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Androgen receptor (AR) is a validated drug target for prostate cancer based on its role 
in proliferation, survival, and metastases of prostate cancer cells. Unfortunately, despite 
recent improvements to androgen deprivation therapy and the advent of better antian-
drogens with a superior affinity for the AR ligand-binding domain (LBD), most patients 
with recurrent disease will eventually develop lethal metastatic castration-resistant 
prostate cancer (CRPC). Expression of constitutively active AR splice variants that lack 
the LBD contribute toward therapeutic resistance by bypassing androgen blockade 
and antiandrogens. In the canonical pathway, binding of androgen to AR LBD triggers 
the release of AR from molecular chaperones which enable conformational changes 
and protein–protein interactions to facilitate its nuclear translocation where it regulates 
the expression of target genes. However, preceding AR function in the nucleus, initial 
binding of androgen to AR LBD in the cytoplasm may already initiate signal transduction 
pathways to modulate cellular proliferation and migration. In this article, we review the 
significance of signal transduction pathways activated by rapid, non-genomic signaling 
of the AR during the progression to metastatic CRPC and put into perspective the impli-
cations for current and novel therapies that target different domains of AR.

Keywords: androgen receptor, non-genomic signaling, prostate cancer, AR antagonists, Src kinase, MAPK/eRK 
signaling, Pi3K/Akt signaling

CASTRATiOn-ReSiSTAnT PROSTATe CAnCeR

Approximately 30% of patients will relapse after primary therapy (1). Androgen deprivation therapy, 
both surgical and biochemical castration, is the main treatment for relapsed patients and provides 
temporary relief to tumor burden; however, all patients will acquire lethal, castration-resistant pros-
tate cancer (CRPC). Androgen receptor (AR)-targeted therapies for blocking the androgen signaling 
axis have improved, with more potent, second-generation antiandrogens such as enzalutamide, 
and 17-hydroxylase/17,20-lyase (CYP17) inhibitors, but these agents only increase median overall 
survival by approximately 4 months in chemotherapy-naïve patients (2, 3).

Most CRPC continues to depend on AR despite continued androgen deprivation therapy. This is 
apparent from a rising titer of serum prostate-specific antigen, which indicates biochemical failure 
and the transition of CRPC. Proposed mechanisms of continued AR activity throughout CRPC 
include upregulation of AR by amplification of the AR gene or overexpression of AR protein, synthe-
sis of intratumoral androgens, stimulation of ligand-independent AR activity by epidermal growth 
factor (EGF) or interleukin-6 (IL-6) or by the mitogen-activated protein kinase (MAPK) cascade, 
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FiGURe 1 | integration of non-genomic signaling and canonical signaling of androgen receptor (AR). In the presence of low androgen levels (picomolar 
concentrations), AR interactions with Src kinase and p85α regulatory subunit of phosphoinositide 3-kinase activates mitogen-activated protein kinase (MAPK) and 
Akt pathways to enhance cell proliferation and survival in a non-genomic fashion. In the presence of high androgen levels (nanomolar concentrations), AR is 
activated in a canonical pathway to regulate the expression of target genes. Activation of MAPK and Akt by non-genomic signaling also enhances genomic AR 
signals by phosphorylating the AR or transcriptional coactivators.
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phosphoinositide 3-kinase (PI3K)/Akt, and protein kinase A 
pathways, and the expression of constitutively active AR splice 
variants such as ARv567es and V7 (4–11).

