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Abstract: Amyloid-formation by the islet amyloid polypeptide (IAPP), produced by the β-cells in the
human pancreas, has been associated with the development of type II diabetes mellitus (T2DM). The
human plasma-protein transthyretin (TTR), a well-known amyloid-inhibiting protein, is interestingly
also expressed within the IAPP producing β-cells. In the present study, we have characterized the
ability of TTR to interfere with IAPP amyloid-formation, both in terms of its intrinsic stability as
well as with regard to the effect of TTR-stabilizing drugs. The results show that TTR can prolong the
lag-phase as well as impair elongation in the course of IAPP-amyloid formation. We also show that
the interfering ability correlates inversely with the thermodynamic stability of TTR, while no such
correlation was observed as a function of kinetic stability. Furthermore, we demonstrate that the
ability of TTR to interfere is maintained also at the low pH environment within the IAPP-containing
granules of the pancreatic β-cells. However, at both neutral and low pH, the addition of TTR-
stabilizing drugs partly impaired its efficacy. Taken together, these results expose mechanisms of
TTR-mediated inhibition of IAPP amyloid-formation and highlights a potential therapeutic target to
prevent the onset of T2DM.
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1. Introduction

Amyloids are characterized by extended β-sheet rich fibrillar structures and are today
linked to more than 30 different human disorders, including Alzheimer’s disease, Parkin-
son’s disease, and type 2 diabetes mellitus (T2DM) [1]. The amyloid component of T2DM is
the 37-residue islet amyloid polypeptide (IAPP), also known as amylin, which aggregates
and accumulates in the pancreas [2,3]. IAPP is a neuroendocrine hormone, which is pro-
duced by pancreatic β-cells and co-secreted with insulin [4]. During normal physiological
conditions, IAPP plays an important role in glucose homeostasis and metabolism, regulat-
ing gastric emptying and satiety [5,6]. However, under certain pathological circumstances
during T2DM development, IAPP aggregates into an amyloid form and deposits in the
pancreas. This process is accompanied by a massive loss of β-cells, which is believed to
be a consequence of an acute cytotoxic effect induced by amyloid forms of IAPP [7,8].
In the late stages of T2DM, amyloid deposition of IAPP is found in approximately 90%
of the patients [9]. The link between IAPP-amyloid deposits and T2DM is further sup-
ported by transgenic rodent models engineered to express human IAPP that develop a
similar pathology as compared to humans [10–12]. The expression of IAPP and insulin
are controlled by common promoter elements [13], and both polypeptides are maintained
at a ratio around 1:100 (IAPP:insulin). The concentration of IAPP within the secretory
granules has been reported to correspond to 1–4 mM [14], which regarding its aggregation
propensity is very high considering that IAPP in vitro readily aggregates into amyloid
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fibrils within the lower µM range [15]. In vivo, the formation of amyloid structures is,
however, counteracted by inhibitory and degrading mechanisms, and the pathological
accumulation of amyloid can, in essence, be described as an imbalance between the rate of
amyloid formation and the rate of its degradation. Within this context, it has been shown
that both the low pH in the granules [16,17], pro-IAPP as well as the crystalline form of
insulin, counteract the amyloid-formation of IAPP [18]. Regarding amyloid in general, a
small set of proteins have also been shown to interfere with the rate of amyloid formation,
and although most studies have been performed on the Aβ peptide linked to Alzheimer’s
disease, these amyloid-interfering proteins frequently have a low target-specificity and may
therefore act on several different amyloids. A few examples from this group of amyloid-
interfering proteins includes the BRICHOS domain [19–21], apolipoprotein J (ApoJ) [22,23],
apolipoprotein E (ApoE) [24–29], and transthyretin (TTR) [30–34]. The anti-amyloidogenic
properties of TTR on Aβ amyloid formation have gained much attention due to its po-
tential protective role in Alzheimer’s disease, and beneficial effects have been shown on
both cellular and animal models [32,35–41]. Concerning amyloid-formation of IAPP, it
was recently shown that a designed monomeric form of TTR could interfere with the pro-
cess [42]. TTR is produced in the liver, the choroid plexus of the brain, retina of the eye, and
interestingly, it is also abundantly expressed by the pancreatic β-cells [43]. The expression
of TTR within the pancreatic β-cells, suggests that it may have a protective role against
T2DM and hence highlights the need for an elucidation of its inhibitory mechanism on
IAPP amyloid formation. The native form of TTR is a 55 kDa homotetramer, predominantly
constituted by β-strands, (a schematic structure of TTR is illustrated in Figure 1).
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thereby also acts as an indirect carrier of retinoic acid [46]. 

