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Background: Pregnancy is associated with a higher risk of
adverse symptoms and outcomes for severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection for both
mother and neonate. Antibodies can provide protection against
SARS-CoV-2 infection and are induced in pregnant women
after vaccination or infection. Passive transfer of these
antibodies from mother to fetus in utero may provide protection
to the neonate against infection. However, it is unclear whether
the magnitude or quality and kinetics of maternally derived
fetal antibodies differs in the context of maternal infection or
vaccination.
Objective: We aimed to determine whether antibodies
transferred from maternal to fetus differed in quality or
quantity between infection- or vaccination-induced humoral
immune responses.
Methods: We evaluated 93 paired maternal and neonatal
umbilical cord blood plasma samples collected between October
2020 and February 2022 from a birth cohort of pregnant women
from New Orleans, Louisiana, with histories of SARS-CoV-2
infection and/or vaccination. Plasma was profiled for the levels
of spike-specific antibodies and induction of antiviral humoral
immune functions, including neutralization and Fc-mediated
innate immune effector functions. Responses were compared
between 4 groups according to maternal infection and
vaccination.
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Results: We found that SARS-CoV-2 vaccination or infection
during pregnancy increased the levels of antiviral antibodies
compared to naive subjects. Vaccinated mothers and cord
samples had the highest anti-spike antibody levels and antiviral
function independent of the time of vaccination during
pregnancy.
Conclusions: These results show that the most effective passive
transfer of functional antibodies against SARS-CoV-2 in utero is
achieved through vaccination, highlighting the importance of
vaccination in pregnant women. (J Allergy Clin Immunol
Global 2024;3:100189.)

Key words: SARS-CoV-2, COVID-19, antibody, placental transfer,
maternal infection, maternal vaccination, neutralization, antibody-
dependent cellular cytotoxicity, antibody-dependent phagocytosis,
antibody-dependent complement activation

Pregnancy is associated with altered immunity and increased
risk of infections. Severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has a higher rate of adverse events in pregnant
women, and infants of mothers infected during pregnancy have a
higher risk of life-threatening complications.1 These complica-
tions include higher incidence of preterm birth and stillbirth. As
a result, the US Centers for Disease Control and Prevention rec-
ommends that all pregnant women, including those who are
breast-feeding or trying to become pregnant, receive vaccination
and boosters against SARS-CoV-2. A recent study showed that
the infants of expecting mothers who received 2 doses of either
Pfizer-BioNTech or Moderna mRNA coronavirus disease 2019
(COVID-19) vaccine had a lower hospitalization rate for infants
<6 months of age.1 This lower hospitalization rate in infants
born to vaccinated mothers is likely mediated by transplacental
transfer of maternal antiviral antibodies that protect the offspring
against infection and/or disease.

Placental transfer of antibodies is vital for neonatal immunity
against viral infections,2 and SARS-CoV-2 vaccine–induced anti-
bodies have been detected in umbilical cord sera collected at
birth, demonstrating maternal transfer of SARS-CoV-2–specific
antibodies,1,3,4 and these antibodies are detectable out to 6months
in the offspring.2 Antibody responses are essential to vaccine-
induced immunity because they provide critical immune defenses
against viral infections. Neutralization and Fc-mediated innate
immune effector functions, including phagocytosis, complement
deposition (ADCD), and antibody-dependent cellular cytotox-
icity (ADCC), contribute to rapid clearance of infected cells
and virus.5 The function and transfer of functional antibodies
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Abbreviations used

ADCC: Antibody-dependent cellular cytotoxicity

ADCD: Antibody-dependent complement deposition

COVID-19: Coronavirus disease 2019

I 1 V: Infected plus vaccinated

I: Infected

LASSO: Least absolute shrinkage and selection operator

NK: Natural killer

RBD: Receptor binding domain

REDCap: Research Electronic Data Capture

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2

sPLS-DA: Sparse partial least squares discriminant analysis

U: Uninfected

V: Vaccinated
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are likely a critical component of newborn and fetal protection.
This study aimed to characterize the transplacental transfer of an-
tibodies against SARS-CoV-2 that could provide antiviral protec-
tion to neonates.
METHODS

