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Backgrounds: Uterine corpus endometrial carcinoma (UCEC) is one of the greatest
threats on the female reproductive system. The aim of this study is to explore the
inflammation-related LncRNA (IRLs) signature predicting the clinical outcomes and
response of UCEC patients to immunotherapy and chemotherapy.

Methods: Consensus clustering analysis was employed to determine inflammation-related
subtype. Cox regression methods were used to unearth potential prognostic IRLs and set up
a risk model. The prognostic value of the prognostic model was calculated by the Kaplan-
Meier method, receiver operating characteristic (ROC) curves, and univariate and multivariate
analyses. Differential abundance of immune cell infiltration, expression levels of
immunomodulators, the status of tumor mutation burden (TMB), the response to immune
checkpoint inhibitors (ICIs), drug sensitivity, and functional enrichment in different risk groups
were also explored. Finally, we used quantitative real-time PCR (qRT-PCR) to confirm the
expression patterns of model IRLs in clinical specimens.

Results: All UCEC cases were divided into two clusters (C1 = 454) and (C2 = 57) which had
significant differences in prognosis and immune status. Five hub IRLs were selected to
develop an IRL prognostic signature (IRLPS) which had value in forecasting the clinical
outcome of UCEC patients. Biological processes related to tumor and immune response
were screened. Function enrichment algorithm showed tumor signaling pathways (ERBB
signaling, TGF-b signaling, and Wnt signaling) were remarkably activated in high-risk group
scores. In addition, the high-risk group had a higher infiltration level of M2macrophages and
lower TMB value, suggesting patients with high risk were prone to a immunosuppressive
status. Furthermore, we determined several potential molecular drugs for UCEC.
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Conclusion: We successfully identified a novel molecular subtype and inflammation-related
prognostic model for UCEC. Our constructed risk signature can be employed to assess the
survival of UCEC patients and offer a valuable reference for clinical treatment regimens.
Keywords: UCEC, inflammation, tumor microenvironment, prognostic signature, immunotherapy, TCGA
INTRODUCTION

UCEC ranks the fourth most common in cancer incidence
among females around the world (1), with unfavorable cure
rate and high mortality (2). UCEC patients diagnosed in later
stage have a significantly higher rate of recurrence and
complications, leading to a bleak prognosis (3, 4). Traditional
surgical resection, chemotherapy, and radiotherapy have been
developed and have undergone constant evolution, but the
overall survival (OS) has seen no significant improvement.
Therefore, gaining new insight into the tumorigenesis process,
pathological nature, and therapeutical agent of UCEC is vital in
fighting this deadly disease.

Inflammation has a predominant effect on the immune
system, creating a microenvironment conducive to cellular
transformation and the spread of invasive diseases (5, 6).
Research evidence shows that inflammation can also affect the
occurrence and progression of cancer, via various pathways like
oxidative stress, interleukin secretion, and pro-inflammatory
transcription factors (7). Cumulative evidence also suggests
epigenetics modifications like DNA methylation, histone
modification, remodeling of chromatin, and regulation via
non-coding RNAs can modulate the balance of inflammation
and accelerate the tumorigenesis process (8). LncRNAs are a
novel kind of RNA that can regulate cellular signaling pathways
in UCEC (9). For example, LncRNA NEAT1 is found to drive
endometrial cancer progression by targeting the oncogene
STAT3 (10). Similarly, Wang et al. reported another LncRNA
NR2F1-AS1 is able to assist miR-363 to target SOX4, thus
increasing the risk of endometrial cancer (11). Considerable
research has shown the role of inflammatory pathways in
cancer is regulated by a number of lncRNAs. Hu et al.
disclosed that upregulation of lncRNA XLOC-000647 can
inhibit the expression of NLRP3 inflammatory vesicles, which
in turn suppresses the metastasis of pancreatic cancer cells (12).
In breast cancer, lncRNA NKILA was proven to interact directly
with NF-kB to mediate inflammatory pathways and thereby
inhibit tumor metastasis (13).

The TME supports the intricate process of tumorigenesis by
modulating various functionally interlinked cells and non-
cellular components (14, 15). Numerous previous studies have
reported modulation function of immune and inflammatory cells
on UCEC cells. These factors woven together provide a
welcoming host for the UCEC cells, and greatly enhance their
endometrial carcinoma; TCGA, The
ion-related lncRNA; TMB, tumor
oint inhibitors; GO, Gene ontology;
enomes; GSEA, Gene set enrichment
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capability to replicate, invade, and resist drugs. Previous research
has discovered numerous potential hallmark signals and
proteins. For example, the overexpression of CXCL12/CXCR4
is reported to be correlated with unfavorable prognosis in UCEC
patients (16). Utilizing the ESTIMATE and CIBERSORT
algorithms, Xu et al. discovered that cell-cell chemokine
receptor 2 (CCR2) can facilitate the recruitment of monocytes
and macrophages into the TME, affecting the prognosis of UCEC
patients. On the other hand, MSI status implies the existence of
high-level TIL-infiltration, taking mismatch repair defect into
consideration. Prognostic effects of biomarkers varies on
molecular subtypes: In p53-mutant UCEC, Treg is an
independent prognostic factor, while in NSMP, WHO-grading
has unreplaceable prognostic value (17). Cumulating evidence
implies additional factors are needed to drive the tumorigenesis
process apart from merely genetic mutations, and the
microenvironment-derived factors may be exactly the missing
puzzle piece. However, the precise mechanism and molecular
signal remains disputed, and calls for additional research. Any
new insight into the nature of TME can potentially improve the
precision of prognosis prediction or reveal promising
therapeutic targets.

