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Abstract: The rapid development of e-commerce technologies has encouraged collection centers to
adopt online recycling channels in addition to their existing traditional (offline) recycling channels,
such the idea of coexisting traditional and online recycling channels evolved a new concept of a dual-
channel reverse supply chain (DRSC). The adoption of DRSC will make the system lose stability and
fall into the trap of complexity. Further the consumer-related factors, such as consumer preference,
service level, have also severely affected the system efficiency of DRSC. Therefore, it is necessary to
help DRSCs to design their networks for maintaining competitiveness and profitability. This paper
focuses on the issues of quantitative modelling for the network design of a general multi-echelon,
dual-objective DRSC system. By incorporating consumer preference for the online recycling channel
into the system, we investigate a mixed integer linear programming (MILP) model to design the
DRSC network with uncertainty and the model is solved using the ε-constraint method to derive
optimal Pareto solutions. Numerical results show that there exist positive correlations between
consumer preference and total collective quantity, online recycling price and the system profits.
The proposed model and solution method could assist recyclers in pricing and service decisions to
achieve a balance solution for economic and environmental sustainability.

Keywords: dual-channel reverse supply chain (DRSC); network design; consumer preference; ε-
constraint method

1. Introduction

With the wave of industrialization sweeping the world, consumption of a wide variety
of electronic products has grown globally, resulting in the mass of electronic waste (e-waste)
is becoming the fastest growing waste flow in the world. It is reported that global e-waste
generation was estimated to be 41.8 million tons in 2014 and increased sharply to 60 million
tons by 2018, which brought a huge challenge in recovery and disposal [1]. However,
only an estimated 20% of global e-waste is fully recycled and safely disposed of. Due
it being composed of numerous toxic elements, e-waste can be regarded as hazardous
waste; when it is disposed of without care, a great threat is posed to both the environment
and human health, and further pressure put on the environment in the form of global
warming, resource depletion and the extinction of species (UNEP, 2016). Thus, sustainable
development, addressing economic benefits, and environment impacts, receives growing
attention in the recycling industry of e-waste. Facing this grim situation, many firms have
started to adopt the practice of recovering potential value from e-waste and integrated
recovery activities and environmental strategies into their recovery processes, such as HP,
IBM, Apple, Kodak, and Lenovo [2]. Likewise, governments have introduced legislation to
reduce the serious environmental pollution and this affects how firms take responsibility
for the proper handling of their e-waste. All these issues mean that researchers pay great
attention to the reverse supply chain (RSC), which can be defined as the reverse flow of
a series of facilities including product recovery, transportation, sorting, dismantling and
remanufacturing for the purpose of taking back the e-waste and regaining product value
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in the supply chain. The research on RSC has evolved over the years and has concluded on
different aspects. To deal with the uncertainties associated with RSC operations, one of
the core challenge problems at the strategic level is to build an advanced stochastic model
to generate a network design that will perform well under different scenarios, thereby
improving the overall supply performance and profitability [3–5]. The network design
of RSC has traditionally focused on network, logistics processes, and managing efficient
recovery. However, with an ever-increasing concern for environmental sustainability, it
is well recognized that firms are not only aiming for an efficient network design, but also
seeking to achieve a transformation to a green and sustainable supply chain. Therefore,
this paper aims to propose a new generic stochastic network design model which considers
key uncertain parameters that are recurrent in recycling industrial of e-waste with the
challenges of RSC operations, and the sustainable goals including both economic and
environmental factors are also considered [6–8].

On the other hand, one of the main reasons for the low efficiency and high cost of e-
waste recycling is that there are only a few recycling channels accessible to consumers. With
the development of information technology, one possible way to provide accessible services
to individuals is to combine the Internet with traditional industries to promote communica-
tion between recycling practitioners and consumers. Under such a circumstance, “Internet
+ recycling”, a new business mode has come into being; this mode enables consumers and
recycling practitioners to schedule on-site collections and transactions through various on-
line platforms. Since this model has provided convenience and availability, for any one can
register an account on online platforms and then strike a bargain, and also break through
the constraints of time and space of traditional recycling channels, it is becoming more and
more popular. For example, Changhong Green Group Company limited and Shanghai Xin
Jinqiao Environmental Protection Company Limited, who earlier collected e-waste through
traditional recycling channels, now began to collect through online recycling channels. In
addition, GEM, one of the China’s largest recycling enterprises, has vigorously built online
recycling channels through cooperation with the online platform Loving Recycling (refer
to www.aihuishou.com, accessed on 10 December 2014). As such the idea of coexisting
traditional recycling channels and online recycling channels successfully evolved a new
concept of the dual-channel reverse supply chain (DRSC), which refers to the e-waste
which is collected at a collection center through traditional recycling channels and online
recycling channels together. When a DRSC is adopted, the supply chain management
(SCM) becomes more complex but is also more profitable for the supply chain [9,10].

However, managing a DRSC has its own challenges, mainly the conflict and compe-
tition between online recycling channels and the traditional recycling channels; this will
lead to severe market cannibalization, and the main reason is due to its consumer-driven
characteristics. In a DRSC, consumers are shown to have a preference to choose online or
traditional recycling channels to dispose of their e-waste, and recyclers of different channels
are willing to utilize some strategies to attract more consumers to choose their channels and
acquire more market share, such as recycling price, channel convenience, service level, etc.
In this process, the consumer is the sender of the transaction, and the degree of consumer
satisfaction determines whether the transaction can be successfully completed. Due to this,
consumer preference has a significant influence on the performance of DRSC [11]. The
existing literature explains the key effects of consumer preference in lots of supply chain
modes, but rarely involves DRSC. Therefore, how to comprehensively consider traditional
and online recycling channels in DRSC and focus on the impact of consumer preference
are issues that urgently need to be resolved. Further, the development of the Internet
has provided an attractive alternative for consumers to dispose of their e-waste, and the
opening of online recycling channels can also contribute to a large demand of e-waste.
In this sense, how to the optimize recycling service level has become an effective way to
increase the market share of e-waste. This is not only reflected in the design, operation and
consumer service response of its website, but also reflected in its large number of offline
network design to facilitate potential consumer consultation and on-site delivery.