Study design and population
Maternal–infant dyads were recruited in the greater New

Orleans area between November 2020 and February 2022.
Inclusion criteria were as follows: age >_18 years; pregnant for
>_12 weeks with single gestation; fluent in English or Spanish at
the time of recruitment; and delivering at >_34 weeks’ gestation in
the labor and delivery facilities at Tulane Lakeside Hospital or
Ochsner Baptist Medical Center. Study participants were re-
cruited for reporting >_2 respiratory symptoms or testing positive
for COVID-19, or both (95 dyads), or an additional control arm
that did not (6 dyads). Exclusion criteria included positive human
immunodeficiency virus test; multiple gestation; and any prena-
tally diagnosed congenital abnormality of the fetus. Eligible and
interested women consented or e-consented (via Adobe software)
to accommodate for COVID-19 restrictions. Standard question-
naires were used to collect demographic information, socioeco-
nomic data, history of respiratory illness, personal history,
vaccination history, and family history of atopy during the
mother’s hospital admission for childbirth.
Sample collection
Deidentified maternal blood and cord blood samples were

collected during clinic visits or at the time of delivery and
transported to Tulane University School of Medicine labs for
processing and storage. Maternal blood samples were collected at
the time of admission to the labor and delivery unit before
childbirth, or after birth (after delivery and before discharge from
the hospital). Cord blood samples were collected into sodium–
heparin or CPT Vacutainers by hospital nurses via venipuncture of
the umbilical cord vessels and placental vessels. Plasma samples
were stored at 2808C. All samples were heat inactivated at 568C
for 30minutes before antibody evaluations. As a result of biosafety
protocols, we do not have parallel samples without heat inactiva-
tion. However, we have not observed an impact of heat inactivation
on the immunogenicity or functional capacity of antibodies in prior
studies analyzing Ebola-specific IgG responses.6,7
Data protection
All research data were securely kept on a computer connected

to the Tulane University’s firewall-protected server into Research
Electronic Data Capture (REDCap). REDCap was protected by
login and encryption. All study participants were assigned a
deidentified ID to go on all the source documents and biological
samples collected for this study. A key with each participant’s
deidentified ID, name, and medical record number was kept
securely in REDCap.
Measurement of antibody levels
Levels of antibodies against SARS-CoV-2 spike, receptor

binding domain, N protein, and seasonal coronaviruses were
determined by ELISA and multiplexed bead-based assay. Exper-
imental details are provided in theMethods section in this article’s
Online Repository at www.jaci-global.org.
Measurement of antibody antiviral functions
Four different assays were used to determine the levels of

antibody-mediated antiviral functions, including neutralization
using a lentivirus-based pseudovirus assay, measurement of
antibody-dependent cellular phagocytosis by human monocytes,
antibody-dependent activation of natural killer (NK) cells, and
ADCD. Experimental details are provided in the Methods section
in the Online Repository.
Statistical analysis
Distributions of continuous variables were assessed for

normality, and data were log10 transformed to better represent
standard distribution. Descriptive statistics for continuous vari-
ables are summarized as means6 SDs, and categorical variables
were summarized using proportions. For the univariate tests, we
used 1-way ANOVAs, and multiple post hoc comparisons were
performed by the Tukey multiple comparison test. We used the
Levene test to test for differences in variance between groups. Sta-
tistical analysis was performed by GraphPad Prism v9.3.1 soft-
ware (GraphPad Software) or SAS v9.4 software (SAS
Institute). Chi-square analysis was performed by Microsoft
Excel.