Intriguingly, in analogy to both IAPP and Aβ, TTR is also associated with intrinsic 
amyloidogenic properties, which are linked to familial amyloid polyneuropathy (FAP) 
and familial amyloid cardiomyopathy (FAC) in humans. The dual properties of TTR as 
both an amyloidogenic protein and an amyloid inhibitor are not fully elucidated and may 
appear paradoxical. Anti-amyloidogenic properties of amyloid-forming proteins have, 
however, previously been reported [47], and the amyloid-interfering effect could possibly 
even require similar properties between the target and inhibitor. 

Concerning the intrinsic amyloidogenic properties of TTR, a dissociation of the 
tetramer is a rate-limiting step in the process [48,49]. Interestingly, the conversion of native 
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Figure 1. Schematic illustration of the native homotetrameric structure of transthyretin (TTR) [44]. The image illustrates the
four subunits assembled to form a hydrophobic central channel amenable for binding of the thyroxine hormone T4, as well
as analogs.

In vivo, TTR acts as a transporter-protein of thyroxine T4, where the hormone binds
within the central-core of the tetramer [45]. TTR can bind the retinol-binding protein and
thereby also acts as an indirect carrier of retinoic acid [46].

Intriguingly, in analogy to both IAPP and Aβ, TTR is also associated with intrinsic
amyloidogenic properties, which are linked to familial amyloid polyneuropathy (FAP)
and familial amyloid cardiomyopathy (FAC) in humans. The dual properties of TTR as
both an amyloidogenic protein and an amyloid inhibitor are not fully elucidated and may
appear paradoxical. Anti-amyloidogenic properties of amyloid-forming proteins have,
however, previously been reported [47], and the amyloid-interfering effect could possibly
even require similar properties between the target and inhibitor.

Concerning the intrinsic amyloidogenic properties of TTR, a dissociation of the
tetramer is a rate-limiting step in the process [48,49]. Interestingly, the conversion of
native TTR into its amyloid form can be effectively prevented by tetramer-stabilizing drugs,
and this reaction can be controlled through the use of small ligands binding at the position
of the natural ligand-binding site of the thyroxine T4 hormone [49]. Several stabilizing TTR
ligands have been identified and are currently in clinical use to slow-down the progression
of FAP [50–54].
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In the present study, we have elucidated the properties of TTR that correlate with
its ability to interfere with IAPP amyloid formation. We have studied the effect both in
terms of the intrinsic TTR-stability, based on a range of TTR variants, as well as the effect of
extrinsically added TTR-stabilizing drugs. We have also investigated the interfering effect
of TTR within the low pH environment of the IAPP containing granules of the pancreatic
β-cells, which notably also varies as a function of blood glucose levels [55]. We show that
the efficacy of TTR correlates inversely with its thermodynamic stability while no such
correlation is observed regarding the dissociation rate of the TTR-tetramer. Within this
study, we also expose that TTR, in contrast to its effect on Aβ, effectively inhibits IAPP
fibril elongation. The interfering effect is preserved also at the low pH corresponding to
the environment within the pancreatic granules. However, the addition of TTR-stabilizing
drugs, at both neutral and low pH partly impaired its effect. The results highlight TTR
as an interesting target in the regulation of IAPP amyloidosis and increasing its efficacy
potentially could possibly prevent or postpone the onset of T2DM.

2. Materials and Methods
2.1. TTR, ApoE, and IAPP

Recombinant TTR variants, recombinant Apolipoprotein E (ApoE) ε3 (1-299), and
synthetic human IAPP 1-37 were obtained from AlexoTech AB (Umeå, Sweden). The quality
of the proteins was verified by LC-MS before analysis. The employed IAPP contained a
disulfide bridge between the positions Cys2 and Cys7 and was amidated at its C-terminal.