www.aihuishou.com


Int. J. Environ. Res. Public Health 2021, 18, 4760 3 of 24

In the literature, study of network design of RSC has gained great attention of both aca-
demic research and industrial practitioners. For more comprehensive and detailed reviews
on these works one can refer to the authors of [12–14]. To deal with the uncertainty related
to RSC operations, many researchers studied advanced stochastic models under different
scenarios. Diabat et al. [15] developed a mixed integer non-linear programming (MINLP)
model for a multi-echelon RSC network for product returns. Soleimani and Govindan [16]
developed a risk-averse two-stage stochastic programming model for an RSC network
by taking the expectation of random variables into consideration. The numerical results
proved the capabilities and acceptability of the proposed model and the effects of risk
parameters in the model behavior. Roghanian and Pazhoheshfar [17] proposed a proba-
bilistic mixed integer linear programming (MILP) model for a multi-product, multi-stage
RSC network with the degree of uncertainty in terms of capacities, demands and return
quantity. Zhou and Zhou [18] studied a nonlinear integer programming model for an office
paper reverse logistics network to determine the locations and number of recycling stations
and plants while minimizing the total cost. Ene and Ozturk [19] considered a network
for reverse flows of the end-of-life vehicles’ recovery process. The main objective of the
model is to maximize revenue and minimize pollution in end-of-life product operations.
Ayvaz et al. [20] proposed a generic multi-echelon, multi-product and capacity-constrained
stochastic RSC network design model under return quantity, sorting ratio and transporta-
tion cost uncertainties. Numerical examples showed that the proposed model can provide
acceptable solutions to make efficient decisions. Fattahi and Govindan [21] considered
design and planning for an integrated forward/reverse logistics network over a planning
horizon with multiple tactical periods. They applied a Latin Hypercube Sampling method
and backward scenario reduction technique to deal with demand and potential return
uncertainty. Yu and Solvang [22] presented a stochastic model for designing and plan-
ning a model in which they considered a generic multi-source, multi-echelon, capacitated
and sustainable RSC network under uncertainty. Srinivasan and Khan [23] presented a
manufacturing/re-manufacturing facility location and allocation model for a multi-stage,
multi-product capacitated closed-loop supply chain (CLSC) network. To handle the uncer-
tainty with demand and return, a scenario-based mixed integer linear programming was
developed and implemented in a cartridge manufacturing industry.

Apart from the uncertainty, a large number of studies pay attention to the sustainable
supply chain network design due to the growing environmental impact, legislation and
corporate social responsibility [24–27]. Jin et al. [28] demonstrated that the sustainability
requirement might reshape the optimal structure of a supply chain. Utne [29] pointed
out that sustainable cost evaluation not only includes economics profits or costs but also
considers environmental and social impacts. Due to a great performance in environmental
benefits, CO2 emission control has been widely employed to the well-designed sustain-
able RSC network. Hong et al. [30] investigate the impact of emission constraints on a
sustainable supply configuration with guaranteed service time. Zohal and Soleimani [31]
presented CLSC systems involving four stages of forward flow and three stages of re-
verse flow, and a multi-objective model was developed with a significant consideration of
CO2 emission. Yu and Solvang [32] constructed a multi-product, multi-echelon stochastic
programming model considering carbon constraint under uncertainty and developed a
multi-criteria scenario-based risk-averse solution method to obtain the optimal solutions.
Haddadsisakht and Ryan [33] presented a three-stage hybrid robust/stochastic model for
CLSC network design problem with carbon tax rate uncertainty, the results showed that
the ability of adjusting transportation mode capacities to the tax rate can provide valuable
benefit. Zarbakhshniz et al. [34] presented a multi-stage, multi-product and multi-objective
model for a CLSC network for the purpose of minimizing the economic costs and CO2
emissions; they also developed an ε-constraint method to obtain a set of Pareto solutions.
Wang et al. [35] developed a green urban CLSC network to minimize the CO2 emissions
and the overall operational cost and a case study is conducted to validate the feasibility
and practicality of the proposed model.
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Moreover, we also discussed the interaction between different stakeholders, due to
its particular importance in the context of RSC network design. Evidence had shown that
the core firm needs to maintain a healthy relationship with its stakeholders related to RSC
and respond positive to their demands, in order to achieve competitive advantages and
corporate sustainability [36,37]. De Figueiredo and Mayerle [38] analyzed the individual
behavior of recyclers and collection centers, they developed a two-level model to optimize
the total system cost by given the behavior of collection centers. Litvinchev et al. [39]
proposed a pricing strategy model with multiple periods and stochastic demand, they
pointed out that the recovery price and quantity of returned products can be set by the
unit cost saving and competitor’s price. Rezapour et al. [40] presented a bi-level model
for the CLSC network design with price-dependent market demand, and considered the
competition between two chains producing commodities in a same market. Thus, in this
study, we use the stakeholder theory as a decision-making tool for firms in order to gain
competitive advantages.

Different to the booming development in recycling industry, there is limited research
that focuses on DRSC; only a few articles showed up in the research results. Earlier studies
demonstrated that the application of Internet technology in the product recovery could
effectively collect and analyze the information needed to be recycled, and strengthen the
management of product life cycle [41]. Some researchers discussed the pricing and strategic
planning of DRSC with the consideration of consumer preference, the main results of their
work showed that the DRSC strategy always outperform than the traditional offline channel,
and the consumer preference plays an important role in the coordination mechanism of
DRSC [42,43]. Giri et al. [44] studied the pricing strategy of DRSC when different members
occupied the dominant position, such as manufacturers, retailers and third-party, they
found that the optimal revenue can be derived when the retailer dominated the whole
system. Moreover, a revenue-sharing mechanism of DRSC were developed by considering
the relationship between the recovery rate and the revenue sharing ratio [45]. Taleizadeh
et al. [46] investigated the pricing strategies of two types of CLSC with a dual-channel, they
developed Stackelberg game models to explore optimal solutions, such as prices, quality
levels and collective efforts.

To sum up, scholars have conducted in-depth research for RSC network design op-
timization problems, especially those that integrates environmental issues, multiple un-
certainties and capacity constraints. All these assorted modelling frameworks, solution
methodologies and stochastic models in previous studies can provide great help and
support to this research. Through analysis of the model and the main results, we have
drawn some meaningful points in this research. First of all, although there has only been
little research on DRSC, it is still the mainstream research background on supply chains
in academia; this is mainly because the dual-channel supply chain with forward supply
chains (FSC) and reverse supply chains with multiple offline channels has been become a
research trend. Moreover, the research of DRSC, which integrates the Internet, recycling,
policy, environment, social and other academic hotspots, will surely become one of the most
popular research issues in the future. It is also because of this that the exploration of such
problems at this stage is of great significance. Secondly, the majority of the existing models
on DRSC are mainly focused on pricing decisions and channel coordination [42–46]; there
is a lack of quantitative network design models that represent advanced applications in
recycling industries; the DRSC that considers both traditional and online recycling channels
remains scarce. Thirdly, some studies considered consumer preference as a key consumer-
related factor to the system performance of supply chain and showed that it will cause
the system to lose stability and fall into the trap of complexity [47]. Most previous studies
have studied its impacts on the forward supply chain or RSC, only the work of [43,45]
considered contract design and strategy selection for the DRSC. To fill this gap, this work
contributes to the existing literature by formulating a stochastic mathematical model for
the network design of a general DRSC system and, through the numerical analysis, we
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have explored the impact of consumer preference on the channel selection, pricing, and
revenue of recycling practitioners in DRSC and its deeper management significance.

To the best of our knowledge, this paper is the one of the few studies on DRSC based
on online recycling channels that simultaneously considers environmental issues and the
impact of consumer preference in designing the DRSC network. Specifically, we design
the network of a DRSC system that integrates traditional and online recycling channels.
Through the construction and solution of a mixed integer linear programming (MILP)
model, we analyze the examples and supply chain systems change with the increase in
consumer preference and service cost coefficient. The goal is to minimize the total costs
while reducing the carbon emissions by strategically locating participants within the DRSC
network (such as recyclers, disposal centers, remanufacturing centers, etc.). To efficiently
solve the model, an ε-constraint method is proposed, and the effectiveness of the solution
method is validated by three sizes of test problems: small, medium and large. Briefly, the
main contributions of this work are as follows:

1. a new MILP model for a stochastic DRSC network design considering consumer
preference is proposed;

2. dual objectives including the total costs and carbon emissions are considered;
3. the uncertainties in demand and collective quantity are considered;
4. an ε-constraint algorithm to cope with the large-scale RSC network design problem is

developed.