For sparse partial least squares discriminant analyses (sPLS-
DA), we used a multivariate analysis approach, sPLS-DA, which
is an extension of the PLS-DA algorithm that utilizes the LASSO
(least absolute shrinkage and selection operator) penalization to
achieve a sparse solution, providing a tool for predictive and
descriptive modeling with feature selection.8,9 Data from the
different groups were centered and scaled such that each column
had mean 0 and variance 1. Missing values were imputed with the
NIPALS (nonlinear iterative partial least square) algorithm before
cross-validation. Tuning was performed using 3-fold cross-
validation with 100 repeats. Additional methods used to estimate
classification error rate and feature selection are detailed in the
Methods section in the Online Repository. All sPLS-DA analyses
were performed using the ‘mixomics’10 v6.24.0 package for R
v4.3.1 (R Project; www.r-project.org).
RESULTS
To assess the transfer of antiviral immunity after maternal

infection or vaccination during pregnancy, maternal and cord

http://www.jaci-global.org
http://www.r-project.org
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blood samples were collected at birth from a cohort of pregnant
women from the greater New Orleans area in Louisiana between
November 2020 and February 2022. Of the 272 samples (158
maternal blood and 114 cord blood), 86 samples were excluded
for incomplete maternal–dyad pairs, missing sample collection at
birth, or missing clinical information, resulting in 93 mother–
fetus dyads included in this study (Fig 1, A). Vaccination status
was determined by vaccination records verified through the Loui-
siana department of health. Infection history was defined as either
a positive PCR test and/or serologic evidence of infection ob-
tained by detection of anti-N protein IgG. Within these 93 dyads,
12 dyads were infection and vaccination naive (uninfected; U); 32
dyads reported maternal infection during pregnancy but were not
vaccinated (infected; I); 23 dyads reported maternal vaccination
during pregnancy but did not report COVID-19 infection (vacci-
nated; V); and 24 dyads reported COVID-19 during pregnancy
and were subsequently vaccinated (infected and vaccinated, I 1
V). Two dyads could not be classified because of conflicting vac-
cine records and/or inconclusive serology. The clinical demo-
graphic information for each group is shown in Table I. Of
thosewhowere vaccinated, 36mothers received a 2-dose regimen
of mRNA vaccine (n 5 26 Pfizer BNT162b2; n 5 10 Moderna
mRNA-1273) and 2 received the Johnson & Johnson Ad26-
vectored vaccine (Table I). Because the timing of maternal vacci-
nation and/or infection to birth affects the magnitude and kinetics
of humoral immune responses, time from maternal vaccination
and/or infection to time of sample collection was considered.
We calculated the mean number of days between maternal infec-
tion and/or vaccination to birth (sample collection) and compared
the infected and vaccinated groups and found no significant dif-
ferences between groups (Fig 1, B).
Transfer of virus-specific IgG from mother to fetus

is equivalent between infection and vaccination,

with higher IgG levels observed with infection plus

vaccination
To characterize the humoral immune response transferred from

mother to fetus, we analyzed maternal plasma and cord blood
samples using a systems serology approach to determine both the
quantity and antiviral quality of virus-specific antibodies,
including neutralization and Fc-mediated innate immune effector
functions (phagocytosis, NK cell activation, and complement
deposition), against the SARS-CoV-2 spike protein to enable
comparisons across vaccination and infection.

We first determined the levels of SARS-CoV-2 spike, receptor
binding domain (RBD), and N-specific antibodies in plasma
samples. Antibody responses against the N protein were only
observed in the context of infection (see Fig E1 in the Online Re-
pository at www.jaci-global.org), as expected, given that all the
vaccine responses analyzed in this study are directed against the
spike antigen. Across the maternal and fetal samples, I, V, and
I 1 V samples had significantly higher levels of spike-specific
IgG1 compared to the naive group. Importantly, although there
was no significant difference between levels of spike-specific
IgG1 between mothers with prior infection and those who had
only been vaccinated, these antibodies were significantly elevated
in both maternal and fetal plasma when the mother had been both
infected and vaccinated during pregnancy compared to infection
alone (Fig 2, A). With respect to the other IgG subclasses, while
infection and/or vaccination induced significantly higher levels
of spike-specific IgG2, IgG3, and IgG4 compared to uninfected
mothers, we did not observe differences between infection and
vaccination groups (Fig 2, B, and see Fig E2, A and B, in the On-
line Repository). Thus, these data suggest that vaccination of
mothers after SARS-CoV-2 infection predominantly boosted
levels of spike-specific IgG1.

