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ABSTRACT
Background: Short-term markers of successful visceral adipose tissue (VAT) loss are needed. Urinary F2-isoprostanes might serve as a marker for
intensified lipid metabolism, whereas circulating IL-6 might stimulate fat oxidation and enhance mobilization of VAT.
Objectives: This pilot study was designed to explore the hypotheses that 1) reduction in VAT is associated with increase in IL-6, and 2) that
increases in urinary F2-isoprostanes are associated with increases in IL-6 and reduction in VAT.
Methods: Eighteen participants (aged 60–75 y, BMI 30–40 kg/m2) were randomly assigned to either a very-low-carbohydrate diet (VLCD;
<10:25:>65% energy from carbohydrate:protein:fat) or a low-fat diet (LFD; 55:25:20%) for 8 wk. Changes in fat distribution were assessed by MRI.
Four urinary F2-isoprostane isomers were quantified in 24-h urine collection using LC-MS/MS analyses. Changes in 4 F2-isoprostane isomers were
summarized using factor analysis (�-F2-isoprostane factor). Statistical significance was set at P < 0.1.
Results: Within the VLCD group, change in VAT was inversely associated with change in IL-6 (r = −0.778, P = 0.069) and �-F2-isoprostane factor (r
= −0.690, P = 0.086), demonstrating that participants who maintained higher concentrations of F2-isoprostane factor across the intervention
showed greater decreases in VAT. A positive relation between �-F2-isoprostane factor and change in IL-6 was observed (r = 0.642, P = 0.062). In
the LFD group, no significant associations between changes in VAT, F2-isoprostane factor, or IL-6 were observed.
Conclusions: Results from this exploratory study in older adults with obesity suggest that, in the context of a VLCD, IL-6 could be involved in VAT
mobilization, and urinary F2-isoprostanes could reflect intensified oxidation of mobilized fatty acids. Trial registration: This study is registered at
clinicaltrials.gov as NCT02760641. Curr Dev Nutr 2021;5:nzab082.
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Introduction

In older adults, age-related redistribution of adipose tissue results in ac-
cumulation of visceral adipose tissue (VAT), which contributes to ele-
vated risk of cardiometabolic disease, such as type 2 diabetes and cardio-
vascular disease (1–11). Accumulation of VAT is commonly associated
with insulin resistance, whereas depletion of this adipose tissue depot
reduces metabolic disease risk. Therefore, there is a need for interven-
tions targeting VAT loss in older adults with obesity. The development
of effective interventions for obesity would be aided by using serum- or
urine-derived analytes associated with VAT loss, which could be used
as a noninvasive and cost-effective marker for loss of this metabolically
harmful fat depot.

One such marker is interleukin-6 (IL-6), which has been implicated
in the loss of VAT. Although traditionally considered a proinflamma-
tory cytokine, emerging evidence suggests that IL-6 has a more com-
plex role in metabolic regulation and, specifically, fat oxidation (12).
In animal models, IL-6 receptor expression is increased in VAT com-
pared with subcutaneous adipose tissue (13), and exercise-induced loss
of VAT requires IL-6 receptor signaling (14). Further, IL-6 has been
shown to mediate improvement of insulin sensitivity (15, 16), and IL-
6 knockout mice develop mature-onset obesity, which is partially re-
versed by IL-6 administration (17). In humans, IL-6 has been shown
to mediate VAT loss (14), and IL-6 infusion stimulates fatty acid re-
lease and oxidation (18, 19). The positive regulation of exercise-induced
IL-6 secretion on fat oxidation in mice is amplified by addition of a
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carbohydrate-reduced diet (20), which in humans promotes selective
loss of VAT (21–23). Thus, the carbohydrate-restricted diet can stim-
ulate metabolic processes that facilitate both VAT mobilization and fat
oxidation. Associations among IL-6 and VAT loss in humans exposed
to a carbohydrate-restricted diet have not been reported.

