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Abstract

The ongoing pandemic of the novel coronavirus of 2019 (COVID-19) has resulted in over 1 

million deaths, primarily affecting older patients with chronic ailments. Multiple sclerosis (MS) 

patients have been deemed particularly vulnerable given their high rates of disability and increased 

susceptibility to infections. There have also been concerns regarding disease-modifying therapy 

(DMT) during the pandemic as many DMTs may increase the risk of infection due to some of 

their immunosuppressive properties. Furthermore, due to MS-related chronic inflammatory 

damage within the central nervous system, there have been concerns for worsening neurological 

injury by COVID-19. This has resulted in an alarmingly high level of anxiety and stress among the 

MS community leading to a lack of compliance with medications and routine check-ups, and even 

failure to obtain treatment for relapse. However, there is currently substantial evidence that MS 

and most DMT usage is not associated with increased COVID-19 severity. MS patients who suffer 

worse outcomes were more likely to be older and suffer from significant disabilities and comorbid 

conditions, which would also be expected from those in the general population. Likewise, there is 

little if any evidence demonstrating an increased susceptibility of MS patients to COVID-19-

related neurological complications. Therefore, we aim to summarize the most recent findings 

related to COVID-19 and MS demonstrating that MS and most DMTs do not appear as risk factors 

for severe COVID-19.

Introduction

Severe respiratory syndrome coronavirus-2 (SARS-CoV-2) is the virus responsible for the 

novel coronavirus disease of 2019 (COVID-19) and has resulted in the death of over one 

million people around the world [1]. COVID-19’s presentation is highly heterogeneous as 

cases range from asymptomatic to rapidly progressive resulting in low survival rates [2,3]. 
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Specifically, patients that are older, have multiple comorbidities (i.e hypertension, lung 

disease, diabetes, obesity), and reside in nursing homes are more likely to succumb to 

COVID-19 [1–4]. Black/African Americans have a higher risk of COVID-19 severity [5]. 

This is most likely multifactorial, stemming from healthcare disadvantages associated with 

socioeconomic disadvantages suffered among this population. Therefore, we have become 

particularly concerned during this pandemic for our patients with chronic debilitating 

diseases who are more likely to possess these risk factors.

Multiple sclerosis (MS) is a common chronic immune-mediated demyelinating disease of 

the central nervous system(CNS) [6]. MS immunopathogenesis involves CNS inflammation, 

blood-brain-barrier (BBB) disruption, and autoreactive lymphocytes thereby requiring 

disease-modifying therapies (DMT) of immunomodulation, immunosuppression, cell 

depletion and/or alteration of inflammatory cell trafficking [6]. MS is categorized into 

several phenotypes including primary progressive MS (PPMS), relapsing-remitting MS 

(RRMS), and secondary progressive MS (SPMS) [7]. PPMS is characterized by a 

continuously steady progression and a higher rate of disability when compared to that seen 

in RRMS. SPMS patients tend to be older in age than RRMS patients since it evolves from 

RRMS over the course of 10–20 years and is characterized by the gradual worsening of the 

disease. Furthermore, due to the chronic and disabling nature of MS, many patients will 

eventually reside in long-term care facilities [8].

Consequently, the combination of pathogenesis, treatment and natural history most likely 

explains the four-fold greater risk for contracting serious infections in MS patients when 

compared to that seen in the general population [9]. We would thus reasonably expect that 

MS patients are at higher risk of contracting COVID-19 and have worse outcomes [10]. 

Additionally, due to the compromise of the CNS by MS and the growing evidence of 

COVID-19 neurological manifestations, there are concerns for higher rates of neurological 

complications in MS patients [10,11].

Cardiovascular disease and hypertension are significantly associated with COVID-19 risk 

[12,13]. Patients with MS are at a significantly increased risk for these risk-factors when 

compared to the general population [14,15]. This is most likely due to higher rates of 

disability resulting in less healthy life-styles (i.e smoking, obesity, reduced physical activity) 

[16]. These higher rates of comorbidities could also contribute to worse COVID-19 

outcomes in MS patients (Figure 1). Early studies were contradicting as survey reports from 

China, found no increased risk of COVID-19 in MS patients [10]. Conversely, studies from 

Spain and France found that MS patients are at a higher risk for poor COVID-19 outcomes 

when compared to the seen from the general population, but not necessarily at a higher risk 

to contract COVID-19 [17,18].