In this project, we determined a novel molecular subtype and
a risk signature based on IRLs which were tightly correlated with
survival outcome of UCEC cases. Moreover, our proposed risk
model can reflect the immune status and evaluate the benefits of
immunotherapy and chemotherapy.
METHODS

Data Acquisition
Transcriptome and RNA-seq data of UCEC patients were
retrieved from the TCGA database (https://portal.gdc.cancer.
gov/) and the transcriptome data files were in “FPKM” format.
Five hundred eleven UCEC patients with clinicopathological
information were used for analysis. The exclusion criteria were
set as follows (1): histologic diagnosis is not UCEC (2); samples
without completed clinical data; and (3) survival time of less than
30 days. In total, 511 UCEC patients were randomly divided
equally into the training cohort (256 patients) and a validation
cohort (255 patients) by utilizing the caret R package. Detailed
annotation of the tumor samples complete with clinical and
pathological information can be found in Table S1 (P > 0.05, Chi
squared test).

Determination of the IRLs
The list of 200 inflammation-related genes was acquired from the
GSEA database (http://www.gsea-msigdb.org). We screened the
June 2022 | Volume 12 | Article 923641
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IRLs by Pearson’s correlation analysis, and 636 IRLs were
identified. The process applied the criteria of |Pearson R| >0.5
and p <0.001.

Gene Set Enrichment Analysis
The training set was applied to establish the IRLPS, and
validation of aforementioned model is made using the testing
set and entire set. Completed with survival data retrieved from
TCGA, we explored the prognosis value of IRLs, and univariate
Cox regression was used to filter 27 prognostic IRLs. The next
step was to understand the biological processes that these IRLs
are involved in. The “ConsensusClusterPlus” package was used
to divide UCEC patients into groups based on clinical outcome
and pathological classifications (18). Then, gene set enrichment
analysis (GSEA) was used to determine which process or
pathway made a difference in the outcome (19, 20). KEGG can
identify predefined gene sets activated or deactivated, p-value
were determined by performing 5000 permutations according to
the gene set. A pathway with a p-value < 0.05 was considered
as significant.

Estimating of Tumor-Infiltrating
Immune Cells
CIBERSORT was employed to calculate the abundance of 22
types of immune-related tumor-infiltrating cells in all samples
(21). The proportion of data generated will be used for further
analysis. ESTIMATE algorithm was used to screen each sample,
computing the proportion of immune and stromal components
in the TME (22); the immune score and stromal score are results
of these algorithms. The ESTIMATE score is determined by
combining immune score and stromal score. The value of these
scores has a positive connection with the proportion of stromal,
immune, and the sum of the first two, respectively. With the
“GSVA” package in R, we calculated the abundance of 16
immune cells in the microenvironment, represented by the
infiltration scores, and the activities of 13 immune-related
pathways between the high-risk and low-risk groups via single-
sample gene set enrichment analysis (ssGSEA) (23).

Establishment of the IRLPS
To build our risk model, we chose the LASSO Cox regression to
generate the optimal choice of coefficients and variants that
constitutes the risk score equation (24). A 10-fold cross
validation with minimum criteria was applied to optimize the
signature. The remaining non-zero features were utilized to build
the final model. LASSO regression was conducted with the R
package “glmnet” (25). Generated from LASSO, these coefficients
made up our risk score equation:

risk score =o
n

i=1
coefficienti ∗ expression level of IRLi

Acquisition of Clinical Specimens
The 32 specimens (16 tumor samples and 16 normal samples)
used for quantitative PCR assay were acquired from 16
consenting patients at Maternity and Child Health Care
Frontiers in Oncology | www.frontiersin.org 3
Hospital of Nantong University. Our research protocol was
approved by the Ethics Committee for Clinical Research of the
Maternity and Child Health Care Hospital of Nantong
University. All research was conductedin strict adherence to
the Declaration of Helsinki.

RNA Extraction and Quantitative Real-
Time Quantitative PCR (RT-qPCR) Analysis
The total RNA was extracted from the aforementioned 32
samples using TRIzol reagent (Thermo Fisher Scientific,
Waltham, MA, USA), and then evaluated for RNA structure
integrity using the Agilent Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, USA) with the RNA 6000
Nano Kit. By utilizing the High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific), we therefore
synthesized complementary single-stranded DNA and then
performed the real-time quantitative analysis by the SYBR
Green PCR Kit (Thermo Fisher Scientific). The relative
transcription level was assessed with the 2-△△Ct method, Ct
represents the cycle threshold of each IRL. All programs and
procedures were conducted on the basis of the instructions
offered by the manufacturer. Primer sequences that were used
can be found in Table S2.