2.2. Size-Exclusion Chromatography

The lyophilized IAPP was dissolved in 5% acetic acid and 150 mM sodium chloride
while all TTR variants and ApoE ε3 were dissolved in phosphate-buffered saline PBS.
Before use, all polypeptides including IAPP, ApoE ε3, and the different TTR variants
were subjected to size-exclusion chromatography (Superdex 75 10/300 GL; GE Health-
care, Chicago, IL, USA) equilibrated with 20 mM phosphate buffer containing 150 mM
NaCl (PBS).

2.3. Thioflavin T Fluorescence Assay

Amyloid formation of IAPP at neutral pH was performed at 5 µM peptide concen-
tration in PBS supplemented with 40 µM Thioflavin T (ThT) (Sigma-Aldrich, Saint Louis,
MO, USA). Amyloid formation monitored at pH 4.5 was performed at 10 µM in 25 mM
citric acid buffer containing 150 mM NaCl. All fluorescence measurements were performed
at 37 ◦C in 384 microtiter-plate, (black walls and clear bottoms, Nunc) using a FLUOstar
Omega microplate reader (BMG Labtech GmbH, Ortenberg, Germany) with an excitation
wavelength of 430 nm and an emission wavelength of 480 nm, the samples were shaken for
1 s at 100 rpm every 30 min before reading. All experiments were performed in triplicate or
more and each experiment has been verified three times or more. For experiments using
diclofenac and luteolin, the drugs were dissolved in DMSO. The working solution of the
drugs, as well as the control, contained 1% DMSO.

2.4. Probing IAPP-Amyloid Elongation

Monomeric IAPP at a concentration corresponding to 10 µM in PBS supplemented
with 40 µM ThT was prepared 100 µL/well in 96 microtiter-plate (black walls and clear
bottoms, Corning, New York, NY, USA, Cat. No. 3881). At the indicated time points, the
reader was paused and respective concentrations of TTR L12P, as well as ApoE ε3, purified
using size-exclusion chromatography, were added. TTR L12P and ApoE ε3 were added
from a 20× concentration to minimize dilution. From the respective stock, 5 µL of the
respective peptide was added to a well containing IAPP (100 µL). The control wells (no
TTR) contain 5 µL of PBS [55].
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3. Results

The conversion of monomeric IAPP into its amyloid fold has been extensively studied
and follows a nucleation-dependent mechanism [56]. A nucleation-dependent mechanism
can in general be described by a sigmoid curve initiated by a lag-phase, where the formation
of fibrils is still low and where the spontaneous formation of oligomeric nuclei controls the
rate of the reaction. As the reaction proceeds, the lag-phase is converted into a logarithmic
phase, where elongation through the incorporation of monomers now dominates. The
template-dependent incorporation of monomers into the fibril end has a significantly lower
energy-barrier than the nucleation and is consequently much faster [57]. New ends for
the incorporation of monomers can form as a function of fibril-breakage but also as a
result of fibril-catalyzed secondary nucleation where the surface of already formed fibrils
may catalyze the formation of new nuclei [58]. As the number of monomers available for
incorporation becomes reduced, the reaction approaches a steady-state and equilibrium
between mature fibrils and free monomers. In a recent publication, the specific microscopic
events of IAPP amyloid formation were studied and found to fit with a model based on
primary nucleation + elongation and surface-catalyzed secondary nucleation, but not fibril
breakage [59].

Using microtiter-based ThT-assays, the effect of different conditions as well as inter-
vening agents can be studied in detail. Figure 2 shows the process of IAPP fibril-formation,
inhibited by the TTR wild-type, (seen as a prolongation of the lag-phase), under physiolog-
ical pH and ion-strength.
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Figure 2. Amyloid formation of 5 µM IAPP at 37 ◦C, pH 7.5 in phosphate-buffered saline monitored
by Thioflavin T as a function of various concentrations of TTR-wt.