Recently, though, evidence from a larger cohort in the United States, Canada, and the United 

Kingdom actually showed that the risk of severe outcomes from COVID-19 was similar to 

that seen from the general population [19]. Regardless, all patients with more severe 

COVID-19 cases were older, and had higher levels of disability [17,18,20]. Additionally, the 

Black/African American race was also associated with worse COVID-19 outcomes [19]. As 

mentioned before, these risk factors have been found in the general population as well. 

Chaudhry et al. Page 2

J Cell Immunol. Author manuscript; available in PMC 2021 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patients with progressive forms of MS were also more likely to succumb to severe infection, 

but this has yet to be found statistically significant in further larger studies [19,20]. This sub-

group, due to the nature of the disease, tend to have worse disabilities and have poorer 

health, which most likely contributes to COVID-19 severity [21].

Contrary to what was originally thought, DMTs and higher levels of immunosuppression 

were not independent risk factors for worse COVID-19 outcomes in MS, with the possible 

exception of anti-CD20 therapy [17,19,20]. Likewise, in other immune-mediated diseases 

requiring chronic immunosuppression, immunosuppressive therapy has failed to 

significantly increase the severity of COVID-19 [22–24]. Furthermore, MS patients had 

symptoms similar to that experienced in the general population, without a higher rate of 

neurological complications. The concern for MS patients during the COVID-19 pandemic is 

still warranted with respect to those who are older, have more comorbidities and have 

significant disability, but we should bring into question MS and DMTs as severe COVID-19 

risk factors (Figure 2). In this review, we aim to summarize clinical and basic science data 

surrounding COVID-19 and MS.

COVID-19 Pathogenesis

Virology

SARS-CoV-2 is an RNA-virus of the same genus as the severe acute respiratory syndrome 

coronavirus of 2002–2003 (SARS-CoV) and targets angiotensin-converting enzyme-2 

(ACE2) with its spike-glycoprotein [25]. SARS-CoV spike-glycoprotein utilizes the serine 

protease TMPRSS2 for priming to enter ACE2+ cells [26]. Targeting of ACE2 with spike-

glycoprotein results in significant acute lung injury via an excessive inflammatory response 

mediated by an imbalance of Th17/Treg cells and an overproduction of proinflammatory 

cytokines [27–29].

Possible cytokine storm

This cytokine-storm-like response in COVID-19 was supported by early reports 

demonstrating COVID-19 severity was associated with increased plasma levels of cytokines 

such as IL-6 [30–32]. Postmortem studies of COVID-19-infected lungs also found 

significant signs of an inflammatory response dominated by lymphocytes resulting in severe 

lung damage [33,34]. Furthermore, preliminary results from clinical trials provide evidence 

that glucocorticoids can significantly improve COVID-19 outcomes in moderately and 

severely affected individuals, possibly by reducing this inflammatory response [35,36].

The cytokine-storm hypothesis stemming from COVID-19, however, has recently been 

brought into question. It was shown in a small cohort of patients that cytokine levels in 

severe COVID-19 cases were in fact lower than that seen from patients with bacterial sepsis 

and similar to that seen in other critically ill patients [37,38]. Furthermore, targeting IL-6 

with tocilizumab was found not to be effective in preventing severe COVID-19 disease [39]. 

Nonetheless, IL-1 inhibition with Anakinra was associated with reduced rates of severe 

COVID-19, but clinical trials are still ongoing (NCT04603742) [40]. Cytokine storms are 

multifaceted with many different mediators, both cytokine and non-cytokine in nature. 
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Indeed, the failure of an inhibitor of one of many proinflammatory cytokines does not negate 

the idea that a mixture of proinflammatory cytokines produces deleterious clinical outcomes. 

Therefore, even though there is evidence for a cytokine storm-like response in COVID-19, it 

may not adhere to the same pathogenesis typically seen in a cytokine storm.

DMT and Infection Risk

Types of MS therapies

There are many different treatment options with different mechanisms of action that are used 

for MS [41]. Relapse treatments include glucocorticoids and occasionally plasmapheresis in 

corticosteroid failures; however, these are typically reserved for acute relapses of MS, thus 

are administered only for a short term. DMTs, on the other hand, are administered 

chronically to help prevent relapse thereby slowing down MS progression. Detailed reviews 

of DMTs have previously been written [41,42]. DMTs are known to reduce relapses and 

slow the progression of disabilities by adjusting and/or suppressing the immune system, thus 

reducing the formation of new CNS lesions.