Transfer of maternal antibodies across the placenta is mediated
by the neonatal Fc receptor, FcRn, which has an affinity for all
human IgG subclasses (IgG1, IgG2, IgG3, IgG4) but not for IgA
or IgM.11-13 To determine whether infection-induced or vaccine-
induced antibodies differed in transfer across the placenta, we
determined the percent of fetal response relative to the maternal
response for IgG, IgA, and IgM levels between groups. A fetal
response <90% of the maternal response was considered reduced,
and the percentage of dyads with reduced fetal responses is shown
in Fig 2. Comparisons across SARS-CoV-2 naive, I, V, and I1 V
dyads showed equivalent transfer of spike-specific IgG subclasses
from mother to fetus (Fig 2, A and B, and Fig E2, A and B). In
contrast, we did not observe any transfer of spike-specific IgM
or IgA (Fig E2, C-E), consistent with FcRn-mediated transfer
of IgG, but not IgM or IgA.
Transfer of neutralizing and functional virus-specific

IgG from mother to fetus is elevated with

vaccination
Neutralizing antibodies have been shown to play a critical role in

the prevention of fatal COVID-19 outcomes,14 and they have
further been associated with vaccine-mediated protection.15 We
determined neutralizing antibody titers using a lentivirus-based
pseudovirus expressing the SARS-CoV-2 D614G spike protein.
Comparison of neutralizing antibody titers across I, V, and I 1 V
dyads showed a significantly higher neutralizing antibody response
in samples from mothers who were vaccinated compared to those
whowere infected (Fig 2,C). Importantly, this elevation in neutral-
izing antibody levels in the context of vaccination was mirrored in
the corresponding cord plasma (Fig 2, C). Because we did not
observe a significant difference in neutralizing antibody response
between maternal and cord blood, these data suggest that neutral-
izing antibodies are efficiently transferred in utero. Moreover, we
observed a significantly higher neutralizing antibody response in
the V group compared to the I group. Because this response was
observed in both the maternal and cord plasma, these data suggest
that vaccination induces significantly higher neutralizing antibody
response compared to natural infection (Fig 2, C).

In addition to mediating neutralization, antibodies can
leverage innate immune cells to limit infection and
dissemination,16 including antibody-dependent activation of NK
cells, antibody-dependent phagocytosis, and ADCD. Thus, we
measured the activation of human NK cells, induction of phagocy-
tosis in monocytes, and induction of complement deposition by
spike-specific antibodies across the cohort (Fig 2, D-F). Surface
expression of CD107a was used to measure antibody-mediated in-
duction of NK cell degranulation and is a surrogate marker of
ADCC.17 Significantly higher levels of NK cell degranulation
were observed in plasma from V dyads compared to I dyads (Fig
2, D). Similarly, ADCD was elevated in V dyads compared to I
dyads. (Fig 2, E). In contrast, antibody-mediated phagocytic
activity was not significantly different between I and V groups
(Fig 2, F).

http://www.jaci-global.org
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FIG 1. Schematic of samples included in this study. (A) Flowchart showing number of samples collected,

number of dyads excluded for incomplete clinical data or paired sampling, and groupings of final dyads

included. (B) Days from infection or vaccination (first dose [V1] or second dose [V2]) to sample collection

were compared between groups by 1-way ANOVAwith corrections for multiple comparisons. Table at right

shows P values between comparisons.
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We determined the percentage of maternal and cord
samples that were above the positive threshold for each
assay. Importantly, we found that 100% of maternal and fetal
samples from vaccinated groups had neutralizing activity,
100% of fetal samples from vaccinated mothers had ADCD
activity and spike-specific IgG1, and 100% of fetal samples
from I 1 V mothers had NK cell activation (Table II). Thus,
vaccination of both infected and uninfected mothers
increased the proportion of cord blood samples containing
antiviral antibodies mediating neutralization, NK cell