3.1. Evaluating the Inhibiting Propensity of TTR as a Function of Its Intrinsic Stability

The properties required for TTR to effectively interfere with IAPP amyloid-formation
are largely unknown. Regarding Aβ amyloid formation, the stability of TTR has, however,
been shown to influence its effect. The stability of TTR can be divided into a thermody-
namic and kinetic component. The thermodynamic stability is represented by the static
equilibrium between its folded and unfolded state. A rate-limiting step regarding the
unfolding of TTR is, however, mediated by dissociation of its tetrameric integrity [60]. To
elucidate the influence of TTR-stability regarding its effect on IAPP-amyloid formation, a
range of TTR variants, differing in thermodynamic and kinetic stabilities were compared.
The results illustrated in Figure 3A, show the relative IAPP-amyloid inhibiting propensity
of TTR-wt, L12P, V30M, V30G, L55P, F64S, Y69H, T119M, and the monomeric variant
TTR-F87M/L110M (TTR-M) [61]. The relative time to reach the midpoint of the logarithmic
phase (t(1/2)) is measured. For comparison, the t(1/2) of IAPP amyloid-formation reaction
in absence of TTR is set to 1.0, and the relative inhibiting propensity of all TTR variants
is related to this value. The results show that several TTR variants display a significantly
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potentiated effect as compared to TTR-wt, thus displaying considerable variation. Both the
thermodynamic stabilities and the kinetic dissociation-rates with regards to the employed
TTR variants are known from previous studies [61,62], and consequently, the inhibiting
propensity can be related to these values. Plotting the relative inhibiting propensities
against the kinetic (Figure 3B) and the thermodynamic (Figure 3C) properties of TTR, ex-
poses an inverse correlation between thermodynamic stability and the interfering ability of
TTR upon IAPP amyloid formation, while no such correlation could be observed regarding
its kinetic stability.
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L12P, V30M, V30G, L55P, F64S, Y69H, T119M, and the monomeric variant TTR-M. The lag-phase of the TTR-wt versus
control was set to 1.0, and the effect from all other TTR-variants were normalized accordingly (A). The relative inhibitory
effects of the specific TTR-variants are plotted as a function of kinetic stability represented by the dissociation-rate of the
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stability is shown (r2 = 0.53 and p-value < 0.0001).

3.2. Probing the Ability of TTR to Interfere with IAPP Fibril Elongation

To further elucidate the mechanistic path of IAPP-amyloid inhibition by TTR, its effect
on IAPP elongation was selectively probed. This can be accomplished by targeting the
logarithmic phase of amyloid formation where the contribution from nucleation can be
neglected in favor of elongation [57,63]. By the addition of the inhibitory agent within
the logarithmic phase, and subsequently monitoring the curvature, it can be determined
whether elongation is affected or not. This approach has previously been used in two
independent studies showing that Apolipoprotein E (ApoE) efficiently inhibits both the
elongation of Aβ- [64] and IAPP-amyloid [15]. We have previously also used this approach
to show that TTR is unable to inhibit the elongation of Aβ amyloid [34]; a result that was
independently verified recently [65]. In order to accomplish a clear result also at a high
substoichiometric ratio, the potent TTR variant L12P was employed. The setup was probed
with ApoE as a positive control to validate the assay. The result displayed in Figure 4
shows that TTR, in contrast to its effect on Aβ, efficiently inhibits fibril elongation of IAPP.

3.3. Probing the Inhibiting Effect of TTR at Neutral and Low pH, and the Effect of
TTR-Stabilizing Drugs

The environment within the IAPP-secretory granules also differs from the extracellular
environment regarding pH, which in vivo is approximately 5 [55]. A low pH has been
found to partly suppress IAPP amyloid-formation [66], and similarly, TTR is also well-
known to be sensitive to changes in pH [48]. Regarding TTR, the structural changes induced
by low pH can, however, be partly prevented by TTR-tetramer stabilizing drugs [49]. To
investigate whether the ability of TTR to prevent amyloid formation is maintained at
low pH and whether the addition of TTR-stabilizing drugs can modulate the effect, we
compared the ability of TTR-wt to interfere with IAPP amyloid formation in the absence
and presence of the two stabilizing agents diclofenac [67] and luteolin [68], at both neutral
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pH and pH 4.5, see Figure 5. The monomeric variant TTR-M, unable to bind the stabilizing
ligands, was included as a control.
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Figure 4. Probing the ability of TTR to inhibit the elongation process during IAPP amyloid formation. A total of 5 µM of
IAPP was incubated in phosphate-buffered saline and monitored for amyloid formation with the ThT fluorescence assay. At
the timepoint indicated by the arrow, the respective proteins were added at the indicated concentrations: TTR L12P (A)
recombinant Apolipoprotein E (ApoE) ε3, serving as a positive control (B).
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Figure 5. Inhibition of IAPP amyloid formation by TTR as a function of TTR-stabilizing ligands at neutral and low pH.
Amyloid formation of IAPP incubated in PBS (pH 7.5) or 25 mM citric acid pH 4.5, 150 mM NaCl, was probed against
500 nM of TTR-wt as well as TTR-M in the presence versus absence of the tetramer stabilizing drugs luteolin (1 µM) and
diclofenac (5 µM). Figure (A) illustrates the result at neutral pH at 5 µM of IAPP. Figure (B) illustrates the results at pH 4.5
(note that 10 µM of IAPP was used in the setup at low pH). A significant reduction of the inhibiting propensity of the TTR
stabilizing drugs was observed regarding the tetrameric TTR-wt, p-value < 0.005 (unpaired t-test), both at neutral and low
pH. TTR-M, which is unable to bind to the ligands, was unaffected at neutral and low pH.