Androgen receptor belongs to the nuclear receptor superfam-
ily of proteins, along with the glucocorticoid receptor, progester-
one receptor, mineralocorticoid, and estrogen receptors, which 
all share a modular structure composed of an unstructured 
N-terminal domain (NTD), a DNA-binding domain (DBD), 
and a C-terminal ligand-binding domain (LBD). These domains 
operate as individual folding units that contribute to the trans-
formation of a transcriptionally active receptor. Unlike the LBD 
and DBD which are structured domains, the AR NTD is intrinsi-
cally disordered and mediates protein–protein interactions that 
are required for transactivation. During AR transactivation, 
the activation function 1 region (AF1) of the AR NTD acquires 
transient folding structures to bind transcriptional coactivators to 
bridge the AR to basal transcriptional machinery. Classic deletion 
analyses of the AR NTD identified two transcriptional activation 
units within AF1 (Tau1 and Tau5), which represent surfaces that 
mediate ligand-dependent and ligand-independent transactiva-
tion, respectively (12, 13).

In the canonical model, inactive AR is maintained in the 
cytosol by molecular chaperones that include heat shock pro-
teins, co-chaperones, and cytoskeletal proteins (14). Binding 
of AR to its natural ligand dihydrotestosterone (DHT) or 
testosterone triggers dissociation of chaperones and induces 
conformational changes that enable AR dimerization and 
interactions with a cytoskeletal protein, Filamin A, to modulate 
nuclear translocation and target gene expression (15, 16). Even 
so, many of the cellular responses to androgen do not fit in the 
canonical model and do not require transcription mediated by 
AR. This is because ligand-transformed AR is able to associate 
with molecular substrates in the cytoplasm and inner leaflet 
of the cell membrane to activate intracellular kinase cascades. 
These actions are referred to as rapid, non-genomic signaling of 
AR and enhance cell proliferation and survival by rapid signal 
transduction (Figure 1). In contrast to altering gene expression 
and synthesizing new proteins which may take hours, non-
genomic actions of AR precede transcriptional events and are 
generally observed within minutes after exposure to androgen. 
Herein, we review prominent intracellular signaling pathways 
activated by non-genomic AR signaling in prostate cells and 
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offer perspective into their implications for therapies targeting 
the AR.

nOn-GenOMiC AR SiGnALinG

Activation of Src Kinase
In response to androgen, a rapid association of AR with the 
non-receptor tyrosine kinase Src is responsible for enhancing 
cell proliferation through activation of the MAPK/ERK cascade. 
AR interacts with Src by binding of a polyproline sequence 
between residues 371 and 381 of the AR NTD to Src homology 
domain 3 (SH3). This association facilitates unfolding of Src and 
autophosphorylation to activate the Src kinase domain (17, 18). 
The importance of this interaction is emphasized in studies where 
deleting the polyproline sequence on AR or expressing peptides 
mimicking the polyproline region inhibits the activation of Src/
ERK by AR and blocks the induction of human prostate or mam-
mary cancer cell (LNCaP or MCF-7) growth by androgen (17, 19). 
Src/ERK induction is dependent on androgen concentration and 
is active in low to physiological androgen levels (0.1–10 nM) and 
inhibited by higher concentrations (100 nM) (20). This mirrors 
the biphasic effect of androgen, where low levels of androgens 
(0.01–0.1 nM) promote and high levels of androgens (1–100 nM) 
inhibit the growth of prostate cells (21–23). The biphasic effect 
of androgen to activate Src and stimulate proliferation is also 
observed in NIH3T3 fibroblast cells expressing low levels of AR, 
absent of AR nuclear translocation or transcription mediated by 
AR (24). These findings suggest that inhibitory effects on pro-
liferation at high androgen levels come from a loss of transient 
AR protein–protein interactions with Src upon saturation of AR 
with ligand, rather than a diversion of AR to perform genomic 
functions. In NIH3T3 fibroblast cells, exposure to optimal 
concentration of androgen (10  nM) suppresses cell cycle pro-
gression, induces interactions between AR with the cytoskeletal 
protein Filamin A, and recruits integrin beta 1 to coordinate cell 
migration by activating focal adhesion kinase, paxillin, and Rac 
(25, 26). In malignant prostate tissue, cytoplasmic localization of 
Filamin A correlates with metastatic potential and an androgen-
independent phenotype (27). Accordingly, forced nuclear locali-
zation of Filamin A may terminate non-genomic signals from 
AR supporting proliferation and restore bicalutamide sensitivity 
in C4-2 human prostate cancer cells, which exhibit androgen-
independent growth (28).