Validation of the IRLPS
Now that we have this risk score to forecast the OS of UCEC
patients, the next step was validation of our model. Again, our
patients were assigned to groups assigned by the median risk
score, and then we checked whether there was a statistical
difference in OS between groups. The accuracy of IRLPS was
presented in the form of receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC value), generated
by using R package “survivalROC” (26). The model was then
validated with the testing data set and entire set, its effectiveness
was measured by ROC curve, compared with clinical or
pathological criteria alone and combined as a risk indicator.
The Kaplan-Meier analysis was performed with the “survival”
package (27). The risk curve and scatter plot were generated to
illustrate the risk score and survival status of each sample. The
heatmap indicated the expression pro-files of the signature in the
two groups. Principal components analysis (PCA) was applied to
dimensionality reduction (28). In order to identify independence
of IRLPS, we employed both univariate and multivariate Cox
regression analyses. To further verify the prediction power of our
risk score, we performed stratified analysis by clinical
classifications. We built the nomogram on the basis of the
outcomes of multivariate Cox regression to predicting 1-, 3-,
and 5-year survival probability through “rms” package (29). The
calibration figures represent the consistency of our prediction
with reality.

Mutation Analysis
Patient characteristics and their sequencing status were retrieved
from TCGA. The fall plots give visual hints of the 20 most
frequent mutated genes, made by the R package “maftools” (30).
Additionally, the stemness of tumor cells in each endometrial
June 2022 | Volume 12 | Article 923641
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carcinoma sample wasdetermined by one-class logistic
regression, represented by the stemlike indices (31).

Immunophenoscore Analysis
Derived by z-scores of iconic genes related to immunogenicity,
immunophenoscore (IPS) is a representation of a sample’s
overall immunogenicity. The IPSs of UCEC patients were
extracted from the Cancer Immunome Atlas (TCIA) (32)
(https://tcia.at/home). Based on four main classes of genes
(PD1, PD-L1, PD-L2, CTLA-4), MSI was generated by
machine learning in an unbiased manner. Together, IPS and
MSI give an overview of the immunophenotype.

Chemotherapy Response and Drug
Sensitivity Analysis
The response of UCEC patients to therapeutic agents, whether
chemotherapy or small molecular agents, were found in a public
database called Genomics of Drug Sensitivity in Cancer (GDSC;
https://www.cancerrxgene.org). The half-maximal inhibitory
concentration (IC50) was taken as an index to measure the
sensitivity (33). Up to 60 different cancer cell lines that originated
from nine different cancers were made available as per request
via the CellMiner interface (https://discover.nci.nih.gov/
cellminer) (34, 35). Correlation between the expression of
Frontiers in Oncology | www.frontiersin.org 4
previously mentioned genes with prognostic value and drug
sensitivity were explored using Pearson correlation analysis.

Statistical Analysis
All the analyses were processed using R software (version 4.1.0)
(36). Student’s t-test was applied to perform the group
comparisons between subgroups separately. To uncover
potentially significant differences in OS between risk score
defined groups, Kaplan-Meier analysis and log-rank tests were
used. The correlation of the risk score generated by our model
with stemness score, stromal score, immune score, and drug
sensitivity was tested by Spearman or Pearson correlation
analysis. a p-value < 0.05 is considered significant.
RESULTS

Data Acquisition and Generation of
Differential Expressed lncRNAs
The total workflow of this research is shown in Figure 1. In short,
we first retrieved transcriptome and clinical data of the UCEC
patients from the TCGA database, and inflammation-related gene
sets from the GSEA database. Combining them, we subsequently
used Pearson correlation analysis to screen 636 lncRNAs to find
FIGURE 1 | An outline of this research is depicted in this plot.
June 2022 | Volume 12 | Article 923641
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those most closely correlated with prognosis. Twenty-seven
lncRNAs were identified as prognostic via univariate Cox
regression (Table S3). The expression levels of 27 IRLs in
UCEC and normal tissues were evident (Figures 2A, B).

Identification of Inflammation Molecular
Subtype in UCEC
To determine the inflammation-associated subtype, all UCEC
cases were subject to consensus clustering method based on 27
IRLs. Figures S1A, S1B show the respective cumulative
distribution function (CDF) of consensus clusters ranging from
k = 2 to 9 and the corresponding area under curve. As is shown,
k = 2 is the choice to divide the UCEC patient in order to reach
maximum consensus within clusters (Figures S1A, B). Tracking
plots for k = 2 to k = 10 is exhibited in Figure S1C, and relative
change in area under CDFG curve is demonstrated in Figure
S1D. According to the expression levels of the 27 IRLs, 511
UCEC patients were clustered into cluster 1 (n1 = 454) and
Frontiers in Oncology | www.frontiersin.org 5
cluster 2 (n2 = 57). As suggested by Figure 2C, patients in
cluster2 presented a dismal outcome compared to those
in cluster 1 (p < 0.001). We then assessed the correlation
between clusters and clinical parameters of UCEC patients.
(Figures 2D–H).