Classification of DMTs, albeit imperfect and sometimes not fully understood as many 

DMTs have many different mechanisms of action, can be divided into: 1) 

immunomodulation: interferon-beta-1 (IFN-b1), glatiramer acetate (GA), and fumarates (i.e 

dimethyl fumarate), 2) cell trafficking alterations molecules like S1P receptor modulators 

(i.e fingolimod), and natalizumab, an anti-α4-integrin antibody, 3) cell depletion (anti-CD20 

antibodies [i.e ocrelizumab, rituximab, ofatumumab], cladribine, and anti-CD52 antibodies 

[i.e. alemtuzumab]), and 4) systemic immunosuppression (i.e teriflunomide) [41,42].

DMTs and overall infection risk

Among DMTs, GA and IFN-b1 were associated with a 50% increase risk of overall serious 

infections (defined as an infection resulting in hospitalization) in MS patients in comparison 

to that seen from age-/sex-matched non-MS patients [43]. However, this study most likely 

showed the effect of the higher risk of infection seen in MS patients as increases in overall 

infection was not prominent in clinical trials of these agents studied only in MS patients 

[44–46]. Furthermore, GA and IFN-b1 usage were not associated with higher rates of 

physician-reported infection-related claims for MS patients when compared to that seen 

from no DMT usage [47].

In head-to-head comparison studies, the anti-CD20 antibody rituximab had a significantly 

higher rate of overall severe infection in comparison to that seen from GA and IFN-b1 in 

MS patients [43]. There was also a slightly higher rate of overall severe infection with 

rituximab when compared to that seen in natalizumab and fingolimod treated MS patients, 

but this was not statistically significant [43]. Similarly, MS patients treated with the newer 

anti-CD20 antibody, ocrelizumab, were twice as likely to suffer from an upper respiratory 

infection compared to placebo-treated patients [48]. Fingolimod and natalizumab also had 

higher rates of severe infection when compared to IFN-b1 and GA, but not statistically 

significant [43]. Natalizumab was associated, with a 59% higher relative risk of infection-

related physician claims compared to that seen from MS patients not on DMT [47]. Herpes 
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zoster infections were more frequent in the cladribine-treated arm compared to that seen in 

the placebo-arm in an MS clinical trial [49]. Herpes simplex infections were more frequent 

in MS patients treated with the anti-CD52 antibody, alemtuzumab, in comparison to those 

treated with IFN-b1 [50].

DMT exposure and COVID-19 risk

Given that immunosuppression by some DMTs further increases the risk of infection in MS 

patients, it was reasonable to assume that this would pertain to COVID-19 as well. 

Rituximab and ocrelizumab were especially concerning due to their well-established 

infection-risk profile [43]. By targeting CD-20, B-cells are largely eliminated in the 

peripheral immune system, reducing B-cell cytokines and availability of B cells to act as 

antigen-presenting cells. Reduction of B-cell development and differentiation to plasma cells 

also occurs, but the early therapeutic effects do not seem to involve the reduction of serum 

and cerebrospinal fluid (CSF) IgG [51]. Importantly, anti-CD20 antibodies reduce type-II 

pneumocyte response to infections and prevents CD4+ T-cell priming, thereby attenuating 

the clearance of viral infections from the respiratory tract [51,52].

Recent evidence, however, fails to show that most DMTs are independent risk factors for 

COVID-19 incidence and severity [17,19,20,53]. In fact, some hypothesized that DMTs may 

in fact be protective against COVID-19 by attenuating the cytokine-storm-like response 

[54,55]. Additionally, certain DMTs (i.e GA, fumaric acid, fingolimod) are associated with 

an increased expression of circulating natural killer cells possibly allowing for a better 

defense against COVID-19 [56]. These theories, though, are still purely speculative and 

subgroup analyses of different DMT therapies, albeit small in sample size, have yet to show 

protection from COVID-19 [17,20,53].