Activation of the Ras-Raf-MAPK/ERK cascade is the primary 
mitogenic stimulus initiated by non-genomic AR effects observed 
in androgen-sensitive prostate cells. Levels of phospho-(p-) 
ERK1/2 peak within 5–30 min of exposure to DHT in LNCaP cells, 
PC-3 cells stably expressing wild-type AR, and primary prostatic 
stromal cells, but this is not detected in primary human genital 
skin fibroblasts until 16 h, implying cell-type specificity (20, 29). 
Activated ERK1/2 in response to androgen influences the activity 
of transcription factors in the nucleus that are independent of AR 
DNA binding, which in turn activates ETS domain-containing 
protein Elk-1 to regulate transcription of immediate early genes, 
including c-fos (29–31). Interestingly, antiandrogens (bicaluta-
mide and flutamide) promoted the induction of p-ERK1/2 and 

induced transactivation of c-fos in reporter gene assays in PC3 
cells only when wild-type AR was ectopically expressed (29). 
Moreover, p-ERK1/2 can also promote cell survival in a non-
genomic manner by activating cAMP response element-binding 
protein (CREB) (20, 32). In a distinct manner, expression of a 
dominant negative CREB mutant in LNCaP cells abrogates 
DHT-induced protection against apoptosis, but does not prevent 
S-phase entry (20).

Aberrant Src activity is detected in malignant prostate cells and 
present in several AR-positive prostate cancer cell line models 
exhibiting androgen-independent growth (33–35). In low pas-
sage androgen-sensitive LNCaP cells, the ability for AR to activate 
Src and stimulate proliferation non-genomically is androgen 
dependent. However, in high passage LNCaP cells (more than 60 
passages), AR interacts with Src constitutively and independently 
of androgen to promote growth under androgen-depleted condi-
tions (20). In high passage LNCaP cells, the Src/MAP/ERK-1/2/
CREB pathway is constitutively active, and only the MAPK inhibi-
tor (PD98059) and not bicalutamide inhibits proliferation (20). 
Furthermore, while LNCaP cells do not typically form tumors 
in castrated hosts, high passage LNCaP cells do form tumors 
efficiently in castrated mice. C4-2 cells, a CRPC subline of LNCaP 
that can grow in castrated hosts, exhibit a threefold increase 
in protein expression of Src compared to androgen-sensitive 
LNCaP cells (36). Treatment of C4-2 cells with a Src inhibitor 
(PP2) inhibits growth, decreases invasive potential, and induces 
apoptosis, with synergy in combination with bicalutamide when 
bicalutamide alone has no inhibitory effects on this cell line (36). 
Supporting the role of Src in the progression of prostate cancer, 
immunohistochemistry of prostate tissue from the transgenic 
adenocarcinoma mouse prostate model shows a progressive 
increase (up to threefold) in positive staining of activated Src, as 
a function of age and cancer progression from 8 to 24 weeks (36). 
Since activating Src mutations are rare in human cancers, aberrant 
Src activity is presumably dependent on increased Src expression 
or stimulation by growth factors and interleukins abundant in the 
tumor microenvironment, including EGF, IGF, IL-6, IL-8 (37). 
Numerous studies provide evidence that Src inhibitors are effec-
tive in reducing proliferation and invasion of prostate cancer cell 
lines in vitro and demonstrate favorable antitumor activity in vivo 
using prostate cancer xenografts (38–40).