Immune Activity Analysis of
Molecular Subtype
Expression of PD-1 and CTLA-4 were compared between tumor
and normal tissue samples in UCEC patients. Our result revealed
that the expression of PD-1 and CTLA-4 in UCEC tissues was
upregulated (P < 0.001, Figures 3A, B) compared to their normal
counterparts. In regard to the consensus clusters, we observed
the higher expression of PD-1 and CTLA-4 in cluster 1
(Figures 3C, D). In addition, the expression of two immune
checkpoints was positively related to the expression levels of
FAM66C, UNQ6494, AC078883.1, AP002761.4, FMR1-IT1,
LINC01126, AC244517.7, and AC244517.1 (Figures 3E, F).
A B

D

E F G H

C

FIGURE 2 | The association between the transcription level of IRLs and clinicopathological and prognostic features of the UCEC patients. (A, B) The transcription
levels of 27 differentially expressed IRLs between the tumor and normal samples were visualized by heatmap and boxplot. (C) The overall survival of UCEC patients in
the two clusters was calculated by Kaplan-Meier curves. (D) The transcription levels of 27 differentially expressed IRLs between the two clusters with clinical features
were shown in heatmap. (E-H) The ratio of different age (E), grade (F), histological type (G), and stage (H) in the groups. *P < 0.05, **P < 0.01, ***P < 0.001.
June 2022 | Volume 12 | Article 923641
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The differential infiltration of 22 immunocytes between the two
clusters is shown in Figure 3G.

Moreover, we assessed the immune microenvironment value
of the UCEC samples. The results suggested that cluster 1
displayed a higher immune microenvironment score, whereas
cluster 2 had the higher level of tumorpurity (Figures 3H–K).
Meanwhile, GSEA was employed to detect the TME phenotype
of the two clusters. We found that immune-related pathways
were mainly enriched in cluster 2. The results reveal that the top
10 pathways enriched in cluster 1, while cancer-associated
pathways were activated in cluster 2 (Figure S2A).

Establishment of Prognostic Signatures
Based on IRL
In the training dataset, univariate Cox regression was first used to
filter 27 prognostic IRLs. Then we employed LASSO algorithm to
remove overfitting genes and selected five lncRNAs to create a
signature (Figure S3), including HMGN3-AS1, LEMD1-AS1,
AP000880.1, AC244517.1, and AC011466.1. The complete
Frontiers in Oncology | www.frontiersin.org 6
formula was as below: Risk score = (0.286 × HMGN3-AS1) +
(0.065 × LEMD1-AS1) + (0.854 × AP000880.1) + (0.048 ×
AC244517.1) + (0.600 × AC011466.1). Next, the expression
pattern of five hub markers between tumor and normal
specimens was confirmed. Both five lncRNAs were
downregulated in tumor tissues based on TCGA-UCEC dataset
(Figure S4A–E). We further examined the expression level offive
lncRNAs in clinical samples. The results indicated that only
AP000880.1 and AC244517.1 showed the expression difference
between two groups (Figure S4F–J).

Subsequently, UCEC patients were divided into high-risk and
low-risk groups. PCA analysis shows satisfying separation efficacy
in the training, testing group, and entire cohort (Figures S5A–C).
Sankey diagram presented the association among cluster, risk
score, and survival outcome of UCEC cases (Figures S5D).

Then we validated this model in the test set and entire set. In
the training set, Kaplan-Meier curves uncovered the significant
difference of prognosis between two high groups (Figures 4A).
The AUC value of 1-, 3-, and 5-year OS were 0.725, 0.780, and
A B D

E F G

IH J K

C

FIGURE 3 | Differential expression profile of immune checkpoint related genes and TME components between clusters. (A) The expression of PD-1 in normal and
UCEC tissues. (B) The expression of CTLA-4 in normal and UCEC samples. (C) The expressionion level of PD-1 in the clusters. (D) The expression level of CTLA-4
in the clusters. (E) The correlation of the transcription levels of IRLs and PD-L1, red circle means positive relationship. (F) The correlation of the transcription levels of
IRLs and CTLA-4, red circle means positive correlation. (G) The infiltrating levels of 21 immune cell types in two clusters. (H–K) The (H) Immunescore, (I) Stromalscore,
(J) Tumor purity score, and (K) ESTIMATEscore in cluster 1 and cluster 2. *P < 0.05, ***P < 0.001.
June 2022 | Volume 12 | Article 923641
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0.758, respectively (Figure 4D). The performance of model was
shown in Figure 4G. At the same time, the test set and entire set
were utilized to confirm our proposed signature (Figure 4).

In addition, we explored the predictive ability of the model
based on subgroup analysis. Figure 5 reveals that signature
showed the favorable power in age and stage subgroups.
Furthermore, we plotted a heatmap as an overview of the
relationship between clinical features and risk score (Figure 5I).
The risk score was significantly different between some clinical
factors including age, grade, histological type, immune subtype,
immunescore, stage, and cluster (Figures 5J–P).
Frontiers in Oncology | www.frontiersin.org 7
Development of a Prognosis Nomogram
As uncovered by Cox regression analysis, our constructed
signature was proven to be an independent factor in training,
testing, and entire sets, respectively (Table S4). Previous work
has already explored the prognostic value of lncRNAs in UCEC,
and yielded promising results (37, 38). In this research, risk score
based on IRLs (IRLPS) is more superior in prognostic accuracy
compared to its predecessors (Figure 6A). Next, we conducted
the univariate and multivariate methods and found that the
histological type and stage are also independent prognostic
factors in UCEC (Figure 6B). We then compared our model
A B