The remainder of this paper is organized as follows: Section 2.1 gives the main
assumtions for the model and Section 2.2 describes the studied problem in detail and
introduces the process of formulating the bi-objective stochastic MILP model. Section 2.3
presents an ε-constrained method that improves the efficiency of the problem-solving. In
Section 3, the examples of the model are tested and validated. Finally, the conclusions and
future research are given in Section 5.

2. Materials and Methods
2.1. Assumptions

The following assumptions are made to develop the proposed model:

Assumption 1. In order to simplify the study, according to the research in [42,43,48,49], we
assume that all the e-waste products are of the same type, the same degree of loss and recovery
conversion. Online recycling companies can recycle almost all kinds of e-waste, such as mobile
phones, notebook computers, digital cameras and other types, and there is no e-waste with absolutely
the same degree of loss in reality. However, since none of the above is the focus of this research and
will make the model too complicated, in this study we only consider a batch of e-waste of the same
type, brand, and degree of loss that have been sorted by collection centers.

Assumption 2. We assume that the online recycling platform is established by third-party recyclers
(TPR), which is currently the main mode of constructing such platforms in China, accounting for
about 80% of the total number. Some manufacturers, while recycling e-waste through existing
channels, such as offline stores and official websites, also entrust online recycling platforms to recycle.
For example, in China, Meizu Inc. recycle used phones through its self-built “mCycle” recycling
project and cooperate with “ihuigo network” (http://www.ihuigo.com, accessed on 3 August 2017)
for recycling; Huawei Inc. carries out part-exchange activities and recycles in cooperation with
“huishoubao network” (http://www.huishoubao.com, accessed on 17 August 2016). Such a new
mode can reduce the cost of self-built, and outsourcing services can also improve service quality.

Assumption 3. In the existing research describing online recycling channels [44], they always
assume that collection centers can collect e-waste directly from consumers but without going through
any self-operated offline stores. That is, once consumers reach an agreement with online recyclers
for the recycling price through Internet, they will send the e-waste to collection centers by express
delivery or door-to-door. However, according to the research in [50], in reality we found that

http://www.ihuigo.com
http://www.huishoubao.com
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almost all online recycling channels have built their own self-operated stations to support online
recycling transactions. For example, Loving Recycling collects all types of used mobile phones,
electronic instruments, cameras, etc. through the Internet; they also build offline stores, such as
the eighty-eight offline stores built in Shanghai and fifty-eight in Beijing. Therefore, in this study,
self-operated stores built by online recyclers will be considered in the DRSC network studied, and
the e-waste collected by online recycling channels will be transferred to collection centers after
initial sorting.

Assumption 4. Based on a large number of studies such as [48,51], we assume that the collective
quantity of online and traditional recycling channels is linearly affected by recycling prices and
service level. In addition, we believe that consumer preference for the online recycling channel
θ (0 < θ < 1) will affect the proportion of the basic quantity of the recycling market in different
channels, and this proportion is not affected by recycling prices and service level. Due to the
competition between the two channels in the recycling market, the recycling price of one party will
affect the collective quantity of the other party. Therefore, if we define pt and pe as the recycling
price of unit e-waste to consumers in traditional and online recycling channels, respectively. Then,
the collection quantity of traditional and online recycling channels is:

Dr = (1 − θ)α + δ1pt − δ2pe − η2sl (1)

Ds = θα + δ1pe − δ2pt + η1sl (2)

where a is the basic market share to the direct channel or in, other words, the web-product com-
patibility quantity of the recycling market; δ1 is the coefficient of collective quantity affected by
the recycling price of own channels, and δ2 is the coefficient of collective quantity affected by the
recycling price of competing channels; η1 is the coefficient of collective quantity affected by the
service level of own channels, and η2 is the coefficient of collective quantity affected by the service
level of competing channels; sl is service level of online recycling channels.

Assumption 5. Similar to the research in [52], we also assume that traditional local recyclers are
mostly small-scale recyclers, and always located near consumers. For most types of e-waste, as the
traditional recycling mode usually obtains bulk transportation; the logistics cost shared by each
used product is very low, which can be ignored. Therefore, we assume that the location of the local
recycler is the consumer area, and the distance from consumer to the location recycler is ignored.

Assumption 6. In this study, we also choose to ignore the service level of traditional recycling
channels when building the model [53]. Although traditional recycling companies provide consumers
with consulting and pickup services when dealing with consumers, their service level are too low
compared to online recycling channels. In addition, online recycling companies have fixed standards
and procedures for service provision and have used them as an important means to enhance channel
competitiveness, which is also not available in traditional recycling companies.

2.2. Model Formulation

In this study we consider a general network for the DRSC that integrates traditional
and online recycling channels to optimize the operations of product recovery and re-
manufacturing. This is designed as a multi-echelon reverse logistics network with five
members—local recyclers of traditional recycling channels, third-party recyclers of online
channels (TPR), collection centers, remanufacturing centers and disposal centers. It has a
dual-channel recycling system by which the e-waste products are collected from consumers
through traditional local recyclers or TPR to collection centers. After proper inspection and
grading at collection centers, the e-waste will be classified and distributed via different
reverse channels. Most e-waste which can be repaired will be sent to remanufacturing
centers for remanufacturing and be resent back to consumers, whereas a small number of
scrapped e-waste will be transported to disposal centers for refuse disposal, such as landfill
or incinerators. Therefore, the DRSC network proposed in this paper can be described as
shown in Figure 1.
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The objectives of the proposed model include two parts: one is to minimize the total
operating costs of the entire network (OF1), which consist of fixed establishing costs of the
facilities (f 1) and transporting costs for delivering the e-waste (f 2); another is to measure
the impact of environmental factors on the network. This expression aims to minimize
the total amount of CO2 emissions generated from transport flow and facility operations
(OF2), which consist of the amount of CO2 emissions for establishing the facilities (f 3),
for handling the e-waste of each facility (f 4), and for transporting the e-waste between
facilities (f 5).

We first introduce the indices, parameters and decision variables of the proposed
model in Table 1, respectively.

Table 1. Notations.

