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The regulatory role of Pin1 in neuronal death

Abstract  
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital 
that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans 
isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a 
protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the 
signaling pathways involved. However, we know very little about how Pin1-associated pathways might 
play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and 
related research progress and summarize Pin1-related pathways in regulated cell death. Aside from 
the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating 
evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting 
distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced 
understanding of Pin1 in neuronal death may provide us with new options for the development of 
therapeutic target for neurodegenerative disorders. 
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Introduction 
Cell death is a fundamental process that is essential for the normal 
development and homeostasis of organisms (Bai et al., 2020; Moujalled 
et al., 2021). In general, there are three types of cell death: apoptosis, 
autophagy, and necrosis (Carloni et al., 2017; Bai et al., 2020). Apoptosis 
refers to regulated cell death (RCD) that occurs in developing tissues and 
plays an important role in homeostasis. RCD is characterized by chromatin 
condensation, nuclear fragmentation, and the formation of apoptotic bodies. 
Previous studies have reported that a large number of apoptotic proteins play 
a role in apoptotic signaling pathways, including caspases and B-cell lymphoma 
2 (Bcl-2) family members (Bai et al., 2020; Özel et al., 2021). Autophagy is 
another form of RCD during which cellular contents, such as organelles, are 
encapsulated by a double-membrane to form auto-phagosomes that are 
subsequently degraded by lysosomes (Napoletano et al., 2019; Bourdenx et 
al., 2021). Autophagy plays an important role in maintaining homeostasis and 
protecting cells against stressful stimuli. Traditionally, necrosis is considered to 
represent a form of accidental cell death that is characterized by membrane 
destruction, the release of internal materials, and inflammation (Chen et al., 
2021; Hu et al., 2021b). However, recent research has provided evidence that 
some types of necrosis also can be regulated at the molecular level (Theobald 
et al., 2021; Tonnus et al., 2021). Other researchers have reported that this 
form of regulated necrosis (RN) includes necroptosis (Evans and Coyne, 2019; 
Yuan et al., 2019), pyroptosis (Lammert et al., 2020), and neutrophil cell death 
(Sung and Hsieh, 2021; Yan et al., 2021). RCD, featuring apoptosis, autophagy 
and RN, is recognized to be beneficial to the host by eliminating certain 
intracellular pathogens or stimuli (Guo et al., 2020; Wang et al., 2020b; Yan et 
al., 2021). It is vital that we know how RCD responds to pathogens or injuries.

Prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) belongs to the parvulin 
subfamily and is an 18-kDa protein with a C-terminal PPIase domain and a 
N-terminal WW domain (Kumari et al., 2021; Tonnus et al., 2021; Zheng et al., 
2021). Pin1 is able to bind and then isomerize phosphorylated serine-proline 
or phosphorylated threonine-proline (pSer/Thr-Pro) motifs, thus regulating a 
series of biological processes (Koikawa et al., 2021; Kumari et al., 2021). The 
WW domain responds to and binds to pSer/Thr-Pro sequences, while the 
catalytic PPIase domain isomerizes the prolyl bond in the pSer/Thr-Pro motif; 
collectively, these mechanisms play an important role in many biological 
processes, such as the cell cycle, immune responses, and tumorigenesis 
(Koikawa et al., 2021; Kumari et al., 2021). In addition to binding to the prolyl 
bond in the pSer/Thr-Pro motif, Pin1 can also specifically regulate the activity 
of mitotic and nuclear proteins in a phosphorylation-dependent manner 
(Kumari et al., 2021).

Pin1 is predominantly expressed in cell nuclei and functions as a mitotic 
regulator, thus playing a vital role in DNA replication and mitosis (Zhang 
and Zhang, 2019; Kumari et al., 2021). The targets of Pin1 include not only 
proteins that exert function in transcription and the cell cycle, but also 
those involved in many physiological and pathological processes, including 
apoptosis, proliferation, and maintenance of the cytoskeleton (Thorpe et al., 
2004; Lepore et al., 2021). Pin1 acts as a context-specific signal transducer 
based on specific environmental signals (Oster et al., 2021). Researchers 
have found that Pin1 plays a dual role in cellular apoptosis (Baik et al., 2015; 
Dubiella et al., 2021; Fagiani et al., 2021). For example, Pin1 was shown to 
enhance the anti-cell death ability of Bcl-2 and inhibit apoptosis by directly 
inactivating Bcl-2 associated X (Bax) (Bianchi et al., 2019; Makinwa et al., 
2020). However, Pin1 has also been shown to act as a promoter of cell 
apoptosis by enhancing the expression of pro-apoptotic genes, such as p53 
(Balaganapathy et al., 2018; Hleihel et al., 2021). Pin1 has been reported 
to be distributed in the central nervous system (CNS) and participate in a 
variety of neurodegenerative diseases, including Alzheimer’s disease (AD), 
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s 
disease (HD) (Ghosh et al., 2013; Carnemolla et al., 2017; Iridoy et al., 2018; 
Napoletano et al., 2021; Samimi et al., 2021). An increasing body of evidence 
now supports the fact that Pin1 could exert a neuroprotective role or act as 
a promoter for neuronal death by upregulating survival-promoting factors or 
by downregulating death-suppression factors. However, the comprehensive 
regulatory pathways underlying the specific role of Pin1 in RCD has yet to be 
elucidated.

In this review, we set out to summarize our current knowledge of Pin1 in 
neuronal RCD and discuss the critical regulatory mechanisms associated with 
Pin1 in the CNS (Additional Table 1). In addition, Pin1 is an intriguing target 
for cancer therapy at present and could represent a desirable pharmaceutical 
target for neurological therapy. As such, we also summarize research relating 
to Pin1-specific inhibitors. 

Search Strategy 
We searched all literatures published from June 1998 to May 2021 that 
relates to the role of Pin1 in neuronal death (Figure 1) in this narrative review. 
We performed a PubMed search using the term “Pin1” AND “neuron” to 
identify potential neuronal death in neurodegenerative diseases that are 
mediated by Pin1 dysfunction. We next screened the results by the title, 
keywords, abstract and excluded non-neuronal death-related articles, and 
retrieved further papers by citation tracking. 
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Apoptosis  
Apoptosis is controlled by several apoptotic genes and characterized by RCD 
(Bai et al., 2020; Hu et al., 2021a; Nascimento et al., 2022). Traditionally, 
apoptosis can be divided into two pathways, the extrinsic and intrinsic 
pathways (Carneiro and El-Deiry, 2020; Nascimento et al., 2022). In the 
extrinsic pathway, apoptosis is induced by extracellular signals which then 
trigger the activation of caspases and caspase-mediated pathways (Carneiro 
and El-Deiry, 2020; Nascimento et al., 2022). The intrinsic pathway is activated 
by intraocular stimulation, such as signals from the mitochondria; this leads 
to the activation of caspases and eventually causes the degradation of vital 
proteins, thus inducing apoptosis (Carneiro and El-Deiry, 2020; Nascimento 
et al., 2022). The role of Pin1 in neuronal apoptosis has been investigated in 
many studies (Figure 2) (Becker and Bonni, 2007; Moujalled et al., 2021). For 
example, Pin1 has been reported to mediate neuronal apoptosis by promoting 
the expression of pro-apoptotic genes, such as p53 (Grison et al., 2011; 
Balaganapathy et al., 2018). Literature indicates that Pin1 may participate 
in neuronal survival or apoptosis, depending on the specific development 
stages of neurons as well as the different tissues and diseases involved. In this 
regard, herein, we discuss the different roles of Pin1 in apoptosis in different 
neurodegenerative diseases.