TABLE I. Clinical demographic data

Characteristic

COVID-192 and

unvaccinated

COVID-191 and

unvaccinated

COVID-192 and

vaccinated

COVID-191 and

vaccinated

No. (%) 12 (13.19) 32 (35.16) 23 (25.27) 24 (26.37)

Maternal age (years), mean (SD) 29.00 (4.43) 29.78 (5.29) 33.04 (5.10) 30.71 (4.90)

Maternal race

White 6 (50.00) 23 (74.19) 16 (80.00) 12 (50.00)

Black 5 (41.67) 6 (19.35) 2 (10.00) 11 (45.83)

Asian 0 0 0 0

Other 1 (8.33) 2 (6.45) 2 (10.00) 1 (4.17)

Missing 0 1 3 0

Maternal ethnicity
Hispanic 1 (8.33) 17 (53.13) 3 (13.04) 2 (8.33)

Non-Hispanic 11 (91.67) 13 (40.63) 18 (78.26) 20 (83.33)

Not applicable 0 1 (3.13) 2 (8.70) 2 (8.33)

Unknown/not reported 0 1 (3.13) 0 0

Delivery season

Nov-Dec 2020 0 0 0 0

Jan-Mar 2021 2 (16.67) 13 (43.33) 1 (4.35) 0

Apr-Jun 2021 5 (41.67) 5 (16.67) 4 (17.39) 1 (4.17)

Jul-Sep 2021 3 (25.00) 8 (26.67) 4 (17.39) 8 (33.33)

Oct-Dec 2021 2 (16.67) 3 (10.00) 12 (52.17) 6 (25.00)

Jan-Feb 2022 0 1 (3.33) 2 (8.70) 9 (37.50)

Missing 0 2 0 0

Mode of delivery

Vaginal 7 (58.33) 20 (62.50) 19 (82.61) 17 (70.83)

Total C-section 5 (41.67) 12 (37.50) 4 (17.39) 7 (29.17)

Emergency C-section 2 (40.00) 5 (45.45) 3 (100.00) 3 (60.00)

Scheduled C-section 3 (60.00) 6 (54.55) 0 2 (40.00)

Missing type of C-section 0 1 1 2

Missing mode of delivery 0 0 0 0

Gestational age (weeks), mean (SD) 37.54 (3.17) 38.63 (2.17) 38.69 (1.36) 38.26 (2.80)

Missing 0 3 1 0

Sex of infant

Male 5 (41.67) 11 (34.38) 15 (65.22) 7 (29.17)

Female 7 (58.33) 21 (65.63) 8 (34.78) 17 (70.83)

Vaccination date (first dose)

Vaccinated <20 gestational weeks NA NA 10 (47.62) 13 (54.17)

Vaccinated >20 gestational weeks NA NA 11 (52.38) 11 (45.83)

Missing 2 0

Time from vaccination to sample collection

First dose (days), mean (SD) NA NA 130.9 (80.61) 152.8 (102.1)

Second dose (days), mean (SD) NA NA 79.5 (75.15) 133.5 (101.2)

Vaccination type

Pfizer NA NA 14 (66.67) 16 (72.73)

Moderna NA NA 5 (23.81) 5 (22.73)

Johnson & Johnson NA NA 1 (4.76) 1 (4.55)

Unknown NA NA 1 (4.76) 0

Missing 2 2

Infection date, COVID-19 positivity date

Infected <20 gestational weeks NA 11 (50.00) NA 9 (52.94)

Infected >20 gestational weeks NA 11 (50.00) NA 8 (47.06)

Missing 10 7

Time from infection to sample collection (days),

mean (SD)

NA 132 (75.13) NA 139.6 (115.4)

Infection date, symptom date

Infected <20 gestational weeks NA 5 (22.73) NA 7 (43.75)

Infected >20 gestational weeks NA 9 (40.91) NA 6 (37.50)

No symptoms NA 8 (36.36) NA 3 (18.75)