Indices

i consumers, i = 1, 2, . . . , I

j candidates for locations of TPR in online recycling channels, j = 1,
2, . . . , J

k candidates for locations of collection centers, k = 1, 2, . . . , K
l candidates for locations of remanufacturing centers, l = 1, 2, . . . , L
m candidates for locations of disposal centers, m = 1, 2 . . . , M
s scenarios, s = 1, 2, . . . , S

Parameters

ps probability of scenario s
β1 recovery rate of remanufacturing center
β2 remanufacturing rate of remanufacturing center
FTj, FCk, FRl, FDm fixed establishing cost of different facilities
PTij,PCik,PLjk,PRkl,PDkm,PUli unit processing and transporting costs among different facilities
DTij,DCjk,DLik,DRkl,DDkm,DUli linear distance among different facilities
ETj,ECk,ERl,EDm amount of CO2 emissions of establishing respective facilities

HTj,HCk,HRl,HDm
amount of CO2 emissions for handling unit e-waste among
facilities

CTj,CCk,CRl,CDm capacity level for different facilities
t unit CO2 emission of shipping one truck-load per kilometer
ρ vehicle capacity occupied by unit of e-waste

Decision Variables

Dr, Ds collective quantity of traditional and online recycling channels
wj, binary variable which equals ‘1’ if TPR j is open, and ‘0’ otherwise

xk
binary variable which equals ‘1’ if the collection center k is open,
and ‘0’ otherwise

yl
binary variable which equals ‘1’ if the remanufacturing center l is
open, and ‘0’ otherwise

zm
binary variable which equals ‘1’ if the disposal center m is open,
and ‘0’ otherwise

as
ij, βs

jk, γs
ik, δs

kl, ηs
km, θs

li
amount of e-waste transported among different facilities in
scenario s
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Next, we formulate the equations of five subitems involved in two objectives as follows:

1. the fixed establishing cost of facilities can be formulated by

f1 = ∑
j∈J

FTjwj + ∑
k∈K

FCkxk + ∑
l∈L

FRlyl + ∑
m∈M

FDmzm (3)

2. the transporting cost for delivering e-waste is formulated by

f2 = ∑
s∈S

Ps

(
∑
i∈I

∑
j∈J

PTijas
ij + ∑

i∈I
∑

k∈K
PCikγs

i + ∑
j∈J

∑
k∈K

PLjkβs
jk + ∑

l∈L
∑

k∈K
PRklδ

s
kl + ∑

m∈M
∑

k∈K
PDkmηs

km + ∑
i∈I

∑
l∈L

PUliθ
s
li

)
(4)

3. the total amount of CO2 emissions for establishing facilities is calculated by

f3 = ∑
j∈J

ETjwj + ∑
k∈K

ECkxk + ∑
l∈L

ERlyl + ∑
m∈M

EDmzm (5)

4. the total amount of CO2 emissions for handling e-waste is formulated by

f4 = ∑
i∈I

∑
j∈J

HTjas
ij + ∑

j∈J
∑
k∈K

HCkβs
jk + ∑

i∈I
∑
k∈K

HCkγs
ik + ∑

l∈L
∑
k∈K

HRlδ
s
kl + ∑

m∈M
∑
k∈K

HDmηs
km) (6)

5. the total amount of CO2 emissions for transporting e-waste is calculated by

f5 = tρ ∑
s∈S

Ps

(
∑
i∈I

∑
j∈J

DTijas
ij + ∑

j∈J
∑

k∈K
DCjkβs

jk + ∑
i∈I

∑
k∈K

DLikγs
ik + ∑

l∈L
∑

k∈K
DRklδ

s
kl + ∑

m∈M
∑

k∈K
DDkmηs

km + ∑
i∈I

∑
l∈L

DUliθ
s
li

)
(7)

Therefore, the mathematical representation of the model is presented as follows:

MinOF1 = f 1 + f 2 (8)

MinOF2 = f 3 + f 4 + f 5 (9)

The constraints of the model are formulated in Equations (10)–(25).

∑
i∈I

∑
j∈J

as
ij = Ds, ∀s ∈ S (10)

∑
i∈I

∑
k∈K

γs
ik = Dr, ∀s ∈ S (11)

∑
i∈I

as
ij = ∑

k∈K
βs

jk, ∀j ∈ J, ∀s ∈ S (12)

(1− β1)(∑
i∈I

γs
ik + ∑

j∈J
βs

jk) = ∑
m∈M

ηs
km, ∀k ∈ K, ∀s ∈ S (13)

β1(∑
i∈I

γs
ik + ∑

j∈J
βs

jk) = ∑
l∈L

δs
kl , ∀k ∈ K, ∀s ∈ S (14)

β2 ∑
k∈K

δs
kl = ∑

i∈I
θs

li, ∀l ∈ L, ∀s ∈ S (15)

∑
s∈S

∑
i∈I

as
ij ≤ CTjwj, ∀j ∈ J (16)

∑
s∈S

∑
i∈I

γs
ik + ∑

s∈S
∑
j∈J

βs
jk ≤ CCkxk, ∀k ∈ K (17)

β1 ∑
s∈S

∑
k∈K

δs
lk ≤ CRlyl , ∀l ∈ L (18)

(1− β1) ∑
s∈S

∑
k∈K

ηs
km ≤ CDmzm, ∀m ∈ M (19)
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∑
j∈J

wj ≥ 1 (20)

∑
k∈K

xk ≥ 1 (21)

∑
l∈L

yl ≥ 1 (22)

∑
m∈M

zm ≥ 1 (23)

as
ij, γs

ik, βs
jk, δs

lk, ηs
mk, θs

il ≥ 0, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀l ∈ L, ∀m ∈M (24)

wj, xk, yl, zm = {0, 1}, ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀l ∈ L, ∀m ∈M (25)

Equations (8) and (9) describe the total costs and the total amount of CO2 emissions.
Constraints (10), (11) ensure that all e-waste generated from consumers by traditional and
online recycling channels is completely gathered. Constraints (12)–(15) are the balance
constraints which confirm the uniformity of input flow and output flow at each facility.
Constraints (16)–(19) assure that the total flows to and from each facility could not exceed
its capacity. Constraints (20)–(23) guarantee that at least one of the potential facilities be
selected. Constraints (24), (25) are the positive variables and binary constraints.

2.3. Solution Method

In this section, how to optimize the dual-objective function and most complex con-
straints of DRSC network design problem will be introduced. When considering a multiple
objective stochastic problem, the sets of the solutions should be a Pareto frontier that
represents the trade-off between multiple objective functions instead of a unique solution.
As mentioned in the literature, there are two classes of methods to optimize the presented
dual-objective model: the first one is to use meta-heuristics or evolutionary methods to
obtain acceptable solutions. However, the quality of the solutions and their optimality
are not known. The other type of methods are the exact or heuristic methods used to
obtain the Pareto solutions [32,34]. In this study, we perform an ε-constraint method,
a well-known exact method for a large number of scenarios considered. Moreover, in
view of the impact of pricing and service-making on collective quantity in traditional
and online recycling channels, which in turn affects the network design of the DRSC,
it is necessary to conduct research on how collective centers can optimize their pricing
strategy to coordinate the dual-channel of the DRSC. All these works will be stated in next
Sections 2.3.1 and 2.3.2, respectively.