Pin1 mediates neuronal apoptosis in AD
AD is a leading dementia disease and affects the global population. AD is 
characterized by the accumulation of β-amyloid peptide (Aβ) with hyper-
phosphorylated tau (p-Tau), a microtubule associated protein (Azimi et al., 
2017; Gu and Liu, 2020; Li et al., 2021b; Blanchard et al., 2022). Lu et al. 
(1999) were the first to report that Pin1 was involved in the process of AD. 
In the normal human brain, Pin1 is mainly distributed in the neuronal nuclei. 
However, in AD patients, Pin1 is localized in both the neuronal cytoplasm and 
perikaryal neurofibrillary tangles (NFTs); furthermore, the levels of Pin1 are 
significantly reduced (by 39%) in the brains of AD patients when compared 
to normal brains (Pastorino et al., 2006; Samimi et al., 2021). Analysis of Pin1 
knockout mice showed that the accumulation of p-Tau, neuronal loss, and 
behavioral deficits appeared together (Thorpe et al., 2004; Azimi et al., 2017). 
Other research has shown that Pin1 is able to bind to the phosphorylated 
Thr231 motif of Tau (pT231-Tau) and can accumulate in NFTs within the 
neuronal cytoplasm (Lu et al., 1999). In addition, Pin1 can ameliorate p-Tau 
pathology by isomerizing p-Tau, thus recovering its ability to bind to and 
restore cytoskeletal integrity (Hashemzadeh-Bonehi et al., 2006; Kesavapany 
et al., 2007). It has been reported that p-Tau exists in two isoforms, 
physiological trans and pathological cis (Wang et al., 2020a; Qiu et al., 2021). 
The trans form of p-Tau exhibits normal functionality and may undergo 
degradation. In contrast, the cis form of p-Tau is abnormal and cannot be 
degraded; this form has a high tendency for aggregation (Zheng et al., 2021). 
Pin1 can accelerate the transformation of the cis isoform to the trans isoform 
of pT231-Tau and restore its normal function. In fact, cis pT231-Tau is also 
significantly increased in human AD brains and is strongly correlated with 
NFTs and reduced levels of Pin1 (Nakhjiri et al., 2020; Wang et al., 2020a; Qiu 
et al., 2021). 

A large body of evidence now suggests that interaction between Aβ and Tau 
could enhance the process of AD (Selkoe and Hardy, 2016; Shentu et al., 
2018). For example, Pastorino et al. (2006) reported that Pin1 could modulate 
the production of Aβ production. Enhanced Aβ production can also promote 
the phosphorylation of Tau and the generation of NFTs (Dakson et al., 2011). 
In particular, Pin1 binds specifically to the phosphorylated Thr668-Pro motif 
of amyloid precursor protein (APP) (pT668-APP) and catalyzes pT668-APP 
from cis to trans transformation (Nowotny et al., 2007; Dakson et al., 2011). 
The cis pT668-APP isoform promotes the processing of Aβ. By catalyzing 
from a cis to trans isoform, Pin1 could inhibit the processing of Aβ (Nowotny 
et al., 2007; Dakson et al., 2011). The deletion of Pin1 in mice has been 
linked to the accumulation of Aβ and neurotoxicity (Wang et al., 2020a; Li et 
al., 2021a). Some other reports have also indicated that molecules leading 
to Tau phosphorylation, including caspase-3, can also be activated by Aβ 
accumulation, finally resulting in neuronal death and the progression of AD 
process (O’Brien and Wong, 2011; Rong et al., 2017). Glycogen synthase 
kinase-3β (GSK-3β), a serine/threonine protein kinase, plays a role in several 
vital cellular functions, such as growth and glycogen metabolism and can 
also promote hypoxia-inducible transcription factor-1 degradation (Flügel 
et al., 2012). Recently, Lonati et al. (2014) reported that in cortical neurons, 
hypoxia-inducible transcription factor-1 was maintained at higher levels in 
the brains of AD patients; this was coincident with reduced levels of GSK-
3β protein. Interestingly, these authors found that reduced levels of Pin1 
inhibited GSK-3β enzymatic activity, ultimately inhibiting hypoxia-inducible 
transcription factor-1 protein degradation and contributing to Aβ production 
and progression in AD patients (Lonati et al., 2014). As the levels of Pin1 are 
decreased in AD patients and because Pin1 plays a vital role in AD processing 
in animal models of AD, it follows that the down-regulation of Pin1 might be 
an early potential biomarker for the progression of AD (Xu et al., 2017).

Pin1 mediates neuronal apoptosis in TBI
TBI includes closed-head injuries (in which the skull and dura are intact), 
penetrating injuries (in which skull and dura are broken), and injury to the 
brain parenchyma (Wood, 2018). TBI is characterized by acute neuronal 
dysfunction and is thought to be a non-aging risk factor for AD (Wood, 2018). 
Tau pathology is also a pathophysiological factor in TBI; patients with TBI 
have higher levels of tau (Shin et al., 2021). Furthermore, recent studies have 

shown that in the brains of TBI patients, Pin1 is widely distributed in the 
neurons and correlates with neurodegenerative pathologies (Kim et al., 2021; 
Qiu et al., 2021). Other research has shown that cis pT231-Tau, but not the 
trans form, contributes to neuronal pathology and functional impairment in 
a model of TBI (Albayram et al., 2017, 2018; Qiu et al., 2021; Tonnus et al., 
2021). Recent studies showed that death-associated protein kinase 1 (DAPK1) 
plays a critical role in regulating cis pT231-Tau after TBI (Kim et al., 2021; Qiu 
et al., 2021). DAPK1 is a calcium/calmodulin-dependent serine/threonine 
(Ser/Thr) kinase that plays a critical role in neuronal death. DAPK1 has been 
shown to increase significantly in the brains of a mouse model of TBI and 
then promotes the induction of cis pT231-Tau (Kim et al., 2021; Qiu et al., 
2021). Other research has shown that DAPK1 is a key regulator of the activity 
of Pin1. DAPK1-mediated cis pT231-Tau transformation has been proven 
to be regulated by Pin1 in the brain after injury (Kim et al., 2021; Qiu et al., 
2021). Following brain damage, the activity of Pin1 is known to decrease; 
this is accompanied by an increase in the expression of cis pT231-Tau, thus 
promoting neuronal death (Kim et al., 2021; Qiu et al., 2021). Furthermore, 
the pharmacological inhibition of DAPK1 activity significantly increases the 
levels of Pin1 and significantly decreases the expression of cis pT231-Tau 
and the extent of neuronal injury (Kim et al., 2021; Qiu et al., 2021). Thus, 
DAPK1-Pin1-cis pT231-Tau is a novel regulatory pathway in TBI, and exerts an 
important effect on the progression of TBI. Thus, the targeting of this pathway 
might be a potential therapeutic method for TBI (Tonnus et al., 2021). It 
should be noted, however, that the levels of Tau change in both AD and TBI 
(Blennow et al., 2016). In AD, Aβ aggregation induces tau phosphorylation 
and accumulation. However, in TBI, Aβ has no effect on TBI-related tau 
accumulation. Thus, the mechanisms of tau accumulation in TBI might be 
distinct from AD (Blennow et al., 2016). 