Other potential markers are urinary F2-isoprostanes, which have re-
cently been proposed as markers of intense fat oxidation. As the nonen-
zymatic products of free radical–initiated peroxidation of arachidonic
acid, urinary F2-isoprostanes are traditionally considered the gold stan-
dard measurement of oxidative damage in vivo in humans (24–29).
Cross-sectional evidence linking oxidative damage to disease risk shows
elevated F2-isoprostanes in individuals with high visceral fat accumula-
tion and insulin resistance (30). However, prospective studies suggest
that F2-isoprostanes can also reflect other biochemical processes. For
example, elevated F2-isoprostanes are predictive of lower weight gain
in middle age (31) and in older adults (32), and inversely related to in-
cident type 2 diabetes (33). These observations support evidence that
F2-isoprostanes are more broadly reflective of mitochondrial oxidative
metabolism (25, 34–36).

A very-low-carbohydrate diet (VLCD) could provide a unique
model to explore the relations among diet-induced VAT loss, changes
in IL-6, and changes in urinary F2-isoprostanes within older adults with
obesity, because we have previously demonstrated greater VAT loss in
response to a VLCD than a low-fat diet (LFD) in this population (21).
Therefore, the objective of this secondary analysis was to explore the
hypotheses that 1) reduction in VAT is associated with increase in IL-
6, and 2) that increases in urinary F2-isoprostanes are associated with
reduction in VAT and increases in IL-6.

Methods

Participants
Forty men and women were recruited. Specific inclusion and exclusion
criteria have been described elsewhere (21). Briefly, inclusion criteria
included BMI 30–40 kg/m2, 60–75 y of age, and sedentary (≤2 h/wk
of moderate intentional exercise). Exclusion criteria included individu-
als with diabetes, unwillingness to eat the study diets, use of any med-
ication known to affect metabolism, recent weight change (±4.5 kg in
the last 12 mo), poorly controlled blood pressure (systolic blood pres-
sure >159 mmHg or diastolic blood pressure >95 mmHg), renal fail-
ure, major liver dysfunction (elevation of liver transaminases >3× nor-
mal in past 2 y; or current/recent smoker (within 6 mo). Participants
were informed of the experimental design, and oral and written con-
sent was obtained. Participants were compensated for study visits. The
study was approved by the Institutional Review Board for Human Use
at the University of Alabama at Birmingham (UAB). The trial is reg-
istered at clinicaltrials.gov (NCT02760641). Eighteen participants who
completed 24-h urine collection at baseline and after interventions were
included in this analysis.

Study design
In a 2-arm, parallel design, participants were randomly allocated to re-
ceive either a weight-maintaining VLCD or an LFD intervention for 8
wk (21). Screening for eligibility took place at the UAB Webb Nutrition
Sciences building. Testing took place in the core facilities of UAB’s Cen-

ter for Clinical and Translational Science, Nutrition Obesity Research
Center, and Diabetes Research Center. MRI analysis, hyperinsulinemic-
euglycemic clamp, urine collection, and fasting blood draws were per-
formed at baseline and after completion of the diet intervention.

Diets
Specific details have been described elsewhere (21). Briefly, participants
were counseled during weekly individual meetings with a registered di-
etitian to consume either a eucaloric VLCD (<20:25:>55% energy from
carbohydrate:protein:fat) or an LFD (55:25:20%) according to diet pre-
scription. The number of carbohydrate (CHO), protein, and fat serv-
ings counseled was determined based on group assignment and total
energy requirements as measured by indirect calorimetry (Vmax EN-
CORE 29N Systems; SensorMedics Corporation) with an activity fac-
tor of 1.35 for women and 1.5 for men. The average daily total dietary
fiber intake was 8.30 g in the VLCD and 20.86 g in the LFD group,
based on 3-d food records (2 weekdays and 1 weekend day) completed at
the study midpoint (21). Participants in both arms were provided with
food lists, sample menus, and recipes throughout the intervention pe-
riod, and breakfast foods compatible with their diet prescription during
weekly individual meetings. Breakfast foods were purchased from the
local grocery store. VLCD participants received 3 eggs/d (∼216 kcal,
18.9 g protein, 14.3 g fat, and 1.2 g CHO) and LFD participants received
breakfast bars (∼180 kcal, 4 g protein, 10 g fat, 22 g CHO) each week.
β-Hydroxybutyrate and respiratory quotient were taken as measures of
dietary compliance and to support differences in diet composition (21).