Missing 10 8

Numbers of dyads within clinical or demographic categories are indicated. Percentage of dyads in each category within COVID-19–negative and COVID-19–positive categories

are indicated after number of dyads. NA, Not applicable.
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activation, and complement deposition compared to cord
blood samples from mothers who had been infected but not
vaccinated.
Vaccination within the last 20 weeks of pregnancy has been
associated with increased vaccine efficacy against infant hospi-
talization.1 Thus, we next determined if antibody quality or
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FIG 2. Transfer of antiviral virus-specific antibodies from mother to fetus is elevated with vaccination.

Maternal (black) and cord (red) plasma samples obtained at birth/labor within U, I, V, and I1 V groups were

analyzed for levels of: (A) IgG1 spike-specific antibodies, (B) IgG3 spike-specific antibodies, (C) neutralizing

antibodies, (D) antibody-dependent NK cell degranulation, (E) ADCD, and (F) antibody-dependent cellular
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with response above positive cutoff for measurement. Cord sample responses between 90% to 110% of

maternal responses were considered equivalent (gray box), and percentage of samples <90% are indicated.

Significance was determined by ordinary 1-way ANOVA and multiple comparisons by Tukey multiple com-

parisons test. *P < .05, **P < .001, ***P < .0001.
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quantity in cord blood differed by time of vaccination. Although
spike-specific IgG1 levels were not significantly different in
maternal or cord samples between those vaccinated before or after
20 weeks of gestation (Fig 3, A), spike-specific IgG3 levels were
elevated inmaternal samples from thosevaccinated after 20weeks
(Fig 3, B). Qualitatively, we did not observe statistically signifi-
cant differences in antiviral functionality in antibodies induced
via vaccination before or after 20 weeks (Fig 3, C-F). We per-
formed a similar analysis within our cohort to determine if anti-
body transfer differed depending on when SARS-CoV-2
infection occurred during pregnancy, but we did not observe dif-
ferences in the quality or quantity of antibodies between infection
periods (see Fig E3 in the Online Repository at www.jaci-global.
org). Thus, these data suggest that vaccination during pregnancy
boosts the production of antiviral antibodies, which are equally
transferred to the fetus, irrespective of the stage of pregnancy dur-
ing which vaccination or infection occurs.

Because IgG3 is considered themost functional IgG subclass,16

given the increase in spike-specific IgG3 in maternal samples if
vaccinated in the last 20 weeks of pregnancy, we performed cor-
relation analyses to determine if IgG3 levels were associated with
an increase in antiviral effector functions (see Fig E4 in the Online
Repository at www.jaci-global.org). Within maternal samples,
only infection induced IgG3 correlated with neutralization and
NK cell activation, whereas IgG1 induced by either infection or
vaccination was strongly correlated with all functions (Fig E4,
A). Within cord samples, infection-induced IgG3 correlated
only NK cell activation, and both infection- and

http://www.jaci-global.org
http://www.jaci-global.org
http://www.jaci-global.org


TABLE II. Proportion of subjects positive for each humoral measurement

Assessment

Neutralizing ADNK ADCP ADCD IgG1 spike IgG2 spike IgG3 spike IgG4 spike

M C M C M C M C M C M C M C M C

% Positive

U 8.3 0.0 0.0 0.0 16.7 16.7 0.0 8.3 0.0 8.3 0.0 8.3 8.3 8.3 8.3 0.0

I 83.9 78.1 64.5 51.6 81.3 78.1 77.4 80.6 96.9 96.9 25.0 12.5 21.9 25.0 6.3 15.6

V 95.5 100.0 82.6 95.5 68.2 81.0 91.3 100.0 95.5 95.7 39.1 34.8 56.5 56.5 34.8 39.1

I 1 V 100.0 100.0 91.7 100.0 70.8 91.7 100.0 100.0 100.0 95.8 20.8 20.8 25.0 33.3 29.2 33.3

Chi-square test, P value

I vs V .190 .021 .142 .001 .270 .804 .176 .028 .786 .811 .263 .048 .008 .018 .026 .048