2.3.1. Pricing Strategy Optimization

This section considers the pricing and service decision issues of the DRSC network
under a centralized policy, aiming to derive the collective quantity both in traditional and
online recycling channels. Under this policy, all facilities cooperatively decide the recycling
price and the service level through online recycling channels. Since there is a single decision
maker, the internal transfer price does not play any role. That is, the collection center and
TPR will no longer make decisions based on their own benefits, but rather maximize
the revenue of the entire network. Therefore, the DRSC network will make decisions on
traditional recycling price pt, online recycling price pe, and online service level sl, all these
parameters will deeply affect the collective quantity. For convenience, we also define that
∏ is the revenue of the whole supply chain system under a centralized policy, p0 is the
revenue of collection centers from disposal of unit e-waste, c and cs are the logistics cost
and service cost of recycling in online channels, respectively. Moreover, according to Tsay
and Agrawal [54], cs can be described as µsl

2/2 where µ represents the coefficient of service
cost of online channels. Therefore, the formulation of the whole system revenue (∏) is
mainly composed of the revenue of both traditional and online recycling channels, which
can be expressed as follows:
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∏ = (p0 − pt)Dr + (p0− pt − c) Ds − cs = (p0 − pt)[(1 − θ)α + δ1pt − δ2pe − η2sl] + (p0 − pt − c)[θα + δ1pe − δ2pt + η1sl] − µsl
2/2 (26)

Next, according to Equation (26), we can solve the first partial derivatives of ∏ with
respect to pe and pt and sl, respectively, and the results are given as follows:

∂∏/∂pe = −2δ1pe + 2δ2pt − η1sl + (δ1 − δ2) p0 − θα − cδ1 (27)

∂∏/∂pt = −2δ1pt + 2δ2pe + η2sl + (δ1 − δ1) p0 − (1− θ)α + cδ2 (28)

∂∏/∂sl = −µsl + p0(η1 − η2) + ptη2 − peη1 − cη1 (29)

Property 1. When η1
2δ1 + η2

2δ1 − 2η1η2δ2 + 2µ(δ2
2 − δ1

2) < 0, the objective function
∏(pt, pe, sl) is concave with pt, pe and sl.

The proof of Property 1 can be found in Appendix A.
According to Cachon and Lariviere [55] and Wu et al. [56], the optimal value of pt,

pe and sl can be derived by setting Equations (27)–(29) to zero and combining the results
as follows:

pt = {cη1(η2δ1 − η1δ2) + α[η1
2(θ − 1) − η1η2θ + 2µ(δ1 − θδ1 + θδ2)] + p0[2η2

2δ1 − η1η2(δ1 + 3δ2) +
(δ1 + δ2)(η1

2 − 2µδ1 + 2µδ2)]}/2[η1
2δ1 + η2

2δ1 − 2η1η2δ2 + 2µ(δ2
2 − δ1

2)]
(30)

pe = {−c(η2
2δ1 + 2η1

2δ1 − 3η1η2δ2 − 2µδ1
2 + 2µδ2

2) + α[η1η2θ − η1η2 − η2
2θ + 2µ(δ2 + θδ1− θδ2)] +

p0[η2
2(δ1 + δ2) −η1η2(δ1 + 3δ2) + 2(η1

2δ1 − µδ1
2 + µδ2)]}/2[η1

2δ1 + η2
2δ1 − 2η1η2δ2 + 2µ(δ2

2 − δ1
2)]

(31)

sl = {cη1(δ1
2 − δ2

2) + α[η1(θδ2 − δ2 − θδ1)+ η2(θδ2 − δ1 − θδ1)]+ p0(δ1
2 − δ2

2)(η2 − η1)}/[η1
2δ1 + η2

2δ1 − 2η1η2δ2 + 2µ(δ2
2 − δ1

2)] (32)

Moreover, substituting (30)–(32) into (1) and (2), the collective quantity of traditional
and online recycling channels can be obtained, respectively.

Property 2. Under the centralized policy, the optimal online recycling price pe is negatively
correlated with θ, and the optimal service level sl is positively correlated with θ.

Property 2 (the proof of Property 2 can be found in Appendix A) indicates that when
consumer preference for the online recycling channel increases, recyclers need to reduce
their online recycling prices while increasing service level to ensure the maximum profits.

2.3.2. ε-Constraint Method

In the field of multi-objective optimization problems, the ε-constraint method is most
commonly used to obtain efficient solutions [57,58]. This technique solves the model repet-
itively in which, for each replication, one objective function is taken as the only objective
function while the others are set as constraints using appropriate values [59]. Compared
with other multi-objective optimization methods, it has the advantages of efficiently ob-
taining Pareto solution sets, and no additional parameters or uniform dimensions, etc. The
ε-constraint model can be expressed as follows:

Min fj(x) (33)

s.t. fj(x) ≤ εi, 1 ≤ I ≤ k, i 6= j (34)

x ∈ Xf (35)

where fi(x)(i = 1, 2, . . . , k) represents the i-th objective of a multi-objective problem with
k objectives, as the upper bound of the objective function, εi, can take different values
between its minimum and maximum value to obtain multiple Pareto optimal solutions.
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To illustrate the algorithm, we first need to introduce the concept of Pareto dominance.
For minimizing the multi-objective function, the Pareto dominance relationship can be
defined as: if one feasible solution X occupies better than another feasible solution Y, then
there must be f 1(X) ≤ f 1(Y) and f 2(X) ≤ f 2(Y); at least one inequality must be strictly less
than the sign. With the concept of Pareto dominance, all undominated points in the feasible
solution space of the objective function constitute the Pareto front. On this front, there is
no dominant relationship between any two points. In other words, they are “just as good”
solutions. This frontier or solution set contains a series of different points that are used by
decision makers to make tradeoffs between the values of the objective function.

The main idea of the ε-constraint method is to construct and solve a series of constraint
problems by transforming a target into constraints. This series of constraints are linked by
decreasing ε values step by step. In order to describe the ε-constraint method, the following
three points need to be defined: the Ideal point: set f 1 = (f 1

1, f 2
1), where f 1

1 = min{f 1(X)},
f 2

1 = min{f 2(X)}; the Nadir point: set fN = (f 1
N, f 2

N), where f 1
N = min{f 1(X); f 2(X) = f 2

1},
f 2

N = min{f 2(X); f 1(X)= f 1
1}; the Extreme point: set fE = {(f 1

1, f 2
N), (f 1

N, f 2
1)} as the

Pareto frontier.
Therefore, the solving procedure of the method can be described as follows:
Step 1: calculate the Ideal points f 1= (f 1

1, f 2
1) and Nadir points fN = (f 1

N, f 2
N);

Step 2: set F’ = {(f 1
2, f 2

N)}, and let ε = f 2
N − ∆ (∆ = 3);

Step 3: while ε ≥ f 2
1;

Step 4: solve the ε-constraint problem, where the constraint is ε = f 2
* − ∆, then the

single-objective optimization is to minimize f 2. Solve the single-objective optimization
problem to the best, and add the best solution (f 1

*, f 2
*) to the set F’;

Step 5: By removing the dominant points from the set F’, the Pareto frontier F
is obtained.

3. Results

In this section, several computational experiments are established to evaluate the
performance of the proposed model and the solution method. Firstly, a sensitivity analysis
is conducted to test the impact of key parameters on the network performance of the DRSC.
Furthermore, to identify the validity of the proposed dual-objective stochastic mathematical
model, three sizes with small, medium and large problems are considered.

3.1. Testing the Impact of θ and µ on the Network Performance

Compared to traditional recycling channels, online recycling channels are not only
more convenient for consumers and privacy protection, but also more environmentally
friendly due to their higher recycling conversion rate and lower pollution emissions. In
addition, the increasing popularity of the Internet will always promote consumer preference
for the online recycling channel. Based on this, we conduct example analysis aiming at
the change of the index of consumer preference for the online recycling channel θ and
service cost µ to the impact on collective quantity of e-waste in both channels and channel
member’s profits and explore the causes and future countermeasures based on the analysis
of data results and trends.