Fat distribution
VAT was determined by MRI. 3D volumetric T1-weighted
magnetization-prepared rapid acquisition gradient echo using a
1.5-T Philips Achieva system was used to collect transaxial abdominal
images (21). Contrast between adipose and nonadipose tissues was
enhanced by selecting echo time, repetition time, and pulse flip angles.
SliceOmatic image analysis software (version 4.3; Tomovision) was
used to quantify the volume (cubic centimeters) of the tissues of
interest. VAT was analyzed using the abdomen images from the L1 to
the L5 vertebrae.

Laboratory analyses
Analyses were conducted in the Core Laboratory of the Nutrition Obe-
sity Research Center and Diabetes Research Center except where noted.
Circulating measures were assayed by immunoassay in fasted morn-
ing sera before and after the intervention. Glucose was measured us-
ing a SIRRUS analyzer (Stanbio Laboratories). Insulin was measured
using a TOSOH immunoassay analyzer (TOSOH AIA-600 II analyzer;
TOSOH Bioscience); intra-assay CV of 1.5% and interassay CV of 4.4%.
High-sensitivity C-reactive protein (hsCRP) was assessed by turbido-
metric methods by using a SIRRUS analyzer (Stanbio Laboratory), with
reagents obtained from Pointe Scientific. Minimum detectable concen-
tration was 0.05 mg/L. Mean intra-assay CV was 7.49%, and mean
interassay CV was 2.13%. TNF-α and IL-6 were assessed by using elec-
trochemiluminescence (Meso Scale Discovery). Minimum detectable
concentrations for each assay were 0.507 pg/mL and 0.25 pg/mL, respec-
tively. Mean intra-assay CVs were 7.61% and 6.68%, respectively. Mean
interassay CVs were 5.47% and 9.72%, respectively. Four isomers of F2-
isoprostanes—iPF(2α)-III (F2isoP1), 2,3-dinor-iPF(2α)-III (F2isoP2),
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TABLE 1 Baseline characteristics of study participants by diet1

Variable LFD (n = 8) VLCD (n = 10)

Race, n (European American/African American) 7/1 8/2
Sex (% female) 62.5 60.0
Age, y 68.75 ± 2.92 67.80 ± 5.43
BMI, kg/m2 38.76 ± 13.35 34.40 ± 3.12
Weight, kg 104.60 ± 42.80 97.63 ± 16.22
Fat mass, kg 39.69 ± 9.12 42.44 ± 6.05
Fasting glucose, mg/dL 99.95 ± 7.30 111.03 ± 16.30
Fasting insulin, μU/mL 17.06 ± 8.99 12.15 ± 4.60
HOMA-IR 4.23 ± 2.20 3.34 ± 1.38
1Data are mean ± SD, unless otherwise indicated. LFD, low-fat diet; VLCD, very-low-carbohydrate diet.

iPF(2α)-VI (F2isoP3), and 8,12-iso-iPF(2α)-VI (F2isoP4)—were quan-
tified at Duke University in 24-h urine samples (stored at −70◦C) by
LC with tandem MS detection and corrected by urinary creatinine to
account for differences in urine dilution as previously described (26).

Statistical analysis
Data were analyzed using SPSS version 25.0 (IBM Corp.). Statistical tests
were 2-sided, with an α level of 0.10 denoting significance due to the
small sample size and exploratory nature of these analyses. Statistical
assumptions were tested using the Levene test for equality of variance,
and the Kolmogorov–Smirnov and Shapiro–Wilk tests for normal dis-
tribution.

Principal components analysis was used to create a combined vari-
able to account for the large degree of correlation between the � scores
of isoprostane isomers F2isoP1, F2isoP2, F2isoP3, and F2isoP4. The �-
F2-isoprostane isomers were normalized (mean = 0, SD = 1) and loaded
onto a single factor, called �-F2-isoprostane factor.

In both groups considered individually and combined, Pearson cor-
relations were used to evaluate relations between the �-F2-isoprostane
factor and changes in each individual F2-isoprostane isomer with
changes in related variables of interest, and to evaluate the relation be-
tween the change in IL-6 and the change in VAT.