Cross Talk with the Pi3K Pathway
Activation of the PI3K/Akt pathway is also triggered by non-
genomic AR signaling. Direct interactions between ligand-
activated AR and PI3K in the cytosol are mediated by binding 
of phosphotyrosine residues on the AR NTD to SH2 domain of 
p85α regulatory subunit of PI3K (41). Association of AR/p85α 
promotes activation of p110 catalytic subunit and generation 
of phosphatidylinositol-3,4,5-trisphosphate (PIP3) signaling 
lipids to induce activation of Akt kinase, which leads to regula-
tion of transcription factors to inhibit apoptosis pathways and 
promote cell survival. Accumulation of Akt p-S473 is detected 
over 10–30  min upon androgen stimulation of non-tumoral 
VDEC cells or PC3 cells when stably expressing AR, support-
ing its role as a non-genomic AR stimulus (41). Activated Akt 
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phosphorylates proapoptotic protein BAD and forkhead box 
FOXO proteins to maintain cell survival (41). Among Akt 
substrates, FOXO3a enhances AR expression by direct binding 
to the AR promoter (42), whereas FOXO1 may decrease AR 
transactivation by recruitment of histone deacetylase HDAC3 
(43). Collectively, these emphasize the role of AR in maintaining 
cell survival independently of transcription, which is enhanced 
by PI3K/Akt signaling. Negative regulation of PI3K/Akt is facili-
tated by conversion of PIP3 to PIP2 by phosphatase and tensin 
homolog (PTEN), which is a commonly lost tumor suppressor in 
prostate cancer. Indeed, genomic alterations affecting the PI3K/
Akt pathway are detected in 42% of primary prostate tumors and 
100% of metastatic tumors (44). Furthermore, Akt may also bind 
to and phosphorylate residues S213 and S791 on AR to modulate 
transactivation (10). Interestingly, Akt represses AR activity in 
low passage LNCaP cells, but promotes AR transcription in high 
passage LNCaP cells (>60 passages) where the PI3K/Akt pathway 
is aberrantly active (8).

Phosphotryosine residues on the AR NTD mediate the interac-
tion between AR and PI3K, which include Y267, Y363, and Y534 
(45). These residues are phosphorylated in response to EGF by 
Cdc42-associated kinase Ack on Y267 and Y363, or Src on Y534 
(46, 47). Src-mediated phosphorylation of AR Y534 enhances the 
stability of AR by preventing interactions with E3 ligase CHIP 
that promote proteasomal degradation (48). Mutation of AR 
Y534 to phenylalanine disrupts the ability for AR to localize in 
the nucleus in a ligand-independent manner and inhibits AR 
transactivation in reporter gene assays in response to EGF or 
low concentrations of androgen (47). Studies in fibroblast cells 
support a ternary complex of Src/AR/p85α as a non-genomic 
AR signal (24). It is likely that an AR/Src complex is formed first 
by rapid signaling, followed by phosphorylation of AR Y534 by 
Src to recruit the p85α regulatory subunit of PI3K. Thus, non-
genomic activation of AR and interactions between Src/AR and 
p85α can trigger concurrent activation of the MAPK and PI3K/
Akt pathways to enhance cell proliferation and cell survival under 
androgen-depleted conditions.

Convergence with Ligand-independent 
Activation of AR
Our lab identified that the AR NTD can be activated indepen-
dently of androgen, by intracellular kinase signals, cytokines, 
and osteoblast-derived factors (6, 7, 49). Ligand-independent 
activation of AR may be enhanced by the pathways activated 
in non-genomic AR signaling. Specifically, MAPK/ERK activa-
tion in response to IL-6 increases transactivation of the AR 
NTD through interactions with STAT3 (7). IL-8 stimulates 
androgen-independent growth and transactivation of AR in a 
Src and ERK-dependent manner (50). EGF signaling enhances 
ligand-independent AR transactivation and promotes activa-
tion of Src and the Ras-Raf-MAPK/ERK pathway (9, 51, 52). 
Notably, activated Src is also able to stimulate the STAT pathway 
and enhance signals by growth factor kinases, such as EGFR 
(53, 54). Moreover, activation of the MAPK/ERK and PI3K/
Akt kinase pathways non-genomically can enhance ligand-
independent transactivation of AR by modulating interactions 

with coactivators including steroid receptor coactivator-1 and 
androgen receptor-associated protein 70 (55, 56).