According to Wu [60] and Xie et al. [61], we give the following parameter settings:
p0 = 1000, c = 10, α = 500, µ = 4, δ1 = 2, δ2 = 1, η1 = 1, η2 = 2. That is, the basic collective
quantity of e-waste is 500 and, for collection centers, the revenue of each unit of e-waste is
1000, and the recovery operation and maintenance cost is c = 10. In addition, the practical
significance of δ1 = 2 and δ2 = 1 means that, when the recycling price of a channel changes
by one unit, the impact on the channel’s recycling volume will be two times that of the unit,
while the impact of recycling is doubled. The same meaning can also be used to explain
η1 = 1 and η2 = 2, that is, when the change in the service level of a unit of a channel affects
the recovery of dual channels.

We first assume that service cost µ is constant and θ gradually increases from 0.2 to 0.9.
It can be obtained that the pricing, service decisions and profits under centralized policy
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are shown in Table 2. In addition, the decision results are also drawn in Figures 2 and 3 to
show further analysis and practical significance.

From Table 2 and Figure 2, we can demonstrate that the increase in θ will lead to an
increase in the collective quantity of online recycling channels and a decrease in that of
traditional recycling channels. This conclusion conforms to the practice and can be easily
reached. Furthermore, it can be found that an increase in this preference will also lead to
an increase in the total collective quantity of the system. Consumer preferences for the
online recycling channel are only reflected in the distribution of the basic market volume
of traditional and online channels and will not directly affect the total collective quantity.
Through deep analysis, we can find that it affects online and traditional recycling prices,
which in turn changes the total collective quantity. In summary, TPR can increase consumer
preferences for the online recycling channel by advertising announcements and policy
guidance. This will help increase the total collective quantity, improve the environment,
and further promote the recycling industry and the development of recycling enterprise.

Table 2. The effect of Θ on decision and profit.

Θ pe pt sl Dr Ds Π

0.2 196.7 200.0 196.7 806.7 786.7 1,192,070
0.3 171.7 216.7 213.3 748.3 853.3 1,193,480
0.4 146.7 233.3 230.0 690.0 920.0 1,199,070
0.5 121.7 250.0 246.7 631.7 986.7 1,208,820
0.6 96.7 266.7 263.3 573.3 1053.3 1,222,730
0.7 71.7 283.3 280.0 515.0 1120.0 1,240,820
0.8 46.7 300.0 296.7 456.7 1186.7 1,263,070
0.9 21.7 316.7 313.3 398.3 1253.3 1,289,480Int. J. Environ. Res. Public Health 2021, 18, x  13 of 25 
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In addition, it can be seen from Table 2 that with the increase in θ, the total profit of
the collection center has shown an increasing trend; this is mainly because more and more
consumers will choose online recycling channels to recycle their e-waste, so the increase
in total collective quantity will increase the profit of collection centers. Additionally, the
promotion of θ also made consumers who choose traditional recycling channels switch to
online recycling channels. However, for the unit of e-waste, the profits made by online
recycling channels are higher than those of traditional recycling channels. It has gradually
increased the total profit of the supply chain. In summary, collection centers should actively
use advertising, policy guidance and other methods to promote consumer preference for
the online recycling channel. This is not only beneficial to the improvement of the profit
of itself and the supply chain but also promotes the further exploration of the potential
recycling market.

Secondly, from Figure 3, in order to increase the total profit of collection centers, the
system should reduce the online recycling price pe, and improve the traditional recycling
price pt and service level sl. This is because, as more consumers choose online recycling
channels, collection centers can recycle e-waste at a lower recycling price. However, in order
to ensure the continuous increase in the collective quantity in online channels, collection
centers still need to improve their service level. In traditional recycling channels, in order
to retain more consumers, local recyclers have to increase their recycling price. At the same
time, for maintaining their own profit level and ensuring the coordination of supply chain,
collection centers will also choose to increase the online transfer price for local recyclers.
In summary, although collection centers can reduce online recycling price to consumers
with the increase in Θ, they still need to improve their service level. In addition, in order to
help the local recycler maintain a certain level of revenue, collection centers also need to
increase their offline transfer price while the local recycler increases the traditional recycling
price. As can be seen from the above figure, along with consumer preference for the online
recycling channel, the supply chain system should gradually the increase recycling price
of traditional recycling channels and the recycling service level of online channels, while
reducing the online recycling price to profit optimization.

Next, we will analyze the impact of the service cost coefficient µ of recycling service
on the decision and profits. Since the effect of µ on pricing and service decision is not an
upper or lower convex function in the model’s solution result, we need to study it through
example analysis. In reality, with the improvement of recycling business processes, and
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in the case of providing an equivalent recycling service, the service cost coefficient can be
reduced by continuously improving service efficiency and streamlining service processes.
Based on this, we assume that θ = 0.4 remains unchanged, and the service cost coefficient µ
gradually decreases from nine to three, and the competitional results are given in Table 3,
Figures 4 and 5.
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Table 3. The effect of µ on decision and profit under the centralized mode.

µ pe pt sl Dr Ds Π

9 218.5 233.3 86.3 761.9 776.3 1,149,470
8 212.4 233.3 98.6 755.7 788.6 1,153,720
7 204.2 233.3 115.0 747.5 805.0 1,159,390
6 192.7 233.3 138.0 736.0 828.0 1,167,330
5 175.4 233.3 172.5 718.8 862.5 1,179,230
4 146.7 233.3 230.0 690.0 920.0 1,199,070
3 89.2 233.3 345.0 632.5 1035.0 1,238,740

From the above results, we can demonstrate that the reduction in µ will lead to a
decrease in the collective quantity in traditional recycling channels, an increase in that in
online recycling channels and the total amount of the supply chain system. This is mainly
because a decrease in µ can promote collection centers to increase their service level, which
in turn can increase online and total collective quantity. At the same time, consumers in
traditional recycling channels will also switch to online channels due to their high service
level, resulting in a reduction in the collective quantity in traditional channels.

It is worth mentioning that with the reduction in the service cost coefficient µ, the
optimal recycling price pe gradually decrease, while service level sl increases. However,
when µ reaches below five, the decision of the collection center is particularly sensitive
to it. In addition, the recycling price of traditional recycling channel pt is not affected
by µ. Although when µ decreases, its impact on the decision of recyclers becomes more
significant but, in fact, the optimization of decisions does not always exist if all goes well.
That is, collection centers can easily reduce it from nine to eight, but it is difficult to reduce
it from four to three. Finally, as the service cost coefficient µ decreases, collection centers
need to reduce their online recycling price or increase the level of recycling services to
optimize their profits.

3.2. Testing ε-Constraint Algorithm

In this section, three levels of instances with small, medium and large sizes are
generated and, for each level, a set of test problems are generated in order to analyze the
efficiency and performance of the solution method. More specifically, the setting of test
data can be described as follows: (1) the dimensions of test problems are shown in Table 4,
in which the number of potential places in each level directly indicates the complexity of
the problem; (2) similar to the previous research in [16,20,33], the main input parameters
involved in the model are shown in Table 5. (3) Based on the urban population distribution
and the demand records of e-waste, the potential position of all facilities is given. By
calculating the distance between two facilities by the longitude and latitude coordinates
between the two facilities, then the detailed geographic coordinate information about
facilities is derived as shown in Tables 6–11 (unit: km).