Results

A total of 34 participants completed the study, with 19 on the VLCD
and 15 on the LFD. Six European American females aged 67–72 y dis-
continued the intervention for reasons unrelated to the study. The main

results for this study population have been published elsewhere (21).
Briefly, although participants were counseled weight-maintaining diets,
both groups experienced some weight loss, and weight loss was greater
in the VLCD than the LFD group (21). Unique to this report are 18
participants who, in addition to the diet intervention, also completed
24-h urine collection for F2-isoprostane analysis at baseline and after 8
wk, with 10 in the VLCD group and 8 in the LFD group. As shown in
Table 1, the participants were primarily European American females
with an average age of 67.80 y in the VLCD group and 68.75 y in the
LFD group. There were no significant differences in BMI, weight, total
fat mass, fasting glucose, fasting insulin, or HOMA-IR between groups
at baseline.

All changes in F2-isoprostane isomers were linearly related (repre-
sentative plot in Supplemental Figure 1) and were absent of multi-
collinearity and singularity. The standardized changes in F2-isoprostane
isomers were considered factorable with all correlations >0.31, Bartlett
test of sphericity <0.001, and Kaiser–Meyer–Olkin measure = 0.678.
The eigenvalue for the best linear combination of the changes in F2-
isoprostanes was 2.731, indicating that the �-F2-isoprostane factor
explained 68.28% of the information contained in the change in F2-
isoprostane markers. No other factor had an eigenvalue >1.

Our findings were diet specific. The relation between change in VAT
and change in IL-6 is shown in Figure 1. In the VLCD but not the LFD
group, VAT loss was associated with an increase in IL-6 (r = −0.778,
P = 0.069). Simple correlations of �-F2-isoprostane factor with changes
in fat distribution and IL-6 are shown in Figure 2, and simple correla-
tions of individual F2-isoprostane isomers with changes in fat distribu-
tion and inflammatory markers are shown in Supplemental Table 1.
Within the VLCD group, �-F2-isoprostane factor was inversely associ-

FIGURE 1 (A) Linear relations and (B) simple correlations between change in IL-6 with change in VAT. LFD, low-fat diet; VAT, visceral
adipose tissue; VLCD, very-low-carbohydrate diet.
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FIGURE 2 Linear relations between �-isoprostane factor and (A) change in weight, (B) change in total fat, (C) change in VAT, and (D)
change in IL-6. (E) Simple correlations of �-isoprostane factor with fat distribution and inflammatory markers. LFD, low-fat diet; VAT,
visceral adipose tissue; VLCD, very-low-carbohydrate diet.

ated with change in VAT (r = −0.690, P = 0.086), and positively with
change in IL-6 (r = 0.642, P = 0.062). No significant relations were ob-
served between �-F2-isoprostane factor and changes in weight or total
fat. There were no significant associations between �-F2-isoprostane
factor and VAT, IL-6, weight, or total fat in the LFD group. These re-
lations were supported by individual isomers shown in Supplemental
Table 1. Briefly, within the VLCD but not the LFD group, changes in
F2isoP1 and F2isoP4 were inversely associated with change in VAT (r
= −0.761, P = 0.047 and r = −0.693, P = 0.085, respectively), and
changes in F2isoP2 and F2isoP3 were significantly related to changes in
IL-6 (r = 0.607, P = 0.083 and r = 0.618, P = 0.076, respectively). No
isomers were related to changes in hsCRP or TNF-α.

Discussion

Results from this pilot study supported our hypotheses: specifically, re-
duction in VAT was associated with increases in IL-6, whereas increases

in urinary F2-isoprostanes were related to increases in IL-6 and reduc-
tion in VAT. These relations, however, were diet specific. Following the
VLCD but not the LFD, individuals with the greater loss of VAT showed
an increase in IL-6 and the lowest decrease (or increase) in the �-
F2-isoprostane factor. These preliminary findings suggest that within
a VLCD, IL-6 could be involved in VAT mobilization and oxidation,
and urinary F2-isoprostanes could in turn reflect this greater fat oxi-
dation. We propose a diet-specific underlying mechanism (Figure 3):
within the context of negative energy balance, greater levels of dietary
fatty acids induce the increase in circulating IL-6, which in turn inten-
sifies the lipolysis and release of fatty acids from VAT with subsequent
oxidation that can be tracked by changes in urinary F2-isoprostanes.
Our hypothesis is supported by the associations among VAT, IL-6, and
F2-isoprostanes observed in the present study but needs to be directly
tested in a larger cohort.