iMPLiCATiOnS FOR PROSTATe  
CAnCeR THeRAPieS

Current AR Therapies
Non-genomic AR signaling pathways may likely contribute to 
resistance to androgen deprivation therapy and antiandrogens. 
Prostate cancer patients undergoing maximal androgen dep-
rivation therapy with surgical orchiectomy or LHRH analog 
combined with an antiandrogen (bicalutamide or flutamide) 
still have low levels of testosterone in their serum (less than 
0.1  nM), which is within the range of AR to mediate non-
genomic responses (57, 58). Levels of androgen in CRPC 
tissue are at least 10-fold higher, in the 1–3  nM range (59). 
Bicalutamide and flutamide are not effective in blocking 
non-genomic activation of AR and show an inherent ability to 
induce p-ERK1/2 and c-fos by acting through AR in androgen-
depleted conditions (29). More potent second-generation 
antiandrogens, such as enzalutamide, apalutamide (ARN-509), 
and darolutamide (ODM-201), have greater affinity for the 
AR LBD and may reduce nuclear translocation of full-length 
AR, resulting in accumulation AR in the cytosol (60–62). In 
the cytosol, the AR NTD has the potential to activate Src and 
PI3K, to drive tumor growth and survival. Concentrating 
AR in the cytoplasm may also effectively lower the androgen 
requirements for optimal growth, or work in concert with Src 
phosphorylation of AR Y534 to sensitize AR to low androgen 
concentrations. Furthermore, a consequence of AR inhibi-
tion is reduced expression of FKBP5, an AR target gene that 
is a chaperone for the phosphatase PHLPP targeting p-Akt. 
Accordingly, enhanced tumor survival by overactive Akt 
signaling, which is exacerbated by PTEN loss, is common in 
enzalutamide-resistant tumors (63).

Antiandrogens bind the AR LBD to inhibit full-length AR and 
thus have no effects on constitutively active AR splice variants, 
such as ARv567es and V7, which do not express a functional 
LBD. Expression of ARv567es and V7 is repressed by androgen 
and increased in the absence of androgen, thereby mediating 
transcription of target genes when the full-length AR is not 
transactivated by androgen under castrate conditions. ARv567es 
is predominantly nuclear (64), whereas the cellular localization of 
V7 is more variable. In malignant prostate tissue, V7 is predomi-
nantly localized in the cytoplasm but nuclear in CRPC (65). Due 
to the nuclear localization of ARv567es and V7 in CRPC, it has 
been proposed that they do not mediate non-genomic signaling. 
In support of this concept, expression of ARv567es results in 
decreased levels of IGF-1R mRNA and other genes (64) known 
to be upregulated by non-genomic signaling (66). Other splice 
variants have been discovered without any genomic function 
and are likely to carry out non-genomic actions, mainly AR8 and 
AR23. AR8 encodes solely the AR NTD and a unique 33-amino 
acid sequence at the C-terminus (67). AR8 has no transcrip-
tional activity and localizes on the cell membrane, possibly by 
palmitoylation of one or two cysteines in the unique C-terminal 
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FiGURe 2 | Targeting non-genomic actions of androgen receptor (AR). 
Non-genomic signaling of AR is activated by interactions between the 
polyproline domain of the AR N-terminal domain (NTD) and Src homology 
domain 3 of Src. Activated Src can enhance the transactivation of AR directly 
by phosphorylating AR Y534 or indirectly by stimulating alternate kinase 
pathways that modulate AR activity. AR NTD inhibitors may prevent 
non-genomic signals from AR by blocking Src interaction with the AR NTD 
and can block both ligand-dependent and ligand-independent transactivation 
of AR.
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sequence (67). Supporting a role in non-genomic signaling, AR8 
interacts with full-length AR and EGFR and associates with Src 
upon EGF stimulation (67). AR8 is endogenously expressed 
in several CRPC cell lines (C4-2B, 22Rv1, and CWR-R1) and 
enhances androgen-independent growth (67). AR23 is a cytosolic 
AR variant carrying a 23-amino acid insertion between the zinc 
fingers of the AR DBD (68). Interestingly, AR23 is able to poten-
tiate transcription mediated by full-length AR and influence 
transactivation of NF-kB in reporter gene assays, even though 
upon ligand binding it is unable to enter the nucleus and regulate 
gene expression (68).