Analysis of a larger dataset of COVID-19 MS patients did, however, reveal that anti-CD20 

treatment may portend worse COVID-19 outcomes [19]. Rituximab-usage resulted in 

significantly higher hospital admissions (aPRs=1.58, P<0.05), ICU admissions (aPR=4.12, 

P<0.05), and mechanical ventilation (aPR=7.27, P<0.05) when compared to that seen with 

dimethyl fumarate-usage among MS patients [19]. Ocrelizumab was only associated with 

more ICU admissions (aPR=3.53, P<0.05) when compared to dimethyl fumarate, but not 

associated with more total hospital admissions and mechanical ventilations [19]. Overall, 

pooled-frequencies of hospitalizations, ICU admissions and ventilations were significantly 

higher for MS patients treated with anti-CD20 antibodies when compared to those treated 

with other DMTs (aPR=1.49, 2.55, and 3.05 respectively, all P<0.05). The relatively higher 

association of rituximab with poorer COVID-19 outcomes in comparison to that seen with 

ocrelizumab, admittedly not a head-to-head study, could be because rituximab has a 

significantly higher affinity, resulting in more deleterious effects on B-cell numbers [57].

Anti-CD20 therapies’ possible effect on the COVID-19 vaccine

There are many COVID-19 vaccines under development, however, Pfizer’s BNT162b 

vaccine was the first one approved for administration in the U.S and has been shown to be 

highly effective [58]. Since anti-CD20 antibodies deplete B-cells, there is some concern 

regarding their potential to attenuate humoral immune responsiveness to COVID-19 
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vaccines [59]. Both rituximab and ocrelizumab have been shown to blunt influenza vaccine 

seroconversion [60,61]. BNT162b, conversely though, is a unique mRNA-based vaccine 

resulting in a robust CD8+ T-cell response in addition to a humoral response, thereby 

possibly circumventing the attenuating effects from anti-CD20 antibodies [62]. 

Consequently, we would expect that BNT162b would still be highly efficacious despite anti-

CD20 treatment. Even if anti-CD20 antibodies blunt BNT162b response, the risks associated 

with BNT162b are minimal, thus the benefit of BNT162b would most likely still far-exceed 

the risks [58]. Moderna’s mRNA-1273 vaccine was also approved for use in the US and has 

been confirmed to be effective against COVID-19. It is also an mRNA virus and would work 

in a similar fashion as the BNT162b vaccine, thus, having a similar risk-benefit ratio for MS 

patients [63].

Neurological Implications of COVID-19 in MS

COVID-19-associated neuropathogenesis

SARS viruses have been known to invade the brain [64]. ACE2 is expressed along the 

cerebrovasculature comprising part of the BBB, facilitating SARS transport via spike-

protein targeting [65]. In vitro models show that SARS-CoV-2 spike protein, once bound to 

ACE-2, can disrupt the BBB by increasing the pro-inflammatory response by endothelial 

cells [66]. Specifically, endothelial cells when exposed to the spike-protein increased 

expression of ICAM-1 and VCAM-1 allowing increased leukocyte adhesion to the 

endothelium, and also increased expression of IL-1b, IL-6 and CCL5. It does not appear that 

the spike-protein is cytotoxic to the endothelial cells itself, but it does increase BBB 

permeability most likely due to increased expression of matrix metallo-proteinases (MMPs), 

thereby possibly permitting invasion by inflammatory cells.

There have been an alarming number of neurological manifestations of COVID-19 ranging 

from mild, such as headaches and myalgia, to severe, such as stroke and encephalopathy 

[67,68]. Whether direct infection or secondary consequences of COVID-19 such as its 

known hyper-coagulopathic effect is the reason for some of its neurologic-implications 

remains to be explored [69]. Nonetheless, the potential implications of COVID-19 on the 

CNS could theoretically exacerbate pre-existing neurologic injury stemming from MS.

COVID-19 in the MS Brain

BBB breakdown is a part of the pathogenesis of MS. The breakdown of the BBB in MS is 

mediated by inflammatory injury and the release of MMPs [70]. The breakdown of the BBB 

results in immune cell infiltration promoting demyelination. COVID-19 results in a systemic 

inflammatory response and induces vascular damage, thereby potentially exacerbating BBB 

breakdown and worsening MS progression [71]. Case reports/case-series have detected 

COVID-19 in MS patients with possible relapse, but only one case detected SARS-CoV-2 

within the CSF [72–74]. Furthermore, disability only increased mildly (2–3 points on the 

Extended Disability Status Score), there were no MRI-confirmed findings of relapse, and all 

patients made a full neurological recovery. Therefore, these were likely not a true relapse, 

but what has been termed as pseudo-relapse. Pseudo-relapse is the transient worsening of 
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MS–symptoms due to something other than true-demyelinating pathogenesis [75]. They are 

triggered by other processes such as fever, heat exposure or infection/inflammation [76].