I vs I 1 V .039 .014 .019 .0001 .361 .172 .013 .022 .382 .835 .715 .401 .784 .495 .021 .120

I vs V NS * NS ** NS NS NS * NS NS NS * ** * * *

I vs I 1 V * * * *** NS NS * * NS NS NS NS NS NS * NS

Percentage of subjects with increased humoral immune response was compared to naive group. Statistically significant differences in frequency between I only and either Vor I 1
V was determined by chi-square test. *P < .05, **P < .001, ***P < .0001, NS, not significant.

ADCP, Antibody-dependent cellular phagocytosis; ADNK, antibody-dependent NK.
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vaccine-induced IgG1 levels correlated with neutralization and
complement activation (Fig E4, B). Taken together, these data
indicate that while IgG3 may contribute to NK cell activation in
infection-induced responses, higher antiviral antibody function-
ality activity is highly associated with spike-specific IgG1
induced in the context of infection or vaccination.

We next used multivariate partial least squares discriminant
analysis to specifically identify the antibody features that are
differentially associated with infection or vaccination.
Fifty-seven variables were used in the analysis and included
SARS-CoV-2 spike-specific antibody features and seasonal
coronaviruses because there is increasing evidence that cross-
reactive responses from seasonal coronaviruses may affect
immunity to SARS-CoV-2 (Fig 4, and see Table E1 in the Online
Repository at www.jaci-global.org).18-20 We used a LASSO
feature selection and dimensionality reduction method to define
the minimal number of features needed to predict classification
into infection or vaccination (Fig 4, A). Within the maternal sam-
ples, we found that the features that best classified vaccination-
induced antibodies compared to infection-induced antibodies
were overall higher levels of spike- and RBD-specific antibodies,
consistent with the univariate analysis, followed by measures of
antibody-mediated effector function and neutralization. Of note,
IgA2 against RBD was selectively enriched in infection-
induced antibodies compared to vaccination, potentially reflect-
ing a mucosal response to infection. Interestingly, the model
also selected several seasonal coronavirus antibody responses to
classify infection-induced responses, including IgG against
229E and NL63, which were also present in the cord blood sam-
ples (Fig E4, A). To ensure that time from infection or vaccination
relative to birth did not affect classification predictions or features
differentially associated with infection or vaccination (see Fig E5
in the Online Repository), we determined if the samples within
predicted classification differed in time from infection/vaccina-
tion to sample collection. We did not observe any differences in
time between the predicted classifications, indicating that the
models were classifying according to differences in antibody fea-
tures rather than time from infection or vaccination.

We next identified features that were associated with I 1 V
compared to I alone or V alone to determine if the hybrid immu-
nity reflected responses more like vaccine- or infection-induced
immunity (Fig 4, B and C). Consistent with the univariate ana-
lyses, I1V had elevated levels of SARS-CoV-2 spike antibodies
compared to either V or I. Interestingly some of features associ-
ated with infection in the prior analysis (Fig 4, A) remained
distinctly associated with infection only, including IgA2 against
SARS-CoV-2 RBD and IgG4 levels against some seasonal coro-
naviruses, suggesting that vaccination shifted or reverted those
antibody features that may have been initially induced after infec-
tion (Fig 4, B). Other infection-induced features remained sus-
tained even after vaccination, including IgG1 levels against
NL63 and 229E (Fig 4, D). Thus, SARS-CoV-2 maternal infec-
tion may have distinct impacts on immunity against seasonal co-
ronaviruses that are transferred to the fetus.
DISCUSSION
The current study found that maternal vaccination during

pregnancy enhances the quantity and quality of antiviral anti-
bodies that are transferred to the fetus in utero compared to infec-
tion. We observed transfer of SARS-CoV-2–specific IgG, but not
IgA or IgM, to the fetus, independent of prior COVID-19 infection
or vaccination, consistent with the observations from others.4,12-14