D E F

G IH

C

FIGURE 4 | Construction and validation of IRLPS. (A-C) Survival analysis for patients in the (A) training, (B) testing, and (C) entire cohort. (D-F) ROC curves
measuring the predictability of the signature in the (D) training set, (E) testing set, and (F) entire cohort. (G-I) Distribution of risk score, survival status, and heatmap
of the transcription levels of five prognostic signatures in the (G) training set, (H) testing set, and (I) entire cohort.
June 2022 | Volume 12 | Article 923641
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and clinical characteristics in pursuit of greater efficacy for
predicting clinical outcome (Figure 6C) and observed that
taking clinical factors into consideration presented higher AUC
value. To further expand the forecasting ability, we established a
nomogram by combining risk score and other clinical traits
(Figure 6D). Each of them is mapped to a bar representing range
of value they contribute to prognostic risk. To test the sensitivity
and specificity of the nomogram, we established calibration
curves, which implies there was a close fit between the
prognosis and real curves (Figures 6E–G).

GSEA Enrichment of Risk Model
GSEA revealed the top five active pathways in the high-risk
group including cell cycle, endometrial cancer, ERBB signaling
pathway, TGF-b signaling pathway, andWNT signaling pathway
Frontiers in Oncology | www.frontiersin.org 8
(Figure 7A), while the low-risk group included allograft
rejection, autoimmune thyroid disease, graft versus host
disease, intestinal immune network for IgA production, and
primary immunodeficiency (Figure 7B).

Immune Landscape Between Two
Risk Groups
Considering that the IRLPS were associated with the immune-
related pathway, we detected the immune status of two
subgroups. Firstly, we noticed that the low-risk patients had a
higher TME score than the high-risk patients (Figures 7C, E, G).
Also, correlation analysis verified the above results (Figures 7D,
F, H). Subsequently, the immune landscape of the two risk
groups was mirrored by Figure 8A. The relationship between
five model lncRNAs and immune cell infiltration was further
A B D

E F G

I

H

J K L

M N

C

O P

FIGURE 5 | The prognostic value of IRLPS in stratified patient groups, and correlation of IRLPS with clinicopathological features and immunescore. IRLPS showed
satisfactory prediction performance in patients regardless of (A, B) age and (C, D) stage, (E, F) histological type and (G, H) grade. (I) Heatmap and clinical features
of the groups. (J–P) Distribution of IRLPS stratified by (J) age, (K) grade, (L) histological type, (N) immunological subtype, (M) Immunescore, (O) tumor stage and (P)
cluster. *P < 0.05, **P < 0.01 ***P < 0.001.
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analyzed (Figure 8B). Correlation method showed that the
infiltration levels of B cells and Macrophages M2 were
positively associated with risk score, while risk score had a
negative correlation with the proportions of monocytes,
activated NK cells, and CD8 T cells (Figures 8C–H).

ssGSEA also presented the similar immune status of all
patients (Figure 8I). Additionally, we found that the high-risk
group had lower immune activity, which might be a potential
explanation for the dismal outcome of cases with high risk
(Figure 8J). Previous reports have demonstrated that patients
with poor immune activity tend to have worse prognosis (39–41).

RNA stemness score (RNAss) is an effect index representing
tumor stemness (42). All three types of stemness-related
indicators uncovered that the high-risk group had a higher
tumor stemness (Figures 8K–M).

Immunotherapy Response
Analysis of IRLPS
Considering the crucial role of immune checkpoints in
immunotherapy, we collected 27 immune checkpoint genes
(ICGs), including CD44, TNFRSF9, CD27, TNFRSF18, CTLA4,
CD244, ICOS, CD48, NRP1, CD276, TIGIT, TNFSF9, PDCD1,
HAVCR2, TNFSF14, TMIGD2, CD70, TNFRSF14, CD40LG,
LGALS9, TNFRSF4, and LAIR1. The results suggested that most
immune checkpoints were highly expressed in the low-risk group
Frontiers in Oncology | www.frontiersin.org 9
(Figure 9A). The relationship between six classical immune
checkpoints and risk score are shown in Figure 9B. Meanwhile,
we observed that high risk score was positively correlated with the
expression levels of CTLA-4, HAVCR-2, and PD1 (Figures 9C–F).
Moreover, IPS algorithm was employed to determine the
immunogenicity of the two groups. Four types of IPS-related
scores were lower in the high-risk group (Figures 9G–J).

The comparison in the expression of m6A-related markers
between the two groups indicated that the expressions of all
markers were significant except for FTO, YTHDC2, and
ALKBH5 (Figure S6A). Mismatched repair genes (MRGs)
have long been established as predictors for immunotherapy
benefits (43, 44). Here, we found that four MRGs (MSH2,
MSH6, PMS2, and MLH1) were highly expressed in the high-
risk group.