According to the above data, three sets of Pareto solutions can be derived through
GAMS software on test problems as shown in Tables 12–14, which show the two objective
values of the proposed model. Khalili-Damghani et al. [62] pointed out that the solutions on
the Pareto frontier in the dual-objective model are a set of non-dominated solutions, and the
decision-maker chooses the best solution with respect to their goal and the Pareto solutions.

Table 4. Dimensions of test problems.

Index Small-Size Medium-Size Large-Size

I 2 5 10
J 2 4 5
K 2 3 4
L 2 2 2
M 1 2 3
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Table 5. The main input parameters.

Parameters Setting

β1 0.65
β2 0.5
t 0.3 g/ton.km
ρ 0.8 ton

FTj FTj = 26,250, 27,500, 33,500, 31,260 and 29,850 RMB for j = 1, 2, 3, 4, 5, respectively
FCk FCk = 26,250, 27,500, 33,500 and 31,260 RMB for k = 1, 2, 3, 4, respectively
FRl FRl = 35,000, 28,750 RMB for l = 1, 2, respectively
FDm FDm = 35,000, 28,750 and 30,000 for m = 1, 2, 3, respectively
CTj CTj = 1500, 800, 800, 600 and 400, for j = 1, 2, 3, 4, 5, respectively
CCk CCK = 3000, 2000, 1000 and 800 for k = 1, 2, 3, respectively
CRl CRl = 2000, 1000 for l = 1, 2, respectively
CDm CDm = 1000, 500 and 300 for m = 1, 2, respectively
ETj ETj = 630, 854, 788, 565 and 1012 g for j = 1, 2, 3, 4, 5, respectively
ECk ECk = 1230, 1527, 1328, 1549 g for k = 1, 2, 3, 4, respectively
ERl ERl = 2789, 3252 g for l = 1, 2, respectively
EDm EDm = 985, 1024 and 892 g for m = 1, 2, 3, respectively
HTj HTj = 1.2, 0.8, 1.5, 0.7 and 0.8 g for j = 1, 2, 3, 4, 5, respectively
HCk HCK = 0.9, 1.25, 1.2 and 1.3 g for k = 1, 2, 3, respectively
HRl HRl = 1.75, 1.58 g for l = 1, 2, respectively

HDm HDm = 1.45, 1.23 and 1.67 g for m = 1, 2, 3, respectively

Table 6. Linear distance of DTij.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

j = 1 58.1 41.5 5.7 11 35.6 13.5 10.8 16.7 26.6 15.9
j = 2 51.4 17 8.4 5.8 33.6 8.7 4.8 22 17.4 27.5
j = 3 60.5 18.8 13.9 7.4 34.1 6.4 8.4 6.5 15.2 19.6
j = 4 27.9 20.2 10.8 9.5 39.5 6.5 7 7.9 5.1 16.8
j = 5 38.6 15.8 17.7 17.5 37.2 7.1 13 15.5 7.7 24.4

Table 7. Linear distance of DCjk.

j = 1 j = 2 j = 3 j = 4 j = 5

k = 1 28.9 25.3 40.6 14 34.1
k = 2 8.4 11.4 21.2 15.7 9.8
k = 3 12.2 8.6 20.3 7.8 44.2
k = 4 37.4 15.9 26.3 19.5 10.3

Table 8. Linear distance of DLik.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

k = 1 47.2 38.2 28.6 19.3 15.5 15.2 23.4 28.5 34.1 40.6
k = 2 34.1 24.3 34.8 40.7 40.9 25.8 20.4 23.6 8.4 14
k = 3 24.9 26.4 16.3 21.2 44.2 29 34.5 16.2 9.6 49.9
k = 4 35.4 27 26.3 27.1 24.4 19.3 14.1 10.1 5 11.4

Table 9. Linear distance of DRkl.

k = 1 k = 2 k = 3 k = 4

l = 1 229 253 343 388
l = 2 59.8 87.1 47.8 26.7
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Table 10. Linear distance of DDkm.

k = 1 k = 2 k = 3 k = 4

m = 1 78.6 55.7 53.6 46.2
m = 2 56.3 100.3 47.8 59.8
m = 3 87 120.1 71.3 93.6

Table 11. Linear distance of DUli.

l = 1 l = 2

i = 1 97 58
i = 2 77 38
i = 3 87 93
i = 4 99 62
i = 5 61 79
i = 6 58 35
i = 7 93 45
i = 8 65 58
i = 9 81 62

i = 10 66 70

Table 12. Objective function values for the small-sized test problem.

Solution OF1 OF2 Solution OF1 OF2

1 237,778.002 21,593.869 11 233,666.023 28,111.686
2 236,427.319 22,407.456 12 233,666.023 28,111.686
3 235,604.077 23,221.043 13 233,666.023 28,111.686
4 235,216.685 24,034.630 14 233,666.023 28,111.686
5 234,829.293 24,848.216 15 233,666.023 28,111.686
6 234,441.902 25,661.803 16 233,666.023 28,111.686
7 234,054.510 26,475.390 17 233,666.023 28,111.686
8 233,744.785 27,288.976 18 207,419.275 35,424.844
9 233,666.896 28,102.563 19 205,853.141 36,238.430

10 233,666.023 28,111.686 20 204,950.853 37,052.017

Table 13. Objective function values for the medium-sized test problem.

Solution OF1 OF2 Solution OF1 OF2

1 197,570.758 19,060.571 11 189,990.757 24,266.359

2 190,543.478 19,843.403 12 189,990.757 24,266.359

3 190,161.481 20,626.235 13 189,990.757 24,266.359

4 190,104.172 21,409.067 14 162,874.151 29,237.389

5 190,073.099 22,191.899 15 162,417.045 30,020.221

6 190,042.026 22,974.731 16 162,277.535 30,803.053

7 190,010.953 23,757.564 17 162,246.462 31,585.886

8 189,990.757 24,266.359 18 162,215.389 32,368.718

9 189,990.757 24,266.359 19 162,184.316 33,151.550

10 189,990.757 24,266.359 20 162,153.243 33,934.382
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Table 14. Objective function values for the large-sized test problem.

Solution OF1 OF2 Solution OF1 OF2

1 321,271.269 45,273.026 11 275,329.764 53,736.241

2 314,385.511 46,119.348 12 275,250.502 54,582.563

3 281,020.182 46,965.669 13 275,186.289 55,428.884

4 276,680.972 47,811.991 14 275,144.230 56,275.206

5 275,942.540 48,658.312 15 275,138.076 57,121.527

6 275,800.915 49,504.634 16 275,132.094 57,967.849

7 275,674.417 50,350.955 17 275,127.376 58,814.170

8 275,584.607 51,197.277 18 275,123.362 59,660.492

9 275,499.659 52,043.598 19 275,119.347 60,506.813

10 275,414.712 52,889.920 20 275,116.202 61,353.135

For more visualization, Figure 6 shows the Pareto frontier output with the dual target
for each size of the test problem. If these points are connected into a smooth curve, any
point on the curve can be used as the optimal decision plan. From Figure 6, we can
demonstrate that increasing the value of the first objective function will cause the value
of the other objective function to deteriorate; that is, these two objectives conflict with
each other.