It is possible that it is too early to tell, and studies have been too small to detect a noticeable 

increase in neurological symptoms. However, this means that the chance of neurological 

complications in MS patients is low, and probably like that seen from the general population.

Viral molecular mimicry in MS

Certain viruses have been implicated in MS. The risk of MS has been shown to significantly 

increase in those with certain genetic susceptibilities who have had EBV infection [77]. 

Therefore, it is hypothesized that EBV infection in certain genetically susceptible patients 

can cause a molecular mimicry autoimmune response leading to MS, though this has yet to 

be substantiated [78].

The role of molecular mimicry by COVID-19 leading to neurological injury has been 

considered because of the reported association between COVID-19 and Guillain-Barré 

syndrome(GBS), an immune-mediated demyelinating disease of the peripheral nervous 

system [79,80]. Due to the significant relationship between GBS and infections, molecular 

mimicry has been strongly implicated in the pathogenesis of GBS, but most notably with 

bacterial infections of Campylobacter jejuni. However, the potential relationship between 

COVID-19 and GBS is only based on small case-series/studies and require larger 

epidemiological analysis [81]. Nonetheless, the potential molecular mimicry from 

COVID-19 has gained tremendous attention [81–83]. Recently, a computational analysis 

found that 20 human peptides were uniquely mimicked by SARS-CoV-2 [84]. Four of these 

peptides were mapped onto different human leukocyte antigen (HLA) phenotypes. The most 

pertinent neurological protein was annexin A7 (ANXA7, also called synexin), which was 

found to be expressed along with endothelial cells across many different organs including 

the brain and found to be expressed on oligodendrocytes. Annexins are a family of calcium-

binding proteins that are involved in a diverse array of cellular mechanisms vesicle transport 

to apoptosis [85,86]. ANXA7, specifically, plays a role in vesicle exocytosis, the release of 

glutamate, and NMDA trafficking [87]. In the presence of intracerebral hemorrhage (ICH), 

ANXA7 exacerbates the release of glutamate and the trafficking of NMDA receptors, 

thereby potentially worsening glutamate excitotoxicity and secondary brain injury. This 

could support a theory that there can be molecular mimicry of SARS-CoV-2 targeting 

ANXA7-expressing cells in the brain, resulting in neurological injury [88].

The spike protein of SARS-CoV binds not only to ACE2, but also to sialic acid-containing 

glycoproteins and gangliosides on the cellular membrane (i.e GM1) [81,89]. It has been 

speculated that there could be cross-reactivity between epitopes at the spike-ganglioside 

interface and glycolipids along peripheral nerves [81]. This mechanism of molecular 

mimicry has been shown as a trigger for GBS following Campylobacter jejuni infection 

[90]. Even though the presence of mimicked peptides does not necessitate an inflammatory 

response, the role of molecular mimicry in demyelination/neurologic injury stemming from 

SARS-CoV-2 warrants further research.
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Conclusion

The ongoing COVID-19 pandemic has created a lot of anxiety among MS patients, their 

families and physicians who care for patients with MS. In comparison to the general 

population, MS patients have had higher rates of depression, worse sleep quality, and fatigue 

during the pandemic [91]. Additionally, many MS patients are concerned about their DMT-

regimens during the pandemic and some have even stopped it [92].

MS patients were believed to represent a particularly vulnerable group to COVID-19; 

however, mounting evidence allows us to reassess their presumed vulnerability. MS patients 

that are at increased risk tend to be older, have more disability, and have comorbidities such 

as obesity, hypertension, cardiovascular disease, diabetes and others that come with 

increasing age, which are similar to that seen in the general population. Currently, these risk 

factors appear to represent the consequences of MS and patients’ associated comorbidities 

rather than MS itself. Except for some anti-CD20 therapies, the use of DMT does not seem 

to be a risk factor for COVID-19 in MS. Therefore, MS and its treatments are most likely 

not strong risk factors for COVID-19, contrary to what was once thought. Instead, we should 

start tailoring our risk-models to look at the characteristics of our MS patients individually.
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Figure 1: Venn Diagram between Characteristics of Multiple Sclerosis and Risk Factors for 
COVID-19.
The Venn diagram shows known overlaps between characteristics of MS and known risk 

factors for COVID-19.
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Figure 2: Risk-factors Associated with COVID-19 Risk in MS.
Figure shows risk-factors associated with worse COVID-19 outcomes in MS patients. *= 

Progressive forms of MS have yet to be found to be statistically significant.
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