Pin1 mediates neuronal apoptosis in PD
PD is a disease that is characterized by the loss of dopaminergic neurons and 
the formation of α-synuclein aggregates in Lewy bodies. Pin1 also has been 
reported to be implicated in the pathogenesis of PD (Matena et al., 2013; 
Ibáñez et al., 2014). Ryo et al. (2006) were the first to report that Pin1 is 
located in the Lewy bodies of PD patients. In particular, the overexpression of 
Pin1 may facilitate the formation and stability of α-synuclein aggregation in 
experimental models of PD (Ryo et al., 2006). Other research has shown that 
Pin1 is highly up-regulated in dopaminergic cells and nigrostriatal cells after 
Parkinsonian neurotoxicant 1-methyl-4-phenylpyridinium treatment (Ghosh 
et al., 2013). Furthermore, Pin1 knockdown or functional inhibition almost 
completely prevented 1-methyl-4-phenylpyridinium-induced caspase-3 
activation, DNA fragmentation and neuronal death, thus indicating that Pin1 
has a pro-apoptotic role and causes α-synuclein aggregation (Ghosh et al., 
2013). However, until now, the precise regulatory mechanism underlying the 
upregulation of Pin1 in PD has yet to be fully elucidated. Ghosh et al. (2013) 
reported that the upregulation of Pin1 may be directly due to neurotoxic 
stress and may then contribute to the death of dopaminergic neurons. 
Therefore, the overexpression of Pin may mediate apoptosis and may 
represent a critical neurotoxic event in the pathogenesis of PD.

Pin1 mediates neuronal apoptosis in HD
HD is an autosomal dominant neurodegenerative disease caused by an 
expanded CAG repeat in the gene encoding huntingtin (Htt) protein; this 
condition is characterized by the death of medium spiny neurons in the 
striatum (Tabrizi et al., 2020). It has been reported that mutated Htt binds 
to p53, increases the levels of p53 protein, enhances the phosphorylation 
of p53 at Ser46 and evokes DNA damage in the striatum and cerebral cortex 
of patients with HD (Grison et al., 2011). It is important to note that the 
functionality of Pin1 plays a key role in stimulating the pro-apoptotic role 
of p53 (Agostoni et al., 2016). First, mutated Htt promotes the activation of 
Pin1. Subsequently, Pin1 interacts with p53 and triggers dissociation from 
its inhibitor (inhibitor of apoptosis-stimulating protein of p53; iASPP), finally 
promoting the expression of a series of apoptotic genes (Grison et al., 2011). 
However, in contrast, another study found that Pin1 might act as a negative 
regulator for Htt accumulation in a genetic mouse model of HD (Carnemolla 
et al., 2017). These authors found that the overexpression of Pin1 led to a 
reduction of Htt accumulation and that this might occur via degradation by 
the ubiquitin-proteasome system (Carnemolla et al., 2017). Therefore, the 
role of Pin1 in neuronal apoptosis might have a different effect in that it may 
stimulate Htt clearance-mediated neuronal protection and promote p53 
mediated-apoptosis (Grison et al., 2011). Furthermore, by using a genetic 
model of Pin1 deletion, researchers found that the role of Pin1 in neuronal 
death might be time-dependent (Agostoni et al., 2016). In the early stages, 
Pin1 activation reduces the DNA damage response. However, in the middle 
stages of life, the activation of Pin1 might be triggered by Htt, thus initiating 
the role of Pin1 in p53-mediated neuronal apoptosis. In aging individuals, Pin1 
significantly increases the amount of Htt accumulation (Agostoni et al., 2016). 
In summary, the role and mechanisms of Pin1 in neuronal apoptosis provides 
some support for the pathogenesis of HD. However, the role of Pin1 in HD still 
requires further research. 

Pin1 mediates neuronal apoptosis in stroke
Stroke is a disease involving sudden impairment of consciousness and motio; 
this condition is caused by the obstruction or rupture of blood vessels in 
the brain (Magnusson et al., 2014). Baik et al. (2015) reported that Pin1 
contributes to the process of stroke through Notch signaling. The Notch 
signaling pathway plays a vital role in the development of the CNS, including 
neuronal differentiation, determination, and certain neural pathological 
diseases (Magnusson et al., 2014). Notch signaling has also been implicated in 
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neuronal death (Arumugam et al., 2006; Magnusson et al., 2014). It has been 
reported that the levels of Pin1 and Notch intracellular domain 1 (NICD1), 
an active domain of Notch, were both increased following stroke (Baik et 
al., 2015). Further research showed that the overexpression of Pin1 could 
promote NICD1 stability and its pro-apoptotic function after stroke (Baik et 
al., 2015). It was also found that Pin1 binds to and stabilizes NICD1 domain 
through the WW domain (Baik et al., 2015). Following stroke, Pin1 interacts 
with NICD1 and enhances its stability by inhibiting F-box and WD repeat 
domain containing domain protein 7-mediated poly-ubiquitination, ultimately 

leading to NICD1-induced neuronal apoptosis (Wang et al., 2014; Baik et 
al., 2015). Other research indicated that Pin1 regulates p53 transactivation 
and the upregulation of pro-apoptotic genes, such as Bax, via the activation 
of NICD1, finally promoting neuronal apoptosis and stroke (Balaganapathy 
et al., 2018). The tumor suppressor p53 is an important decision maker 
in the cell cycle and apoptosis and responds to a series of stimulations. It 
has been reported that the phosphorylated form of p53 induced by stress 
combines with the WW-domain of Pin1 to form a complex (Arumugam et 
al., 2018; Balaganapathy et al., 2018). Next, phosphorylated p53 undergoes 
a conformational change that is catalyzed by Pin1, thus enhancing the 
transactivation activity of p53 (Zacchi et al., 2002; Balaganapathy et al., 
2018). The interaction between NICD1 and p53 is an important signaling 
step that induces neuronal apoptosis in stroke (Arumugam et al., 2018). The 
disturbance of NICD1/p53 interaction could ameliorate the process of stroke 
(Balaganapathy et al., 2018). In addition, some other reports indicated that 
the production of reactive oxygen species (ROS) was a critical effector in the 
Pin1-Notch-p53 pathway and plays a role in the activation of apoptosis in 
stroke (Li et al., 2019).