Moreover, we also highlight the objective values of the problem in Figure 7, which show
the values of costs and CO2 emissions with three sets of instances on test problems, respectively.

In Figure 7 it is shown that, as the size of test problems increases and the number of
test problems increases, there is no large-scale oscillation in the value of the first objective
function; only a small decrease trend occurs in all three sizes of instances. Next, it also
appears that the second objective function is increased in all three sizes of instances.
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4. Discussion

In this subsection, we summarize and discuss the results of example analysis in
Sections 3.1 and 3.2, respectively. First of all, online recycling channels can be used as a
lever to force the recyclers to enhance the recycling price of traditional recycling channels,
further helping the collection centers increase the total collective quantity while improving
the overall profits of the system. In other words, the DRSC benefits both the collection
centers and the total system. Thus, with the legislations of environmental protection and
corporate social responsibility, the opening of the DRSC strategy can help firms perform
their duties and promote their green image. In addition, based on a DRSC system with
traditional recycling prices and online recycling prices, we found that consumer preference
for online recycling channels plays an important role in the channel selection of collection
centers; this can provide guidance for the firm’s decision-making.
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Secondly, according to the research, the dual-objective optimization problem needs to
explore the Pareto boundary curve, which can provide firms with a combination strategy of
the “best solution”. Figure 6 shows the Pareto optimal curve of the proposed model, which
demonstrates the interaction between costs and carbon emissions. It can be demonstrated
that, if firms want to reduce carbon emissions, they need to increase additional investment
funds. From the perspective of environmental impact analysis, the increase in corporate
CO2 emissions is mainly reflected in the fixed establishment of facilities and transportation
flow among facilities.

5. Conclusions

This paper investigates the strategic network design of a general multi-echelon, dual-
channel reverse supply chain (DRSC) with traditional and online recycling channels. By
incorporating consumer preference for the online recycling channel into the system, a
detailed quantitative model for the network design optimization is constructed where
the collective quantity of each recycling channel relies on the consumer’s willingness.
Furthermore, we extensively investigated the pricing strategy to explore the dynamic
characteristic of consumer preference for the online recycling channel and service costs on
collective quantity, recycling prices and system performance of the DRSC. Based on the
above, an ε-constraint method is developed and fitted to the proposed model to obtained
the Pareto frontier of the objective functions, which emphasized simultaneously both the
economic profits and environmental sustainability. Finally, three types of test problems
with small, medium and large sizes are generated and coded in Gams to yield the set of
Pareto solutions. The main findings of this study are summarized as follows:

First, the stochastic dual-objective model proposed in this study can effectively solve
the network design optimization of the DRSC system. To illustrate the trade-off between
CO2 reduction and cost control, the estimated Pareto frontier of test problems are derived
by the Pareto curves (as shown in Figure 6). Numerical experiments show the effective-
ness of the proposed ε-constraint method, and the solution has also achieved significant
improvement in solving a large-scale DRSC network.

Second, the consumer preference and unit service cost for the online recycling channel
play important roles in the operation of dual-recycling channels. The increase in consumer
preference and decrease in unit service cost for the online recycling channel will lead to a
decrease in collective quantity of traditional recycling channels, but the collective quantity
of online recycling channels and the whole system are still on the rise, which also makes
the total profits of the system increase. This is because consumers’ increased preference
for the online recycling channel can make more consumers choose to recycle their idle
e-waste in the market. In addition, the reduction in unit service cost can prompt companies
to improve service level and reduce online recycling price, while still ensuring that the
collective quantity increases. Therefore, recyclers should improve the consumer preference
for the online recycling channel through advertising, policy advocacy and consumption
guidance, and reduce unit service costs by improving service technology and processes, so
as to help recyclers improve profits, and promote the positive development of the whole
recycling industry.

Third, from the numerical experiments, we can find that there is a negative correlation
between the costs and CO2 emissions. That is, the reduction in CO2 emissions from the
DRSC system will negative affect the profitability due to the increased system operation
cost. Therefore, in reality, managers should identify the difference between the costs and
CO2 emissions based on the decision-making with a trade-off. Moreover, the findings
of this study can also assist companies in their decision-making. Companies can use the
model and solution method proposed to optimally manage their costs and CO2 emissions
throughout their DRSC system.

Although this paper contributes to the literature on the DRSC with consumer prefer-
ence, there also exist some limitations. Hence, we will provide some future research. First,
this study addresses the dual-objective model with economic profits and environmental
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sustainability. Furthermore, the social aspects, such as corporate social responsibility,
should be also included and discussed in the model formulation due to their high influence
on the DRSC operations in a sustainable way. Second, as an exact method, the ε-constraint
method is used to solve the stochastic optimization problem; there are many other exact
methods and evolutionary algorithms for solving such multi-objective models. Third,
the future work can deal with more complex models in strategic network design which
integrate uncertainty, multi-product, economics of scale, etc. All these aspects are closer to
reality and can provide a more comprehensive analysis for decision-making.
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Appendix A

Proof of Property 1. Firstly, we can obtain the Hessian matrix (H) of Π(pt, pe, sl), then
derive the first-order principal formula of the matrix as −2δ1. Based on this, we can easily
get −2δ1 < 0. At the same time, we can also find the second-order principal formula is 4δ1

2

− 4δ2
2 and get 4δ1

2 − 4δ2
2 > 0.

Next, expand and solve the third-order principal formula to be 2[η1
2δ1 + η2

2δ1 −
2η1η2δ2 + 2µ (δ2

2 − δ1
2)], and when it is less than 0, all the odd order main sub-expressions

of Π(pt, pe, sl) can be made negative and the even-order of those are positive.
Therefore, when η1

2δ1 + η2
2δ1 − 2η1η2δ2 + 2µ(δ2

2 − δ1
2) < 0, H(Π) becomes a negative

definite matrix, and Π (pt, pe, sl) is an convex function with respect to pt, pe, sl. That is,
there exist optimal pt, pe, sl, which means the revenue of the whole system can reach its
maximum value. �

Proof of Property 2. Firstly, solve the first-order partial derivative of pe to θ as follows:
∂pe/∂θ = α [η1η2 − η2

2 + 2µ (δ1 − δ2)]/2[η1
2δ1 + η2

2δ1 − 2η1η2δ2 + 2µ(δ2
2 − δ1

2)]
According to Property 1, we can obtain
2[η1

2δ1 + η2
2δ1 − 2η1η2δ2 + 2µ(δ2

2 − δ1
2)] < 0

Since η1 > η2 > 0, δ1 > δ2 > 0, µ > 0, a > 0 and η1η2 − η2
2 > 0, 2µ(δ1 − δ2) > 0, then,

α[η1η2 − η2
2 + 2µ(δ1 − δ2)] > 0

In summary, ∂ pe/∂θ is always less than 0, so the optimal online recycling price pe of
the system is negatively correlated with θ.

Similarly, we can also prove that ∂sl/∂θ is always more than 0, and the optimal service
level sl is positively correlated with θ. �
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