
lular localization study defines 175 cytoplasmic proteins, 
15 inner membrane proteins and 8 extracellular proteins 
(Supplementary Table 2). Vaccine development requires 
the prediction of the B-cell epitope, the antigen portion that 
binds to the antibody. With that purpose, immunogenicity 
verification of B-cell epitopes is the first stage in vaccine 
design and development (Zaharieva et al. 2019). Out of 8 
extracellular proteins, 7 proteins except for Diadenylate 
cyclase (Q2FW92) meet the threshold value (> 0.4), and 
hence they possess antigenicity (Supplementary Table 5). 
Usually, B-cell epitope length varies from 5 to 20 amino 
acids. Predicted epitopes have the length ranging from 9 to 
16 residues, and fall in the exposed region of extracellular 
proteins, which are the main criteria for being considered 
as epitopes. The cell division proteins (Q2FZ91, Q2FZ95), 
penicillin-binding proteins (Q2FZ94, Q2FYI0) of bacte-
rial cell wall, pentose phosphate pathway component phos-
phoglucomutase (Q2FE11), and glycerolipid metabolism 
pathway component lipoteichoic acid synthase (Q2FIS2) 
are essential for the survival of the pathogen and thereby 
predicted to have B-cell epitopes in this study. Penicillin-
binding proteins (Q2FZ94, Q2FYI0) are involved in the pep-
tidoglycan biosynthesis and β-Lactam resistance and meta-
bolic pathways. Phosphoglucomutase (Q2FE11) is found 
present in glycolysis, purine metabolism, pentose phosphate 
pathway and metabolic pathways etc. It is observed that 
the majority of these proteins (Penicillin-binding proteins, 
phosphoglucomutase and lipoteichoic acid synthase) are 
important players of metabolic pathways. However, path-
way information is not available for cell division protein 
FtsL (Q2FZ95) and an uncharacterized protein (Q2G0R4). 
Phosphoglucomutase and penicillin-binding proteins have 
been considered as potential vaccine targets in other bacte-
rial systems (Buchanan et al. 2005; Rashid et al. 2017; Shah 
et al. 2021). Although immunoinformatics approaches were 
established to identify potential epitopes from the pathogens, 
some computationally predicted epitopes may not be opti-
mally immunogenic in vivo. Therefore, the requisition is to 
test the predicted epitopes to ensure that they can generate 
B-cell responses.

The druggability of each non-host essential protein of S. 
aureus USA300_TCH1516 is identified by sequence simi-
larity to the targets of FDA-approved drugs using the Drug-
Bank database. This approach reduces the testable proteins 
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to 53 and delivers a list of FDA-approved drugs from the 
DrugBank that can bind to the target proteins of the patho-
gen. However, the protein sequence similarity search has 
limitations in such a way that it does not assure the bind-
ing regions identicalness of the identified similar proteins. 
Thereby, predicted targets are further needed to be validated 
through clinical experiments. Many specific drug targets 
that are identified from the common metabolic pathways 
like cysteine desulfurase (Q2FZY5), D-alanine-D-alanine-
ligase (A8Z4Y6), Malonyl CoA-acyl carrier protein transac-
ylase (Q93QD4), Dihydropteroate synthase, Dihydrofolate 
reductase (Q2G0Q7), Glutamine synthetase (P0A040), ABC 
transporter, and Penicillin-binding proteins, ribosomal pro-
teins, etc. It is seen that some of these proteins have been 
targeted in several other pathogenic bacteria to overcome 
survivability and drug resistance (Giordano et al. 2018; 
Prosser and de Carvalho 2013; Zhang et al. 2007; Liu et al. 
2006; Kumar et al. 2018; Rehberg et al. 2019; Levy et al. 
2008; He et al. 2020; Cui et al. 2019). So, targeting these 
essential non-host proteins in MRSA USA300 may pave the 
way to discovering new potential antibacterial therapeutics 
that can compromise the survivability of the drug-resistant 
S. aureus.