Pin1 mediates neuronal apoptosis in SCI
SCI is a severe trauma that causes severe injury to the function of the motor 
and sensory neurons of the spinal cord and generally is associated with a poor 
prognosis (Yuan et al., 2021). Myeloid cell leukemia sequence-1 (Mcl-1), an 
anti-apoptotic factor of the Bcl-2 family, remains phosphorylated in the basal 
state (Carlet et al., 2021). In normal neurons, Pin1 binds with pT163-Mcl-1 and 
inhibits Mcl-1 ubiquitination and degradation (Li et al., 2017). However, after 
SCI injury, Mcl-1 undergoes degradation following the removal of Pin1, thus 
resulting in Bcl-2 inhibition and the release of cytochrome C into the cytosol 
(Li et al., 2007). Furthermore, the activation of c-Jun N-terminal kinase (JNK) 
induced by SCI can perturb the interaction between Pin1 and phosphorylated 
Mcl-1, thereby promoting the release of cytochrome C (Li et al., 2007). The 
JNK pathway plays a complicated role in many physiological and pathological 
processes, such as cell apoptosis and differentiation, and may be activated 
by various stress signals and inflammation (Zhang et al., 2021). JNK also can 
promote the mitochondrial apoptotic pathway by regulating the release of 
BAX under the control of Pin1 (Shen et al., 2009). Other reports have also 
indicated that Pin1 binds to the Ser178-Pro motif in phosphorylated death 
domain associated protein and promotes the degradation of death domain 
associated protein via ubiquitination (Ryo et al., 2007). Degraded death 
domain associated protein can interact with apoptosis signal-regulating kinase 
1 and then activate the apoptosis signal-regulating kinase 1/JNK signaling 
pathway (Ryo et al., 2007; Oh and Mouradian, 2018). Most importantly, Pin1 
also binds with phosphorylated Bcl-2-interacting mediator of cell death, extra-
long (BIMEL) at Ser65 and JNK-interacting protein 3 to form a complex (Becker 
and Bonni, 2006, 2007). Pin1 also mediates the isomerization of BIMEL and 
leads to a conformational change in pSer65-BIMEL (Becker and Bonni, 2006, 
2007). It has also been reported that the phosphorylation of BIMEL at Ser65 
in non-neural cells can promote the degradation of BIMEL by the proteasome 
(Ley et al., 2004; Becker and Bonni, 2006). Although the presence of Pin1 in 
a neuron-specific JNK signaling complex also allows Pin1 to bind with BIMEL, 
Pin1 could promots a conformational change in pS65-BIMEL and protect pS65-
BIMEL from proteasomal degradation in neurons, finally leading to neuronal 
apoptosis (Becker and Bonni, 2006; Barone et al., 2008). It should be noted 
that phosphorylated BIMEL elicits distinct effects depending on cell type, thus 
leading to neuronal apoptosis and the prevention of non-neuronal apoptosis 
(Becker and Bonni, 2006, 2007). In neurons, Pin1 activates the mitochondrial 
apoptotic machinery; this might be caused by Pin1 coming into close 
proximity with its substrate BIMEL, which is localized to the mitochondrial 
membrane. In non-neuronal cells, Pin1 is mainly localized in the nucleus. Pin1 
and BIMEL are localized in distinct cell compartments; this might allow for the 
degradation of BIMEL (Becker and Bonni, 2006, 2007; Barone et al., 2008).

Pin1 mediates neuronal apoptosis in epilepsy
Epilepsy is a neurodegenerative disorder that is characterized by repeated 
seizures caused by the uncontrolled and abnormal firing of neurons (Liu et 
al., 2019b). Early studies indicated that the expression of Pin1 was remarkably 
reduced in epileptic patients (Becker and Bonni, 2007; Tang et al., 2017). 
Studies of an epileptic mouse model suggested the interaction of Pin1 with 
N-methyl-D-aspartic acid receptors and that this might be associated with 
the excitotoxicity of pyramidal neurons (Tang et al., 2017). Excitotoxicity 
is a toxic event induced by an excess of excitatory amino acids receptors 
which leads to excitotoxic neuronal death (Liu et al., 2019b). This report 
was further confirmed by other researchers who found that Pin1 deletion 
led to a significant increase in seizure susceptibility in chemical-induced 
epileptic mouse models (Becker and Bonni, 2007). Pin1 deletion was also 
shown to enhance the phosphorylation of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors by phosphorylating calcium/calmodulin-
dependent protein kinase II (CaMKII) (Becker and Bonni, 2007). In a clinical 
study, the levels of Pin1 were found to be reduced, while the levels of p-CaMKII 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid were significantly 
increased in the neocortex of epileptic patients (Tang et al., 2017). Moreover, 
in a mouse model of epilepsy, the re-expression of Pin1 in Pin1-deletion 
mice led to a significant down-regulation of p-CaMKII and α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid; this was accompanied by the 
effective suppression of seizure susceptibility (Tang et al., 2017). Thus, Pin1 
is an important controlling effector in epilepsy; this indicates that Pin1 is an 
attractive therapeutic strategy for epilepsy (Hou et al., 2021).
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Figure 1 ｜ Timeline of the milestones of Pin1-mediated neuronal death in 
neurodegenerative diseases. 
AD: Alzheimer’s disease; HD: Huntington’s disease; PD: Parkinson’s disease; Pin1: Prolyl 
cistrans isomerase NIMA-interacting 1; SCI: spinal cord injury; TBI: traumatic brain injury. 
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Figure 2 ｜ The molecular mechanisms underlying Pin1-regulated apoptosis signaling 
pathways. 
In AD, reduced levels of Pin1 inhibits GSK-3β enzymatic activity; this could inhibit HIF-
1 protein degradation and contribute to the expression of the cis isoform of pT668-
APP. Next, the increased production of Aβ accelerates the formation of the cis isoform 
of pT231-Tau, finally promoting the progression of AD. Furthermore, caspase-3 can be 
activated by the accumulation of Aβ and promotes the formation of the cis isoform 
of pT231-Tau. In TBI, increased levels of DAPK1 inhibits Pin1 and then promotes the 
transformation of cis pT231-Tau as well as TBI. In PD, the overexpression of Pin1 
facilitates the formation and stability of α-synuclein aggregation and promotes caspase-3 
activation, finally leading to PD. In HD, Htt directly increases the activation of p53 and 
Pin1. Pin1 also interacts with p53 and triggers dissociation from its inhibitor iASPP. In 
addition, the overexpression of Pin1 leads to a reduction of Htt accumulation via UPS-
mediated degradation. In stroke, increased levels of Pin1 promotes the stability of NICD 
by inhibiting FBW7-mediated poly-ubiquitination, up-regulates p53 transactivation, and 
enhances the production of ROS. In SCI, Pin1 promotes the degradation of Daxx and then 
activates the ASK1/JNK signaling pathway; this could promote Mcl-1 degradation and 
Bcl-2 inhibition. Pin1 also binds with and mediates a conformational change in pSer65-
BIMEL to protect pS65-BIMEL from proteasomal degradation, finally leading to neuronal 
apoptosis. In epilepsy, the deletion of Pin1 enhanced AMPA and NMDA receptors by 
phosphorylating CaMKII, finally inducing excitotoxic neuronal death. In age-related 
neurodegeneration, Pin1 is progressively associated with lipofuscin, thus resulting in the 
generation of ROS; this process can be deleterious to neurons. AD: Alzheimer’s disease; 
AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; APP: amyloid precursor 
protein; ASK1: apoptosis signal-regulating kinase 1; Aβ: β-amyloid peptide; BAX: Bcl-2-
associated X; Bcl-2: B-cell lymphoma 2; BIMEL: Bcl-2-interacting mediator of cell death, 
extra long; CaMKII: calmodulin-dependent protein kinase II; cyt C: cytochrome C; DAPK1: 
death-associated protein kinase 1; Daxx: death domain associated protein; FBW7: 
F-box and WD repeat domain containing domain protein 7; GSK-3β: glycogen synthase 
kinase-3β; HD: Huntington’s disease; HIF-1: hypoxia-inducible transcription factor-1; Htt: 
Huntingtin; iASPP: inhibitor of apoptosis-stimulating protein of p53; JNK: C-Jun N-terminal 
kinase; Mcl-1: myeloid cell leukemia sequence-1; NICD1: Notch intracellular domain 1; 
NMDA: N-methyl-D-aspartic acid receptor; PD: Parkinson’s disease; Pin1: prolyl cistrans 
isomerase NIMA-interacting 1; SCI: spinal cord injury; TBI: traumatic brain injury; UPS: 
ubiquitin-proteasome system.
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Pin1 mediates neuronal apoptosis in other neurodegenerative diseases
It has been reported that Pin plays an important role in age-related 
neurodegeneration. Lipofuscin is an age-associated pigment and a cytological 
characteristic of post-mitotic cell aging (Van Houten, 2019). Hashemzadeh-
Bonehi et al. (2006) found that the levels of Pin1 were progressively 
associated with lipofuscin in the intracellular granules of aging neurons. These 
researchers also found that Pin1 can be modified and become dysfunctional 
post-translationally. As a result, the binding of Pin1 could be cleared via the 
endosomal pathway as the micro-environment was not suitable for Pin1 
(Hashemzadeh-Bonehi et al., 2006). Eventually, this binding could reduce 
the amount of soluble Pin1 in neurons, thus resulting in oxidative stress; this 
could have a deleterious effect on neurons during aging (Hashemzadeh-Bonehi 
et al., 2006).