novel AR Therapies
Inhibitors targeting the AR NTD might be promising candidates 
for blocking non-genomic AR signals that enhance tumor 
growth or survival. To date, two families of compounds have 
been discovered that bind to the AF1 region of the AR NTD 
and inhibit transactivation. These are sintokamide A and EPI 
compounds (69, 70). Both of these agents demonstrate promis-
ing results for inducing the regression of enzalutamide-resistant 
CRPC xenografts in mice (70, 71). Sintokamide A and EPI have 
different mechanisms of action by binding unique sites on AF1. 
Nuclear magnetic resonance spectroscopy analyses demonstrate 
that EPI-001 binds to a specific pocket formed by Tau5 of AR 
NTD with contact to three regions, residues 353–364, 397–407, 
and 433–466 (72), that overlaps with the residues 371–381 
containing the polyproline sequence required to interact with 
Src. EPI blocks protein–protein interactions on the AR NTD, 
between AF1 and CREB-binding protein and TFIIF of the 
transcription preinitiation complex, and between full-length 
AR and STAT3, which binds within residues 234–558 of the AR 
NTD (7, 69, 70). EPI-506 is the first AR NTD antagonist to be 
tested in clinical trials for metastatic CRPC (NCT02606123). 
A clinically important advantage to AR NTD inhibitors is that 
they do not depend on the presence of AR LBD for inhibiting 
the transcriptional activity of full-length AR as well as AR 
splice variants. Non-genomic signals from full-length AR, or 
possibly membrane-associated or cytosolic AR splice variants, 
such as AR8 or AR23, may be prevented by AR NTD inhibitors 
that block interaction with Src (Figure  2). Another potential 
strategy to prevent non-genomic action of AR is to degrade the 
AR protein. However, all AR degraders to date bind the AR LBD 
or other non-AR targets. AR degraders that have being tested 
in clinical trials for CRPC include galeterone (TOK-001) and 
niclosamide (73–75). The randomized phase III clinical study 
(NCT02438007) for galeterone was halted recently due to the 
unlikelihood of meeting its primary endpoint, whereas niclosa-
mide currently entered phase I trials as a combination treatment 
with enzalutamide (NCT02532114).

Combined inhibition of AR and  
non-Genomic Substrates
Along with androgen deprivation therapy, non-genomic AR 
signaling substrates may need pharmacological inhibition to 
provide maximum benefit to CRPC patients. Several inhibitors 
of Src family kinases have been tested in a clinical setting for 

prostate cancer, notably inhibitors that target kinase activity, 
dasatinib (BMSS-354825) and saracatinib (AZD0530); and KX2-
391, a peptidomimetic that blocks the substrate binding site of 
Src. Clinical studies indicate that targeting Src or inhibiting acti-
vated downstream kinase pathways in isolation is ineffective for 
CRPC (37, 76–79). Likewise, inhibitors of PI3K, Akt, or mTOR 
have also demonstrated limited use in clinical practice as single 
agents (80, 81). This is probably because targeting non-genomic 
AR signals does not protect against ligand-dependent activation 
of AR and transcription of AR target genes. Inhibition of both 
non-genomic and genomic pathways of AR may be necessary to 
eradicate tumor dependency of AR. Concurrent inhibition of AR 
and non-genomic AR components may prove useful for prostate 
cancer patients with progression after primary therapy. Many 
of these strategies are currently under investigation and show 
promising results in preclinical models of CRPC (82–85).
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