The results show that the inhibiting effect of TTR on IAPP-amyloid formation can also
be observed at a low pH but that the addition of TTR-stabilizing ligands partly impairs
the effect at both neutral and low pH. Regarding the monomeric variant TTR-M, which is
unable to bind the ligands diclofenac and luteolin, no effect was observed as a function
of adding the drugs. Due to a comparatively low ThT fluorescence upon binding of IAPP
fibrils at low pH, the concentration of the peptide was raised to 10 µM regarding all
analysis performed at low pH, to maintain the desired accuracy of the measurements. This
results in an overall shortening of the lag-phase. A low pH has previously been found
to partly impair amyloid formation of IAPP [66] and to emphasize that this is indeed
also observed within our experimental setup, a figure has been added to Supplementary
materials Figure S1.
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4. Discussion

In analogy to ApoE that can interfere with the amyloid formations from several
different amyloidogenic proteins [15,69,70], TTR also appears to have generic amyloid-
interfering properties and has recently been shown to interfere with the amyloid-formation
of the bacterial proteins CsgA [71] and HypF-N [32]. Regarding Aβ, the mechanistic effects
of TTR have been extensively studied and it is now well established that it selectively targets
the oligomeric assemblies of Aβ [34,42,65,72,73], while it does not interfere effectively with
Aβ-fibril elongation [34,65]. Regarding the inhibition of Aβ-amyloid formation by TTR [31],
it can be concluded that the highly stable T119M, as well as K15A, are less efficient than
the less stable variants V122I, V30M, and TTR wild-type. The inhibiting effect on Aβwas
previously also shown to be partly impaired by the addition of the TTR stabilizers [31].

4.1. The Inhibition of IAPP Amyloid-Formation by TTR Correlates with Its Thermodynamic but
Not Kinetic Stability

Within the present work, we show that TTR variants with a kinetically stable tetrameric
form also can interfere with IAPP, similar to the recently described engineered monomeric
TTR-M [42]. The influence of TTR stability is, however, obvious, and TTR-M is a more
potent inhibitor than TTR wt. This raises the questions of whether tetrameric dissociation
and/or the exposure of normally buried sequences are required for the inhibiting activity.

Today, more than 140 mutations in TTR have been identified in vivo [74] and biophys-
ical analysis of a selection of these TTR variants exposes a significant variation regarding
their stability. A static equilibrium between its folded and unfolded state, measured
through urea-denaturation studies, here defines its thermodynamic stability. Under de-
naturing conditions, the thermodynamic unfolding of TTR is kinetically limited by a
dissociation of the tetramer and, the unfolding kinetics as a consequence correlates with the
dissociation of its tetrameric integrity [49]. Dissociation under non-denaturing conditions
is, however, not associated with a complete unfolding and, e.g., the monomeric TTR-M
retains a similar structure compared to the native fold within the tetramer. It notably also
requires further denaturation to aggregate into TTR-amyloid [61].