Regulated Necrosis
Under chronic neurodegenerative diseases and accident conditions, such as 
ischemic injury, cells may undergo morphological changes involving necrosis 
(Charidimou et al., 2020). Traditional views consider that necrosis is a type of 
passive and uncontrolled cell death that occurs around the damaged tissues. 
However, in recent years, some reports have indicated that, in addition 
to the classic form of necrosis, there is a type of procedural necrosis that 
can be regulated but undergoes classicical necrotic morphological changes 
(Degterev et al., 2005; Yuan et al., 2019). In 2005, Yuan’s team (Degterev et 
al., 2005; Yuan et al., 2019) first proposed a new term to define this form of 
RN, and referred to this as necroptosis, also known as programmed necrosis. 
RN is known to play vital roles in various physiological and pathophysiology 
processes, such as neurodegenerative disorders. Thus far, a series of 
different types of RN have been identified, including receptor interacting 
protein 3-mediated necroptosis that can be induced by tumor necrosis 
factor, pyroptosis that relies on the activation of caspase-1 and is triggered 
by microbial infection, aerastin-mediated ferroptosis that requires excessive 
iron, and mitochondrial permeability transition dependent RN (Yuan et al., 
2019; Alu et al., 2020; Chen et al., 2020; Liao et al., 2021; Tonnus et al., 
2021). Although these types of RN are named distinctly, their regulatory 
signaling pathways exhibit some degree of crosstalk (Alu et al., 2020). For 
example, in some stimuli, such as excitatory amino injury and ischemia, 
calcium overloading could result in different types of RN (Ros et al., 2017). 
However, the precise control mechanisms underlying RN are still unclear and 
should be further investigated. Over recent years, the relationship between 
Pin1 and RN has been described in certain neurodegenerative disorders; for 
example, Pin1 knockout mice showed significantly increased levels of retinal 
neuronal necrosis (Figure 3) (Kuboki et al., 2009; Wang et al., 2017, 2019a). In 
this section, we discuss the role of Pin1 in RN and certain neurodegenerative 
disorders.

Pin1 mediates neuronal RN in brain ischemia and traumatic injury
As discussed above, Pin1 has been shown to be an important regulator 
of neurodegenerative diseases, such as AD. It has been suggested, that in 
the process of AD, DAPK1 acts up-stream of Pin1 (Bialik and Kimchi, 2011). 
Studies have found that the over-expression of DAPK1 resulted in a strong 
and significant enhancement of necrotic neurodegeneration in postsynaptic 
neurons and that this was mediated by CaMK activation and the excessive 
influx of ions into the neurons (Del Rosario et al., 2015; Wang et al., 2017). 
Several studies have reported that DAPK1 is involved in excitotoxicity, 
although the regulatory mechanisms involved remain unclear. Some reports 
have indicated that DAPK1 acts as a modulatory adaptor to control the choice 
between necrosis and autophagy (Prokesch et al., 2017; Singh and Talwar, 
2017). However, in acute brain injury conditions, there was no significant 
change in the levels of light chain 3 in neurons that overexpressed DAPK1, 
thus demonstrating that DAPK1 may not play a role in autophagy in such acute 
neurodegenerative conditions (Stevens and Hupp, 2008; Huang et al., 2014; 
Wang et al., 2017). Consistent with this result, the blockade of autophagy 
had no significant effects on neurodegeneration in DAPK1 knockout neurons. 
In this condition, DAPK1-dependent necrosis of the postsynaptic neurons 
could be triggered by the excessive influx of ions (Wang et al., 2017). These 
authors also found that Pin1 acts as an important down-regulator in DAPK1-
induced excitotoxic necrosis (Wang et al., 2017). Collectively, these results 
suggested that DAPK1 contributes to cell necrosis but not autophagy, which 
is Pin1 dependent. Notably, several studies have shown that Pin1 is an up-
regulator of DAPK1 in neuronal development (Chen et al., 2017). This may be 
because the signaling cascades might be dependend on the exact scenario 
under different conditions (Del Rosario et al., 2015). Future studies now need 
to determine why the relationship between upstream and downstream of 
DAPK1 and Pin1 differ in a manner that is dependent on the cellular context 
(Ibarra et al., 2017). 

Pin1 mediates neuronal RN in retinal diseases
The dysfunction of Pin1 is thought to cause retinal neuronal necrosis in 
glaucoma. Globally, glaucoma is the second most common eye disease that 
causes blindness and is characterized by the loss of retinal ganglion cells 
(Erickson, 2021; Huang et al., 2021). Various contributors, such as ischemia, 
axonal transport failure, and excitatory amino acids toxicity, are thought to be 
major risks for the death of retinal ganglion cells. In previous studies, Wang 
et al. (2017, 2019b) found that calpain-2 (m-calpain) played a regulatory role 
in the necrosis of retinal ganglion cells following glutamate excitotoxicity. 
Calpains are a ubiquitous form of calcium-dependent protease and have 
been widely investigated in different types of cellular processes, such as cell 
survival, proliferation, and death. Calpain-1 (u-calpain) and calpain-2, which 
require micromolar and millimolar concentrations of calcium for activation 
respectively, are the two main forms of calpains in the CNS (Wang et al., 2013, 
2017). Calpastatin (CAST) is an endogenous specific inhibitor of calpains (Wang 
et al., 2013; Cheng et al., 2018). Following glutamate excitotoxicity injury, 
calpain-2, but not calpain-1, is activated and cleaves apoptosis-induced factor 
which can then translocate to the nucleus and induce DNA degradation, 
ultimately resulting in neuronal RN (Wang et al., 2017, 2019a). These 
opposing changes in calpain-1 and calpain-2 may be due to the differential 
roles of calpain-1 and calpain-2 after glutamate excitotoxicity (Wang et al., 
2017, 2019a, b). As Wang et al. (2013, 2017, 2019a, b) reported, calpain-1 
is coupled with the synaptic N-methyl-D-aspartic acid receptor and plays a 
protective role after activation, while calpain-2 is coupled with extrasynaptic 
N-methyl-D-aspartic acid receptor and is deleterious after activation. 
Therefore, it is possible that the protective role of calpain-1 may be impaired 
after glutamate injury. In a further study, Cheng et al. (2018) showed that Pin1 
could interact with and inhibit CAST in retinal neurons. Following glutamate 
injury, the interaction of Pin1 with CAST was enhanced, thus leading to a 
reductive inhibitory effect of CAST on calpain-2 (Wang et al., 2017). However, 
the inhibition of Pin1 expression and activation by small interference RNA 
and juglone (a specific inhibitor of Pin1 was shown to significantly enhance 
the activation of CAST; in turn, this recovers the inhibitory role on calpain-2 
(Wang et al., 2017). Furthermore, Wang et al. (2019a) found that Pin1 is an 
important down-effector of CaMKII. Following glutamate injury, Pin1 activated 
ionotropic glutamate receptors and led to calcium overloading (Wang et al., 
2019a). Subsequently, the overload of calcium activated CaMKII and CaMKII-
meditated Pin1 activation (Wang et al., 2019a). Other research reported 
that Pin1 can upregulate CaMKII and Pin1 expression and effectively reduce 
the activation of CaMKII to finally suppress seizure susceptibility (Hou et al., 
2021). The upstream and downstream relationship between Pin1 and CaMKII 
may depend on the cellular and disease context (Hou et al., 2021). Further 
research should aim to specifically investigate the function of Pin1 in retinal-
related diseases. 