TMB Analysis of the IRLPS
TMB level was yet another factor that can’t be ignored in
predicting the response to immunotherapy. Here, we examined
both subgroups and compared their TMB levels. Figures 10A, B
showsthat the TMB was negatively related to risk score.
Subsequently, the patients were assigned into unique clusters
in terms of the TMB value. Survival analysis showed that the
high-TMB group displayed a favorable outcome (Figure 10C,
p < 0.001). Furthermore, we noticed that patients with low TMB
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FIGURE 6 | Establishing the IRLPS based on risk score and clinical factors, and validating it in calibration plot. (A) ROC plot indicates that IRLPS is superior in
predicting the prognosis in UCEC patients than previous works. (B) IRLPS is also more superior in prediction accuracy than histological type or tumor stage alone.
(C) Combining IRLPS with clinical factors is better yet. (D) A nomogram to illustrate the IRLPS, a risk model to predict endometrial carcinoma patient prognosis
basing on aforementioned IRLPS, and clinical factors. (E–G) Calibration curves showing the favorable performance of nomogram. **P < 0.01 ***P < 0.001.
June 2022 | Volume 12 | Article 923641

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gu et al. Prognostic IRlncRNAs Signature in UCEC
as well as a high-risk score showed the worst clinical outcomes
(Figure 10D, p < 0.001).

An overview of somatic variants provides an insight into
the scatter patterns of the top 20 most frequently mutated
genes. The mutational landscapes presented that the top 20
mutated genes were the same in both groups, led by PTEN,
PIK3CA, and ARID1A (Figures 10E, F). In this case, we
also evaluated the MSI of UCEC patients. As is shown in
Figure 10G, the prevalence of high instability of microsatellites
(MSI-H) was higher in the low-risk group (38% vs. 27%),
while the prevalence of stable microsatellites (MSS) was higher
in the high-risk group (Figures 10G, H). This implies a negative
Frontiers in Oncology | www.frontiersin.org 10
correlation between microsatellite instability and IRLPS
risk score.

Chemotherapy Response
Analysis of IRLPS
To select potential chemotherapeutics for UCEC patients, we
calculated the IC50 of three common chemotherapeutic drugs in
two groups and assessed the correlation between IRLs and
chemotherapeutic drugs. The results showed that etoposide
and doxorubicin had higher IC50 in the low-risk group
(Figures 11A–C). Five model lncRNAs were closely related to
the sensitivity of chemotherapeutic drugs (P < 0.05) (Figure 11D).
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FIGURE 7 | Differentially activated pathways and immune infiltration between the groups. (A, B) Multiple GSEA analysis was conducted to predict the potential
functions and pathways involved in (A) high-risk and (B) low-risk groups. (C, D) Stromal score does not differ significantly between the groups. However, correlation
analysis implies significant relationship between stromal score and IRLPS. (E, F) ESTIMATE score differs significantly between the groups, and correlation analysis
implies a significant relationship between ESTIMATE score and IRLPS. (G, H) Immunescore differs significantly between the groups, and correlation analysis implies a
significant relationship between Immunescore and IRLPS risk score.
June 2022 | Volume 12 | Article 923641

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gu et al. Prognostic IRlncRNAs Signature in UCEC
DISCUSSION

UCEC is among the most encountered threat to the female
reproductive system. As for now, the therapy in clinical use is
based on the clinical staging system, which is far from
satisfactory, partly because it neglects the heterogeneity of
UCEC patients and interactions in the TME (45).

Numerous reports have suggested that the inflammatory
chemokine ligand/receptor axis promotes UCEC proliferation,
progression, and metastasis (46). The inflammation process play
an indispensable role in the progression and metastasis phase (47).
Sorted by TME profiling signatures, the solid tumor is classified
into three types, the T cell inflamed, the “desert,” and the
“excluded” phenotype (48). The context of this specified immune
landscape is closely associated with response to immunotherapy.
Therefore, understanding the extent to which the tumor is inflamed
is of vital significance, and should be the starting point of effective
immunotherapy. Currently, there is no widely recognized indicator
of inflammation activity on the epigenetics level. Our work is aimed
to contribute to a more comprehensive and decisive means to
predict and optimize the efficacy of immunotherapy.

The risk signature constructed in our study is a reliable and
robust marker to predict the survival outcome of UCEC patients.
Besides this, the signature was robustly associated with immune
infiltration levels, TMB scores, and chemo-sensitivity. Our
Frontiers in Oncology | www.frontiersin.org 11
research further investigates the role of LRLs in the tumor
microenvironment, pharmaceutical landscape, and prognostic
prediction in UCEC, providing a novel insight for future research
and clinical practice.

In this research, we first determined a novel inflammation-
associated subtype for UCEC. All patients were classified into
two clusters which had significant differences in both prognosis
and immune activity, suggesting the tremendous clinical potency
of this molecular subtype. As is elucidated above, the
transcription profile of IRLs is tightly correlated with immune
cells infiltration, tumor purities, and immune status. In short,
they are closely connected with the immune landscape of UCEC.
Accumulating evidence suggests a crucial role of TME in
assessing prognosis of several tumors (49). Therefore, we came
up with the idea to use IRLs as a risk signature to forecast the
clinical outcome of UCEC patients.