Within the present study, a range of TTR-mutants differing in both their thermo-
dynamic and kinetic stability was investigated regarding their ability to interfere with
IAPP-amyloid formation. Using the available biophysical data [61,62] we show that the
ability of TTR to interfere with IAPP amyloid formation displays an inverse correlation
to its thermodynamic stability, while no such correlation can be seen with regards to its
kinetic stability. Notably, the thermodynamically unstable but kinetically highly stable
variants Y69H and F64S, both display a very strong amyloid-interfering effect on IAPP.
While T119M having similar kinetic stability but with much higher thermodynamic sta-
bility is essentially inert. Since the monomeric concentration of both Y69H, as well as
F64S, is very low under native conditions this strongly suggests a partial exposure of
the TTR polypeptide that normally is buried within its native fold. The occurrence of
such partial unfolding is supported by previous studies using nuclear magnetic resonance
(NMR) where a different surface exposure between different tetrameric variants of TTR
has been shown using both Hydrogen-Deuterium (H/D) exchange [75] and relaxation
dispersion experiments [76,77]. The exposure of normally hidden parts of TTR has also
been shown using the conformational specific antibody MAB(39–44), which normally only
binds to unfolded TTR or its amyloid fold but where a strong reactivity is obtained to the
tetrameric form of Y78F [78]. As a consequence, we propose a hypothesis where a partial
unfolding event of TTR, independent of TTR-tetramer dissociation, mediates the inhibitory
effect. The specific areas for this interaction will require further studies and we also cannot
at this point exclude that the interaction and complex formation between TTR and the
IAPP-assemblies facilitates a subsequent more pronounced unfolding and possibly also
dissociation of the tetramer.
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4.2. TTR Prevents Elongation of IAPP Fibrils

An amyloid-interfering agent can mediate its effect at different positions in the reaction
path of amyloid formation. These are represented by (i) binding and sequestering of the
monomer; (ii) binding and sequestering of nuclei; (iii) inhibition of secondary nucleation via
blocking of catalytic sites; (iv) blocking of elongation; and (v) inhibition of fibril breakage. In
a recent paper, it was shown that the formation of IAPP amyloid fits with a model involving
primary nucleation + elongation and surface-catalyzed secondary nucleation, but not fibril
breakage [59]. We can here show that TTR interferes with the process of elongation. The
experimental approach is based on the rationale that elongation strongly dominates over
both primary and secondary nucleation during the logarithmic phase [79,80]. The addition
of an inhibitor during the logarithmic phase as a consequence predominantly probes the
process of elongation. To investigate if TTR could interfere with IAPP elongation the potent
L12P variant was used. The results show an efficient abortion of the logarithmic phase
upon the addition of TTR and an effect that is notable also at a 1:80 (TTR:IAPP) ratio. The
result implicates that the inhibitory effect is mediated via binding of TTR to the fibrils
and shows that the inhibition is not mediated by a sequestering of the IAPP monomer.
Using this approach, it was recently shown that ApoE effectively inhibits the elongation of
both Aβ [64] and IAPP [15]. ApoE was therefore included as a positive control to validate
the system. The finding that TTR interferes with IAPP fibril elongation notably exposes a
discrepancy between IAPP and Aβ since TTR is unable to inhibit the elongation of Aβ, as
recently shown in two independent studies [34,65].

As illustrated in Figure 2; Figure 3, the presence of TTR from the start of the reaction
results in a concentration-dependent prolongation of the lag-phase. In addition, here
the effect can be observed at highly substoichiometric ratios of TTR strongly supporting
that assemblies of IAPP represent the primary target rather than a sequestering of the
monomer. The shift in lag-phase fits with a model where either primary nucleation or
fibril elongation is impaired [81]. Although a likely explanation is that both of these are
affected, an elucidation of the specific mechanism requires more specialized experiments
and remains to be elucidated by future investigations.

4.3. TTR Prevents IAPP Amyloid Formation at Low pH but the Effect Is Impaired by
Stabilizing Ligands

In vivo, IAPP is stored within the secretory granules of the pancreatic β-cells at a concen-
tration around 1–4 mM [14], which compared to its extracellular concentration of <1 nM [82]
renders the interior of the granules a likely site for the formation of IAPP-amyloid.