Autophagy 
Autophagy is an important physiological and pathological process that 
degrades intracellular dysfunctional and degenerated proteins and damaged 
organelles to become autophagosomes and then fuse with lysosomes to 
form autolysosomes (Chao et al., 2021). Under normal conditions, autophagy 
plays a critical role in cellular homeostasis, such as cell survival, renewal and 
recycling, as autophagy is the primary pathway for recycling biomolecules and 
organelles by degradation (Chao et al., 2021). Autophagy is also considered as 
a vital factor in a range of neurodegenerative conditions, such as AD (Levine 
and Kroemer, 2008; Rami, 2009; Guo et al., 2021). However, in contrast to 
the role of Pin1 in apoptosis, the molecular mechanisms of Pin1 regulation in 
autophagy signaling pathways and its role in neurodegeneration still remain 
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Figure 3 ｜ The molecular mechanisms responsible for how Pin1 regulates RN and 
autophagy signaling pathways. 
In RN in brain ischemia and traumatic injury, Pin1 acts as an important down-regulator 
of DAPK1-induced excitotoxic necrosis. The overexpression of DAPK1 resulted in a 
strong and significant enhancement of necrotic neurodegeneration in postsynaptic 
neurons; this was mediated by CaMK activation and the excessive influx of ions into the 
neurons. The DAPK1-dependent necrosis of postsynaptic neurons can be triggered by an 
excessive influx of ions. In RN in retinal diseases, Pin1 activation, induced by activated 
ionotropic glutamate receptor-mediated CaMKII and CaMKII activation, was shown to 
inhibit and enhance calpain-2 activity; this activated AIF, ultimately resulting in neuronal 
RN. In autophagy in AD, the inhibition of Pin1 promotes GSK-3β expression by inhibiting 
proteasome and Akt activation, and stimulating cell death via autophagy, as shown by 
increased levels of LC3-II. AD: Alzheimer’s disease; AMPA: α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid; Aβ: β-amyloid peptide; CaM: calmodulin; CaMKII: calmodulin-
dependent protein kinase II; CAST: calpastatin; GSK-3β: glycogen synthase kinase-3β; 
NMDA: N-methyl-D-aspartic acid receptor; NMDAR: NMDA receptor; Pin1: prolyl cistrans 
isomerase NIMA-interacting 1; RGCs: retinal ganglion cells; RN: regulated necrosis; tAIF: 
truncated apoptosis-induced factor.
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unclear and need to be investigated (Figure 3). 

Recent studies have revealed the underlying connections between Pin1-
mediated autophagy and neuronal toxicity in AD (Del Rosario et al., 2015; 
Chao et al., 2021). It has been shown that increased levels of APP expression 
could cause AD. Reduced levels of Pin1 and increased levels GSK-3β, a 47-
kDa isoform of the GSK3 family, were previously detected in the brains of 
AD patients and shown to be involved in the processing of APP processing 
(Del Rosario et al., 2015). It has also been reported that APP can be 
phosphorylated by GSK-3β, and that the activation of GSK-3β increases the 
production of APP and toxicity (Zhou et al., 2021). Further research showed 
that Pin1 could bind to the phosphorylated Thr330 motif of GSK-3β and 
inhibits its kinase activity in human neuronal and glioma cells (So and Oh, 
2015). Pin1 deficiency or deletion of the binding site in GSK-3β led to an 
increase in GSK-3β activity, the increased stability of APP, and the production 
of toxic APP, thus suggesting the important role of Pin1 in neuronal death (Del 
Rosario et al., 2015). In addition, the over-expression of Pin1 can promote 
the turnover of APP protein by binding and inhibiting GSK-3β kinase activity, 
thus providing a novel mechanism for Pin1 in protection against AD (Min et 
al., 2005; Ma et al., 2012). Akt has also been identified as an intermediary 
between Pin1 and GSK-3β (Kim et al., 2009). GSK-3β is a target of Akt and can 
be inhibited by Akt activation (Kim et al., 2009). Eventually, Pin1 could affect 
the levels of GSK-3β protein by regulating Akt (So et al., 2015). In addition, 
Pin1 has been considered as a regulator of the proteasome (So and Oh, 2015). 
The inhibition of Pin1 restored GSK-3β expression by inhibiting proteasome 
degradation, and stimulated cell death via autophagy, as demonstrated by 
increased levels of light chain 3-II (So and Oh, 2015). It should be noted that 
the inhibition of GSK-3β induces the activation of Pin1. Therefore, these data 
suggest that GSK-3β may also be a mediator for the regulation of Pin1 activity 
in autophagy (Chao et al., 2021). Collectively, this data suggests that Pin1-
GSK-3β pathway-mediated neuronal toxicity acts via autophagy in AD.

Inhibitors of Pin1 and Potential Clinical 
Applications 
Pin1 is a potential therapeutic target for neurological diseases (Zabłocka et 
al., 2021). By screening a series of compound libraries, a number of Pin1 
inhibitors have been identified that could provide protective effects by 
inhibiting the activity of Pin1 PPIase. According to their specific effects on 
Pin1 PPIase domain activity, Pin1 inhibitors can be classified as either covalent 
or non-covalent types (Pinch et al., 2020). After binding to the Pin1 PPIase 
domain, covalent Pin1 inhibitors, such as Juglone and KPT-6566, can induce a 
covalent modification of the thiol group of cysteine residues in the Pin1 PPIase 
domain (Campaner et al., 2017; Bedouhene et al., 2021). Via these covalent 
modifications, covalent Pin1 inhibitors can irreversibly block the activity of the 
Pin1 PPIase domain (Pinch et al., 2020). Most of the Pin1 inhibitors are non-
covalent types, such as 2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one (TME-
001), diethyl-1,3,6,8-tetrahydro-1,3,6,8-tetraoxobenzol-phenanthroline-2,7-
diacetate (PiB), all-trans retinoic acid (ATRA), and arsenic trioxide (ATO) (Mori 
et al., 2011; Kozono et al., 2018; Bedouhene et al., 2021). Non-covalent Pin1 
inhibitors can also bind to the Pin1 PPIase domain, but inhibit Pin1 activity 
in a competitive manner (Kozono et al., 2018). However, the Pin1 inhibitors 
identified thus far are associated with limitations that restrict their use in 
clinical treatments (Additional Table 2). Highly specific and potent Pin1 
inhibitors are urgently needed.