Although weight loss interventions typically induce a reduction of
inflammatory markers, reduction in IL-6 is not always observed and is
often not different from baseline (37, 38). It is possible that changes in
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FIGURE 3 Proposed diet-specific underlying mechanism. VAT,
visceral adipose tissue; VLCD, very-low-carbohydrate diet.

IL-6 depend on whether participants are in negative energy balance. The
existing literature has suggested that IL-6 signaling mediates fatty acid
mobilization and fat oxidation in humans and animal models (18, 39–
46), particularly within VAT (14). IL-6 stimulation of lipolysis and fat
oxidation has been observed in the context of an exercise-induced in-
crease in IL-6 (42, 45, 46), as well as in response to IL-6 infusion (18, 39).
However, metabolic influences of different diets on IL-6 remain largely
unexplored. In a mouse model (20), the ketogenic diet in combination
with exercise had a greater effect on IL-6 mRNA induction compared
with the unpurified diet plus exercise, with the effect of the diet being
specific to slow-twitch muscle fibers, which are known to have high ox-
idative capacity and a preference for fatty acids as a substrate for ATP
production (47). It is therefore possible that negative energy balance in
conjunction with increased fatty acid exposure from a VLCD increases
IL-6, which could in turn be partially involved in VAT mobilization and
lipolysis.

Previously published cross-sectional studies have reported a direct
association between systemic concentrations of F2-isoprostanes as well
as inflammatory markers with greater measures of total and regional
adiposity (32, 48, 49). In contrast, our prospective analyses provide
insight into how changes in urinary F2-isoprostanes might relate to
changes in adiposity, specifically to VAT loss. It is known that urinary
F2-isoprostane concentrations drop in response to negative energy bal-
ance, reflecting the metabolic slowing (50–53). Our findings suggest
that in the context of a VLCD, F2-isoprostane concentrations are main-
tained (or increased) despite the weight loss, possibly reflecting greater
fat oxidation. However, more prospective evidence in larger cohorts is
needed to confirm the observed associations and fully elucidate the con-
nection between systemic F2-isoprostanes and response to different di-
etary interventions.

The major limitation of this exploratory analysis was a small sample
size resulting in inadequate power to detect robust associations, and use
of an α level of 0.1. Moreover, it is possible results were influenced by
selective dropout rates, because the results reflect only a small number

of individuals who completed the 24-h urine collection at baseline and
after the 8-wk diet intervention. We present our results as hypothesis-
generating, and findings should be interpreted with caution. Therefore,
a larger study is needed to confirm these pilot findings. Other limita-
tions are related to the intervention framework. Participants were al-
lowed to self-regulate intake and were provided with food lists, sam-
ple menus, and recipes. Consequently, we were unable to examine the
effect of equivalent weight loss in the low-fat group in F2-isoprostane
outcomes. Moreover, to increase dietary adherence, study visit atten-
dance, and participant retention, participants within the VLCD group
were provided whole eggs, and participants in the LFD were provided
breakfast bars for daily consumption. It is possible that the egg con-
sumption in the present study influenced urinary F2-isoprostane out-
comes (54); however, these effects could not be disentangled. Although
it was not feasible to blind participants or study staff to diet assignment,
staff performing MRI analysis were blinded to diet assignment, and in-
tervention measurements were performed as objectively as possible.

In conclusion, reduction in VAT was related to increases in IL-6,
whereas changes in urinary F2-isoprostanes were inversely related to
changes in VAT and directly related to change in IL-6 within the VLCD
group. These results suggest that in the context of a VLCD, IL-6 might
be partially involved in VAT mobilization and oxidation, and urinary
F2-isoprostanes reflect this fat oxidation (Figure 3). These pilot findings
are important to inform future studies elucidating short-term markers
of successful VAT loss during diet interventions.
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