The pH within the IAPP-secretory granules is acidic and is frequently around pH 5.
Notably, both TTR and IAPP are known to be strongly affected by perturbations in pH.
Regarding IAPP, lowering the pH is correlated with a lower propensity to aggregate [83].
This result is also corroborated by us and is presented in Supplementary files Figure S1.
TTR, in contrast, results in an increased aggregation rate as a function of low pH [48,84].
Given that IAPP amyloid formation likely is an intracellular event (occurring within the
IAPP containing granules of the β-cells), it is of interest to investigate the inhibitory effect
of TTR also at a low pH. We have here evaluated the effect at pH 4.5, which represents a
pH known to induce significant alteration of TTR [48]. At pH 4.5, the major pH-mediated
alterations in the rate of IAPP have occurred [83]. It is also close to the physiological
pH range found in vivo which is around 5 but which notably also varies as a function
of blood-glucose [55]. The results show that TTR can impair the effect of IAPP-amyloid
formation also at low pH. A correspondingly stronger effect, as observed at neutral pH,
can also be seen for TTR-M, supporting the notion that exposure of epitopes buried within
the native structure is required for an efficient inhibition.

Ligand stabilization of TTR, using the site for thyroxin-T4, is today an established
therapeutic approach to treat FAP [85]. The binding of a ligand to TTR has, however,
previously been shown to partly impair its anti-amyloidogenic properties regarding the
inhibition of Aβ amyloid formation [31]. We here show that this effect is also pronounced
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on IAPP. In this study, two different TTR-ligands represented by luteolin [68] and diclofenac
were evaluated. It should be clarified that TTR displays negative cooperativity upon ligand
binding and only the first ligand binds effectively. Luteolin represents a strong TTR-binder
with a KD around 20 nM, and using 1000 nM concentration of the drug and 500 nM of
TTR, we ensure both a stoichiometric excess and a high level of saturation. The KD of
diclofenac is around 500 nM [53], and so in order to ensure a high level of saturation, 5 µM
of diclofenac was employed. The results show that ligand binding to TTR interferes with
IAPP-amyloid formation at both neutral pH and pH 4.5. The TTR-M, which is unable to
bind the tetramer-stabilizing ligands, was unaffected at both neutral pH and pH 4.5, which
also validates the system.

The poor correlation between dissociation kinetics and the ability to inhibit amyloid-
formation of IAPP, shown by the different variants in Figure 3A–C, suggests that the
impairing effect of TTR is likely mediated by the ability to expose parts of the polypeptide
that normally are buried within the native fold. As stated above, we propose a hypothesis
where this alternative structure can be acquired also within the tetramer. The impairing
effect from stabilizing ligand is possibly mediated by reducing the ability of the protein to
partly unfold.

5. Conclusions

In this study, we have characterized the properties of TTR regarding its ability to
interfere with IAPP-amyloid formation. We expose an inverse correlation between ther-
modynamic stability and the ability to interfere with IAPP-amyloid formation while no
such correlation could be noted regarding the kinetic stability of the TTR-tetramer. The
inhibiting effect is observed also at a highly substoichiometric ratio showing that TTR does
not mediate its effect via binding and sequestering of the monomer but rather binds to
assemblies of the peptide. This is further supported by the finding that it efficiently impairs
fibril elongation at highly substoichiometric ratios which also implicates binding of TTR to
the fibrils.

From a mechanistic point of view, we propose that a partial unfolding of TTR is
required for its amyloid-interfering effect and that exposure of normally buried parts of the
molecule is required. The results suggest that the partial unfolding can be mediated also
within the tetramer. It is, however, yet not possible to conclude if a subsequent unfolding
occurs upon the interaction between TTR and the IAPP, and if the formed assembly is
associated with dissociation of its tetrameric integrity.

We also show that the efficacy of TTR can be modulated using TTR-stabilizing ligands
and that they impair the effect at both neutral and low pH. A mechanism where binding
of the ligands impairs a partial unfolding of the tetramer can be anticipated but needs to
be further investigated. A model describing our hypothesis by which mechanisms TTR
interferes with IAPP amyloid formation is proposed in Figure 6.

Given the specific expression of TTR within the pancreatic β-cells TTR and its amyloid-
interfering effect, a physiological role can be anticipated. TTR hence provides an interesting
target to modulate IAPP amyloid-formation and thus also a potential route to prevent or
postpone the onset of T2DM. We here present the overall properties required for TTR to
inhibit IAPP amyloid-formation and interestingly also that its effect can be partly impaired
by ligands. The environment within the secretory granules is nevertheless complex and
an interesting prospect for the future is to follow up these findings in an in vivo model to
fully elucidate the role of TTR and its therapeutic potential.
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