Juglone was the first identified inhibitor that can inhibit the activity of Pin1. 
Juglone has been shown to inhibit neuronal damage in some experimental 
models of disease, such as PD and AD. Juglone irreversibly inhibits Pin1 
catalytic domain PPIase activity at high concentrations Although the inhibition 
of Pin1 by Juglone is effective against neuronal damage both in vitro and 
in vivo, the lack of Pin1 specificity and toxicity at high concentrations 
create significant limitations with regards to potential application in clinical 
treatments. Therefore, further research now needs to evaluate or design 
potent and specific Pin1 inhibitors for therapeutic use. KPT-6566 is known to 
degrade Pin1 with higher levels of specificity and can reduce the expression 
of cyclin D1. Furthermore, KPT-6566 can induce cell apoptosis by generating 
ROS and inhibits cell proliferation in both breast and prostate cancer. More 
importantly, KPT-6566 inhibits the growth of cells over-expressing Pin1 
overexpressing but not Pin1 knockdown cells in vitro or in vivo, thus suggesting 
that KPT-6566 can specifically suppress the activity of Pin1. However, further 
experimental and clinical investigations are now needed to explore the efficacy 
and safety of KPT-6566 for the treatment of neurological diseases.

TME-001, PiB, epigallocatechin-3-gallate, dipentamethylene thiuram 
monosulfide, 6,7,4′-trihydroxyisoflavone and 4,6-bis (benzyloxy)-3-
phenylbenzofuran have been found to inhibit the growth of cancer cells by 
inhibiting the Pin1 PPIase catalytic domain in a competitive manner (Tatara et 
al., 2009; Mori et al., 2011; Lim et al., 2017; Fan et al., 2019; Bedouhene et 
al., 2021; Della Via et al., 2021). It should be noted that positive PiB uptake in 
the cerebral cortex has been detected, thus indicating that PiB may be useful 
for the treatment of neurological diseases (Antonelli et al., 2016; Liu et al., 
2019a). Epigallocatechin-3-gallate (EGCG) induces the death of cancer cells 
through different pathways, such as the release of nitric oxide, and is not 
limited to Pin1-mediated pathways (Della Via et al., 2021). In addition, only 
PiB has been reported to be involved in synaptic transmission by inhibiting 
Pin1 activity in the CNS (Antonelli et al., 2016). A previous study found that 
5′-nitro-indirubinoxime can reduce the expression of Pin1 and induce G1 
phase cell cycle arrest, finally inhibiting the growth of lung cells (Yoon et al., 

2012). 5′-Nitro-indirubinoxime can also block Polo-like kinase 1 signaling (Yoon 
et al., 2012). API-1 is a newly detected form of Pin1 inhibitor that can strongly 
inhibit the PPIase domain. Previous research found that hepatoma carcinoma 
cells were not affected by API-1, possibly may due to low efficacy (Sun et 
al., 2019). Both ATRA and ATO have been approved by the U. S. Food and 
Drug Administration for the treatment of patients with acute promyelocytic 
leukemia (Kozono et al., 2018; Bedouhene et al., 2021). Furthermore, ATO 
and ATRA exert a synergistic effect to inhibit the growth of breast cancer 
cells. ATRA and ATO can bind to the Pin1 catalytic PPIase domain in a non-
covalent form, degrade the levels of Pin1, and reduce the expression of cyclin 
D1 (Kozono et al., 2018). However, the short half-life of ATRA may reduce 
its efficacy against tumors (Bedouhene et al., 2021). Moreover, the lack 
specificity of Pin1 also impede its application, as ATO can directly degrade 
cyclin D1 (Kozono et al., 2018). Although these Pin1 inhibitors are effective 
against proliferation in various cancer cells in vitro, their efficacy for the 
treatment of neurological diseases has yet to be investigated. Moreover, the 
poor solubility and specificity of these inhibitors also limit their potential 
therapeutic ability in the clinic.

Conclusion 
RCD, including apoptosis, autophagy, and RN, is a type of controlled cellular 
death that contributes to the physiological balance in cell clearance and 
organ homeostasis. Over the past few years, several studies have indicated 
that the aberration of Pin1 expression is a pathological characteristic and 
plays a crucial regulatory role in neuronal RCD, especially in apoptosis. Pin1 
dysfunction also occurs in patients with various neurodegenerative diseases 
and is correlated with poor therapeutic efficiency. The inhibition of Pin1 plays 
a vital role in neuronal survival. Therefore, Pin1 may represent a potential 
key therapeutic target for related neurodegenerative diseases. Intriguingly, 
Pin1 acts in both protective and harmful roles to regulate the neuronal 
death; the precise effects are dependent on different cellular contexts. This 
is because Pin1 mediates multiple mechanisms by binding with different 
targets. Then, Pin1 regulates different cellular physiological processes, finally 
inducing different consequences. The regulatory pathways that mediate Pin1 
targets are quite distinct, thus indicating the necessary of using different 
disease models to investigate disease development and the pharmacological 
treatment of Pin1-related CNS diseases. Further research is also needed to 
investigate the potential effect of Pin1 as a biomarker for neurodegenerative 
diseases and in different stages of disease. Furthermore, although many Pin1 
inhibitors have been identified that can inhibit the growth of tumor cells in in 
vitro, there are obvious limitations with regards to their clinical application, 
including poor solubility, side effects, specificity, and the lack of investigations 
in the CNS. Highly specific and potent Pin1 inhibitors now needed to be tested 
in the CNS. Furthermore, effective methods for Pin1 inhibitor screening are 
also needed to select potentially useful compounds. For example, Tatara et al. 
screened chemical compounds containing fused aromatic rings that inhibited 
Pin1 PPIase activity and identified PiB as an effective inhibitor for Pin1 (Tatara 
et al., 2009). Molecular modeling by computer simulation technology is also 
important as this could easily reveal the underlying interactions of the active 
domain of Pin1 with specific inhibitors. Furthermore, efforts should be made 
to promote the efficacy of combined targeted therapies and to prevent drug 
resistance. It should be noted that we must identify specific inhibitors with 
fewer adverse effects. Finally, we must also develop a highly efficient delivery 
system to improve the bioaccessibility and bioavailability of Pin1 inhibitors in 
both pre-clinical and clinical studies.