The clusters of peptidoglycan biosynthesis render a brief 
idea about the proteins responsible for antibiotic resistance. 
Peptidoglycan is the major heteropolymer of the bacterial 
cell wall that consists of alternate units of N-acetylglucosa-
mine (GlcNAc) and N-acetylmuramoyl-peptides (Mur-
NAc-peptide), thereby plays an essential role to protect the 
bacteria, maintaining characteristic cell shape and many 
more. Biosynthesis of cell-wall peptidoglycan starts with 
the formation of UDP-GlcNAc from fructose-6-phosphate, 
followed by the formation of UDP-MurNAc-pentapeptide 
from UDP-GlcNAc. In this study, Penicillin-binding protein 
Pbp2 and PbpA are identified interacting with femXAB fam-
ily protein, mur-family proteins, Ddl and MraY etc. These 
bacterial essential proteins are always considered potential 
therapeutic targets for their cellular importance. MRSA 
strains have acquired a non-native penicillin-binding pro-
tein (PBP2a) which cross-links the peptidoglycan when 
the native staphylococcal PBPs are occupied by β-lactam 
antibiotics (Srisuknimit et al. 2017). Although the activity 
of mecA gene-encoded Pbp2a origins β-lactam resistance, 
recent observation shows that resistance can also be medi-
ated by penicillin-binding protein 4 (PBP4) (Alexander et al. 
2018). Thereby all the PBPs can be considered as poten-
tial targets against MRSA. The femA protein (P0A0A5) is 
essential for expressing high-level methicillin resistance 
in S. aureus (Maidhof et al. 1991; Fri et al. 2020). Three 
proteins of the femXAB family, FemX, FemA and FemB, 
catalyzes sequential addition of glycine residues from 
glycyl-t-RNAs to the muropeptid, thereby developing the 
methicillin-resistance (Berger-Bächi and Tschierske 1998; 

Berger-Bächi 1999). The absence of functional femXAB 
proteins lead to improper cell-wall synthesis and increased 
susceptibility to β-lactam antibiotics (Rohrer et al. 1999; 
Kopp et al. 1996; Henze et al. 1993). MraY is a bacterial 
inner membrane protein essential for cell wall synthesis and 
targeted in antibiotic research studies (Hering et al. 2018). 
Recently, mur-family proteins are chosen as the prioritized 
drug targets from Acinetobacter baumannii (Amera et al. 
2020). Methicillin resistance is a complex phenomenon 
and involves all the aforementioned proteins. It is seen that 
bacterial cell wall synthesis proteins directly or indirectly 
interacting with penicillin-binding proteins have a significant 
role in maintaining the cell-wall integrity and antibiotics 
resistance. So, targeting cell-wall synthesis proteins will give 
insights into bacterial antimicrobial research.