The full profile of IRLs transcription is not a practical tool for
clinical use, due to the availability of full transcriptome
sequencing. This process also generates excessive data, which is
almost impossible for care providers to analyze in clinical
settings. Consequently, we performed the LASSO regression to
set up an IRLs-based signature which consisted of five key IRLs.
Moreover, our proposed IRLPS showed a superior precision to
its predecessors (37, 38). To achieve better performance of
IRLPS, we further constructed a nomogram by integrating risk
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FIGURE 8 | Relationships between IRLPS and different aspects in the immune microenvironment, including infiltration abundances and activation status of immune
cells and cell stemness. (A) Violin plot depicts 21 immune cell types that is differently distributed in high and low risk IRLPS risk score groups. (B) The correlation of
IRLs expression and infiltration abundance of immune cells, visualized by heatmap. (C–H) The correlation of 6 immune cell types with the 5 IRLs in our risk signature.
(I, J) ssGSEA reveals significant difference in (I) immune cell abundance and (J) activation of immune processes between the groups. (K) Correlation analysis implies
significant relationship in cancer cell stemness represented by methylation of RNA (RNAss) with risk score. (L) No significant difference in epiregulin mRNA stemlike
indices (EREG mRNAsi) between the groups. (M) The mRNA based stemlike indices (mRNAsi) is significantly different in the groups. *P < 0.05, **P < 0.01 ***P < 0.001,
ns indicates no statistical difference.
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score and other clinical factors. Calibration curves showed the
nomogram had favorable ability for survival assessment. Next,
GSEA analysis indicated that ERBB signaling, TGF-b signaling,
and Wnt signaling were enriched in the high-risk group,
suggesting patients with high risk tend to have a pro-tumor
effect. It is believed that the intracellular accumulation of b-
catenin is a marker for the activation of the classical Wnt
signaling pathway, so any mutation genes resulting in the
accumulation of b-catenin will activate the classical Wnt
signaling pathway. Wnt signaling pathway, one of the main
factors inducing the occurrence of cancer metastasis, could
upregulate the expression of Slug, Snail, and Twist and block
the expression of E-cadherin, causing the lack of epithelial
polarity and connection (50). Almost 40% of UCEC cases
exhibit abnormal activation of the Wnt/b-catenin pathway. It
has been shown that CT-NNB1 mutations leading to activation
of the Wnt signaling pathway are bound up with high-grade
UCEC in young women (51). As suggested by Chen et al.,
Frontiers in Oncology | www.frontiersin.org 12
inhibition of MRP4 could block the viability and survival of
endometrial tumors by targeting Wnt/b-catenin pathway (52).

In our established IRLPS, five model IRLs (HMGN3-AS1,
LEMD1-AS1, AP000880.1, AC244517.1, and AC011466.1) were
deeply involved in the pathological processes of UCEC. HMGN3
is involved in glucose transportation in cells (53), DNA binding,
protein binding (54), and chromatin organization (55). LEMD is
found to promote proliferation in gastric cancer via activating
the PI3K/Akt signaling pathway (56), and is also found to be
active in tumorigenesis in colorectal cancer (57) and prostate
cancer (58). AP000880.1 is possibly related to TTC12 and
NCAM1 gene, which in turn plays an important role in the
initiation of leukemia (59, 60). AC244517.1 is associated with the
PCDHB family gene, which regulates protocadherin, and is
responsible for cell-to-cell adhesion (55) and synaptic
transmission (61). AC011466.1 is associated with ZSWIM9,
CARD8, PLA2G4C, and LIG1 gene. In research by Linder
et al. in 2020, CARD8 can promote T cell proptosis via the
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FIGURE 9 | Difference in ICGs expression in the two IRLPS groups. (A) The boxplot shows the correlation of ICGs and risk score. (B) Correlation between
expression of ICGs and IRLPS. (C-E) Correlation analysis reveals expression levels of ICGs (C) CTLA-4, (D) HAVCR-2, and (E) PDCD1 are negatively related to
IRLPS risk score. (F) Boxplot illustrates significantly higher expression of ICG PD-1 in the IRLPS low-risk group than in the high-risk group. (G–J) IPS scoring reveals
(G) IPS, (H) IPS-CTLA4, (I) IPS-CTLA-4/PD-L1/PD-1/PD-L2, and (J) IPS-PD-L1/PD-1/PD-L2 scores were all significantly higher in the low-risk group. *P < 0.05;
**P < 0.01; ***P < 0.001.
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FIGURE 10 | TMB and microsatellite instability are negatively correlated to IRLPS risk score, and can contribute to more significant prognostic discrimination
combined with risk score. (A) Boxplot shows higher TMB in the low-risk group. (B) Correlation analysis implies TMB is potentially negatively related to IRLPS risk
score. (C) Kaplan-Meier analysis indicates unfavorable outcome for low TMB patients. (D) Patients with lower TMB and higher risk score have significantly more
pessimistic outcomes. (E, F) Mutation profile in (E) low and (F) high risk score groups. (G) IRLPS high-risk group has higher proportion of MSS and lower proportion
of MSI-H. (H) Divided by microsatellite status, the MSI-H group has significantly lower risk score.
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CARD8-caspase-1-GSDMD axis (62). LIG1 has already seen
comprehensive research, and its role in DNA ligase activity
(63) and DNA repair (64, 65) is well established. Li et al.
reported in a meta-analysis that included 10 studies with a
total of 4012 lung cancer cases and 5629 healthy controls that
upregulated expression of LIG1 is related to the increased risk of
lung cancer (66). However, due to the limited clinical samples,
the results of the PCR were not completely consistent with the
bioinformatics analysis. Tumor is a complicated disease induced
by multigene, since the interaction of genes contribute to the
complexity of tumor regulatory mechanisms.