It should also be noted that the signaling pathways of Pin1 in different 
neurodegenerative diseases is complicated and that these pathways may 
interact with each other. Future studies are needed to investigate such 
interactive networks and gain a better understanding of Pin1-mediated 
diseases. Remarkably, although many research studies have reported that Pin1 
is an important target in apoptosis for the treatment of neurodegenerative 
diseases, such as AD, there are still many challenges. For example, we still 
need to investigate the specific role of Pin1 in RN and autophagy.
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Additional Table 1 Summary of Pin1 changes in neurodegenerative diseases

Cell death
type

Disease Pin1 changes in disease Main molecule in
disease

Role of Pin in death Reference

Apoptosis AD Decreased in AD patients Pin1, GSK-3β, APP,
HIF-1α, Aβ, p-Tau

Inhibits apoptosis Lu et al., 1999; Thorpe et al., 2004; Hashemzadeh-Bonehi et al., 2006;
Pastorino et al., 2006; Kesavapany et al., 2007; Nowotny et al., 2007;
Dakson et al., 2011; O'Brien and Wong, 2011; Lonati et al., 2014; Azimi
et al., 2017; Xu et al., 2017; Rong et al., 2017; Samimi et al., 2021;
Nakhjiri et al., 2020; Li et al., 2021a; Wang et al., 2020a; Zheng et al.,
2021

TBI Decreased in TBI models DAPK1, Pin1, p-Tau Kim et al., 2021; Qiu et al., 2021; Tonnus et al., 2021
PD Increased in PD patients Pin1, α-synuclein,

caspase-3
Promotes apoptosis Ghosh et al., 2013; Matena et al., 2013; Ibáñez et al., 2014; Ryo et al.,

2006
HD Increased in HD patients;

Decreased in HD models
Htt, Pin1, iASPP, p53 Both inhibits and

promotes apoptosis
Grison et al., 2011; Agostoni et al., 2016; Carnemolla et al., 2017

Stroke Increased in Stroke models Pin1, FBX7, NICD1, p53 Promotes apoptosis Zacchi et al., 2002; Baik et al., 2015; Arumugam et al., 2018;
Balaganapathy et al., 2018; Li et al., 2019

SCI Increased in SCI models Pin1, Daxx, ASK1,
BIMEL, JNK, Mcl-2,
BAX, Bcl-2

Becker and Bonni, 2006, 2007; Ryo et al., 2007; Barone et al., 2008;
Shen et al., 2009; Li et al., 2017; Oh and Mouradian, 2018; Zhang
et al., 2021

Epilepsy Decreased in epileptic models CaMKII, AMPA and
NMDA receptors

Inhibits apoptosis Becker and Bonni, 2007; Tang et al., 2017; Hou et al., 2021

Other neurodegenerative
diseases

Decreased in age-related
neurodegeneration patients

Lipofuscin Hashemzadeh-Bonehi et al., 2006

RN Brain ischemia and
traumatic injury

Increased in brain ischemia and
traumatic injury models

Calcium, DAPK, Pin1 Promotes RN Bialik and Kimchi, 2011; Del Rosario et al., 2015; Chen et al., 2017;
Ibarra et al., 2017; Wang et al., 2017

Retinal disease Increased in retinal disease Calcium, CaM, CaMKII,
Pin1, CAST, Calpain2,
AIF

Wang et al., 2017, 2019a, b; Cheng et al., 2018; Hou et al., 2021

Autophagy AD Decreased in AD patients Pin1, Akt, Ubiquitin,
GSK-3β, Aβ, LC3-II

Promotes autophagy Min et al., 2005; Ma et al., 2012; Del Rosario et al., 2015; So and
Oh, 2015; Kim et al., 2009; Chao et al., 2021

AD: Alzheimer’s disease; AIF: apoptosis-induced factor; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; APP: amyloid precursor protein; ASK1: apoptosis signal-regulating kinase 1; Aβ: β-amyloid
peptide; BAX: Bcl2-associated X; Bcl-2: B-cell lymphoma 2; BIMEL: Bcl-2-interacting mediator of cell death, extra long; CaM: calmodulin; CaMKII: calmodulin-dependent protein kinase II; CAST: calpastatin; DAPK1:
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death-associated protein kinase 1; Daxx: death domain associated protein; FBW7: F-box and WD repeat domain containing domain protein 7; GSK-3β: glycogen synthase kinase-3β; HD: Huntington’s disease; HIF-1:
Hypoxia-inducible transcription factor-1; Htt: Huntingtin; iASPP: inhibitor of apoptosis-stimulating protein of p53; JNK: C-Jun N-terminal kinase; LC3: long chain 3; Mcl-1: myeloid cell leukemia sequence-1; NICD1:
Notch intracellular domain 1; NMDA: N-methyl-D-aspartic acid receptor; PD: Parkinson’s disease; Pin1: prolyl cistrans isomerase NIMA-interacting 1; RN: regulated necrosis; SCI: spinal cord injury; TBI: traumatic
brain injury.
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Additional Table 2 Summary of Pin1 inhibitors

Drug Details Mechanisms of action Tested models Limitations Reference

Juglone First Pin1 inhibitor; Has effect on CNS Irreversible inhibition of Pin1 PPIase
catalytic domain;
Degradation of Pin1 protein

Cell line; Mouse Non-specific inhibition Ghosh et al., 2013; Liu et al.,
2019a; Bedouhene et al., 2021

KPT-6566 Exerts both Pin1 inhibitory and
cytotoxic effects;
Inhibits cancer cells growth

Specific inhibition of Pin1 PPIase
catalytic domain

No testing in neurological diseases and
clinical trial

Campaner et al., 2017

TME-001 Inhibits cancer cells growth Competitive inhibition of Pin1 PPIase
catalytic domain

Cell line Mori et al., 2011
PiB Inhibits cancer cells growth;

Has effect on CNS
No testing in clinical trial;
Poor solubility

Antonelli et al., 2016; Liu et al.,
2019a

DTM Inhibits cancer cells growth No testing in neurological diseases and
clinical trial

Tatara et al., 2009
TAB29 Fan et al., 2019
6,7,4'-THIF Lim et al., 2017
EGCG Cell line; mouse No testing in neurological diseases and

clinical trial; Non-specific inhibition
Della Via et al., 2021

API-1 Cell line No testing in neurological diseases and
clinical trial;
Low efficacy

Sun et al., 2019

5'-NIO Inhibits cancer cells growth; Causes G1
phase arrest

Degradation of Pin1 protein Cell line No testing in neurological diseases and
clinical trial; Non-specific inhibition

Yoon et al., 2012

ATRA FDA approved for treatment of APL Specific inhibition of Pin1 PPIase
catalytic domain;
Degradation of Pin1 protein

Cell line; mouse;
human

No testing in neurological diseases and
clinical trial;
Short half-life (45 min)

Kozono et al., 2018; Bedouhene et
al., 2021

ATO No testing in neurological diseases and
clinical trial;
Lack of Pin1 specificity

Kozono et al., 2018; Bedouhene et
al., 2021

5'-NIO: 5'-Nitro-indirubinoxime; 6,7,4'-THIF: 6,7,4'-trihydroxyisoflavone; APL: acute promyelocytic leukemia; ATO: arsenic trioxide; ATRA: all-trans retinoic acid; CNS: central nervous system; DTM:
dipentamethylene thiuram monosulfide; EGCG: epigallocatechin-3-gallate; FDA: U.S. Food and Drug Administration; PiB: diethyl-1,3,6,8-tetrahydro-1,3,6,8-tetraoxobenzol-phenanthroline-2,7-diacetate; Pin1: prolyl
cistrans isomerase NIMA-interacting 1; TAB29: 4,6-bis(benzyloxy)-3-phenylbenzofuran; TME-001: 2-(3-chloro-4-fluoro-phenyl)-isothiazol-3-one.
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