In this study, staphylococcal FemA (factors essential for 
methicillin-resistance A) protein accounts for structure-
based virtual screening involving the drug repurposing 
approach due to its immense value in peptidoglycan bio-
synthesis as discussed earlier. The presence of FemA pro-
tein in other S. aureus pathogenic variants is checked using 
the default BLASTp search function of the DEG database. 
The search result shows that other than USA300_TCH1516, 
FemA also exists as an essential protein in MW2, MSSA476 
and NCTC 8325 strains of Staphylococcus aureus. FemA 
crystal structure lacks several residues in its 1B domain, 
the only active site. This may be due to the binding of the 
disaccharide hexapeptide lipid substrate (Benson et  al. 
2002). Thereby the active site is fixed using the modelling 
approach. Repurposing of drugs is a strategy for identifying 
new uses of approved or investigational old drugs. This strat-
egy is advantageous due to the low risk of failure, reduced 
time frame for drug development and cost-effectiveness 
(Pushpakom et al. 2019). The drug repurposing approach 
successfully provides drugs for the treatment of AIDS, erec-
tile dysfunction, rheumatoid arthritis, breast cancer, colo-
rectal cancer and many more (Clouser et al. 2010; Ghofrani 
et al. 2006; Edwards et al. 2004; Sporn et al. 2004; Kune 
et al. 1988). Several reports tell about the success story 
of drug repurposing strategy. Recently, repurposing drugs 
that have been identified through in silico studies, are being 
used in the treatment of various diseases such as the ZIKA 
virus (Santos et al. 2020), SARS-CoV-2 (Zhang et al. 2020), 
malaria (Diallo et al. 2021) etc. These studies show that 
drug molecules are docked using AutoDock software and 
further experimentally checked with in vitro studies. Auto-
Dock is an improved tool to provide accurate binding mode 
predictions (Trott and Olson 2009). In this study, docking 
analysis shows that identified FDA-approved drugs inter-
act with the FemA protein with binding energies ranging 
between − 7 and − 11 kcal/mol. Irinotecan shows the high-
est binding affinity (− 11.58 kcal/mol) towards staphylococ-
cal femA with the Ki value of 3.23 nM, engaging the highest 
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number of hydrophobic interactions and four H-bonds. And 
Antrafenine holds the lowest binding energy (− 7.36 kcal/
mol) with the Ki value of 4050 nM, where only two H-bonds 
are present with less hydrophobic interactions. In general, 
hydrogen bonding increases the affinity of drugs towards 
their target. Besides, An increase in the number of hydro-
phobic atoms in the active core of the drug-protein interface 
increases the biological activity of the drug molecule (Patil 
et al. 2010). This defines the critical role of hydrophobic 
interactions in drug designing and development.Recent stud-
ies report that hydrogen bonds and hydrophobic interactions 
togetherly play an important role in drug–target interactions 
with an approach to drug-repurposing (Choudhary et al. 
2020; Chowdhury et al. 2020). Dexamethasone, Irinote-
can, and Conivaptan are the drugs that show four hydrogen 
bonds each, though all drug molecules possess hydrogen 
bond interactions. Irinotecan, Midostaurin and Dihydro-
ergotecan display the maximum number of hydrophobic 
interactions in the docked structure. In this study, molecular 
docking analysis reveals that the combinations of hydrogen 
bonds and hydrophobic interactions are the acting forces 
in drug–protein interaction; a significantly higher number 
of hydrophobic interactions are present over there. Inter-
estingly, all hydrophobic residues are part of domain 1B, 
the catalytic site of FemA protein. Developing new drugs 
demands time and money thereby, this is always a challenge 
for the global pharmaceutical industry. So, there is an urgent 
demand to think differently to lower the investment and time 
to deliver a new drug to society, and this drug repurposing 
strategy has it all.

Conclusion

In this study, some novel therapeutic targets for S. aureus 
USA300 have been identified using in silico approach. These 
target proteins play a pivotal role in bacterial survival, infec-
tion establishment and pathogenesis. Cell-wall synthesis 
components are used to maintain structural integrity along 
with antibiotics resistance. Seven membrane proteins with 
prodigious immunogenic potential were screened as vaccine 
candidates. These prioritized targets include cell division 
proteins (Q2FZ91, Q2FZ95), penicillin-binding proteins 
(Q2FZ94, Q2FYI0) of bacterial cell wall, pentose phosphate 
pathway component phosphoglucomutase (Q2FE11) and 
glycerolipid metabolism pathway component lipoteichoic 
acid synthase (Q2FIS2). A total of 53 potential drug targets 
are identified, which have shown similarity with the drug 
targets available in the DrugBank database. Altogether, 198 
bacterial essential non-homologous proteins are identified 
that could be subjected to therapeutics development to be 
used to combat S. aureus mediated bacteremia. All the pep-
tidoglycan biosynthesis enzymes are essential and specific, 

therefore provide attractive potential targets for discover-
ing and developing new antibacterials. Due to its biologi-
cal importance, staphylococcal FemA has been considered 
an important therapeutic target. The structure-based virtual 
screening reveals ten potential repurposing drugs to target 
FemA. Predicted drugs require experimental validation that 
would lead to the development of new antimicrobial agents 
in this drug-resistance world.
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