As a current research hotspot, immune activity plays a central
part in tumor development. Our model can successfully
Frontiers in Oncology | www.frontiersin.org 14
demonstrate the capability of mirroring immune status and
evaluating the benefits of immunotherapy. By depicting the
immune landscape of two risk groups, we observed that risk
score exhibited a negative correlation with immunescore which
is an indicator of immune activity in TME, suggesting high-risk
patients were prone to an immunosuppressive status. CIBERSORT
disclosed that M2 macrophages were greatly enriched in the high-
risk group. As a type of immunosuppressive immunocyte, M2
macrophages have been proven to be closely bound up with poor
patient outcome of UCEC, which is in agreement with the results
predicted by our IRLPS.

ICI is currently an effective treatment which could strengthen
immune activity of the human body by blocking immune escape
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FIGURE 11 | High-risk group is generally less sensitive to chemotherapy and several potential small molecule therapeutical agents targeting the IRLs. (A-C) Correlation
of risk score clustering and chemotherapy response. Response to (A) etoposide, (B) cisplatin, and (C) doxorubicin is generally less significant in high-risk patients. (D)
Several small molecular agents are found to be able to counter the expression of these IRLs.
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of tumors. We found that four classical immune checkpoints
were lowly expressed in the IRLPS-high group, suggesting
patients may hardly benefit from ICI therapy. Also, four IPS-
related scores were lower in the high-risk group, indicating
unsatisfactory immune efficacy of UCEC. TMB is another
favorable indicator for evaluating outcomes of immunotherapy
and high TMB tends to forecast a poor prognosis. We
demonstrated that TMB value was significantly higher in the
IRLPS-high group. All the above results suggest that our model
can predict the benefit of immunotherapy for UCEC patients and
offer a valuable reference for individualized treatment.

In addition to immunotherapy, we sought to determine the
association between risk score and the effectiveness of common
chemotherapeutic agents in managing UCEC. We found that the
high-risk group had lower IC50 of etoposide and doxorubicin.
This means that patients with high IRLPS might benefit from
these two drugs. Apart from the conventional drugs, we also
explored several promising small molecule agents such as
imiquimod, fluphenazine, and cabozantinib which can interact
with model IRLs. Imiquimod is an aminoquinoline immune
modulator that induces interferon production and activates
innate immune cells via TLR-7, and thus initiates apoptotic
and autophagic cell death (67–69). Fluphenazine is a potent
antipsychotic drug, dating back to its discovery in the 1950s,
exerting its effect by blocking dopamine receptors (70).
Cabozantinib is a tyrosine kinase inhibitor, known for
inhibiting VEGFR, MET, and AXL, already in clinical use
against multiple kinds of malignancies like hepatocellular
carcinoma (71), sarcoma (72), and renal-cell carcinoma (73).

This research still has several limitations. First, the clinical and
expression data we used for our research are mainly TCGA-based,
and thus limited in sample size, patients race, and ethnicity, which
should be validated in larger and localized sets of examples.
Second, our analysis is based on our choosing of the algorithm,
and although we spared no effort in tuning and optimization, there
will still be a certain amount of bias in our model. Third, the link
we observed between IRL transcription and TME is correlational,
not causal. Further investigation in vivo is needed to confirm the
interaction of IRLs with other components of TME.
CONCLUSION

In this study, we identified a novel inflammation-related subtype of
UCEC. On the basis of five hub prognostic IRLs (HMGN3-AS1,
LEMD1-AS1, AP000880.1, AC244517.1, and AC011466.1), a robust
risk signature was created which could serve as an independent
clinical factor for UCEC. Our nominated signature cannot only
mirror the immune landscape and assess immunotherapy response
for UCEC cases, but also provide valuable chemotherapeutic
strategies for individualized treatment.
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Supplementary Figure 1 | Class discovery via consensus clustering to assigned
patients into two clusters. (A) Consensus index of clustering models with CDF for
k = 2–9 (k means cluster count). (B) Consensus clustering matrix for k = 2. (C)
Consensus clustering model with CDF for k = 2–9. (D) Relative change in area under
the CDF curve for k = 2–9.

Supplementary Figure 2 | Multiple GSEA analysis was used to predict the
potential functions and pathways involved in the clusters. (A) The enriched KEGG
pathways involved in cluster 1. (B) The enriched KEGG pathways involved in
cluster 2.

Supplementary Figure 3 | The coefficients of the 27 IRL signatures evaluated by
multivariate Cox regression with LASSO.

Supplementary Figure 4 | Transcription of five IRLs involved in our risk signature.
(A–E) The transcription level of (A) LEMD1-AS1, (B) HMGN3-AS1, (C)
AP000880.1, (D) AC244517.1, and (E) AC011466.1, differs significantly between
the groups. (F–J) RT-qPCR were conducted to validate this difference in clinical
samples. The transcription level of IRLs (G) LEMD1-AS1 and (H) AP000880.1 differs
significantly between normal and tumor samples.

Supplementary Figure 5 | PCA and alluvial plot are utilized to explore the
distribution of patients into risk groups. (A–C) Principal components analysis
between the groups in (A) training set, (B) testing set, and (C) the entire set.
(D) Alluvial diagram of patients in risk-stratified groups distributed in different gene
cluster and survival outcomes.

Supplementary Figure 6 | The transcription level of (A) M6A methylation related
genes and (B–D) Mismatch repair genes in high-risk and low-risk group.
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