Importantly, we also observed that vaccination irrespective of
prior SARS-CoV-2 infection increases the quality of antiviral an-
tibodies in both maternal and fetal samples, with increased
neutralizing activity and antibody-mediated activation ofNK cells
and complement that are associated with enhanced protection
against SARS-CoV-2 infection.15,21-24 Studies like ours are neces-
sary to achieve increased precision in the strategies used to vacci-
nate pregnant women, which in turn increases the protection of the
fetus and newborn against this common and potentially severe
infection. Protection of newborns within 6 months of birth is
increased when mothers are vaccinated in the last 20 weeks of
pregnancy, and we observed elevated levels of the highly func-
tional IgG3 in both maternal and fetal samples in the context of
vaccination in the absence of prior COVID-19 infection, which
is in line with other studies.25,26 Although we did not observe
increased antiviral functions when vaccination occurred after 20
weeks of pregnancy, the elevated levels of spike-specific IgG3

may provide protection in infants through additional mechanisms
not measured here. Moreover, reduced protection of infants in
mothers vaccinated earlier during pregnancy may reflect the
waning of maternal antibody titers after vaccination before the
placenta is mature enough to allow the active transport of IgG
to the fetus, which typically occurs only in the last trimester of

http://www.jaci-global.org
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by ordinary 1-way ANOVA and multiple comparisons by Tukey multiple comparisons test. *P < .05.
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gestation. Also, variability among different dyads with similar
vaccination status may reflect individual differences in placental
function vis-�a-vis the active systems necessary for the transport
of immunoglobulins to the fetus. Longitudinal samples from
this birth cohort are planned and will be addressed in future
studies, which are also going to be instrumental in determining
possible correlations between immune protection at birth and
the later occurrence of reinfections or development of respiratory
symptoms and other clinical outcomes.

Fc effector function can be modified by the Fc glycan, and
specific glycan structures greatly affects functional capacity. For
example, afucosylation enhanced affinity for FcgRIII, thus boost-
ing ADCC activity. Aging, pregnancy, obesity, and smoking have
been shown to affect glycosylation, and elevated levels of afuco-
sylated IgG have been observed in the context of human immuno-
deficiency virus, dengue virus, and influenza.27 In the context of
SARS-CoV-2, elevated levels of afucosylated antibodies have
been observed in hospitalized individuals with severe COVID-
19. While we did not measure the glycan structures of spike-
specific antibodies in our subjects, none of our subjects was hos-
pitalized, and none reported experiencing severe disease. Howev-
er, differences in spike-specific IgG glycosylation induced
between infection and vaccination may have affected the quality
of humoral immune responses.28-30

Overall, the data from our study demonstrate the importance of
vaccination in pregnancy as a highly effective method of
protecting the fetus and newborn from COVID-19 infection.
Importantly, the advantage provided by maternal vaccination is
independent of the natural occurrence of infection during
pregnancy. One obvious advantage of COVID-19 vaccination of
pregnant women is the prevention of preterm delivery, the
incidence of which is increased by infection and is associated
with serious postnatal complications affecting virtually every
organ of the offspring. Data obtained from the same birth cohort
also show that SARS-CoV-2 can be vertically transmitted in
pregnancy from an infected mother to her fetus in approximately
1 of 10 pregnancies (data not shown), which reinforces the
importance of vaccination for fetal protection. Furthermore, a
COVID-19 infection in a pregnant woman can affect fetal
development even in the absence of physical transfer of virus
through the placenta by triggering maternal immune activation,
which in turn leads to maternal and placental inflammation with
expression of proinflammatory cytokines during critical devel-
opmental windows. For example, data show that SARS-CoV-2
exposure in utero may be associated with neurodevelopmental
sequelae in some offspring26 similar to those consistently shown
with other vertically transmitted respiratory viruses, such as influ-
enza. Finally, it must be emphasized that many complications
related to vertically transmitted infection, or to the consequences
of maternal immune activation, might require a long time to man-
ifest, and therefore may become clinically evident only in late
childhood or even early adulthood. Thus, only prospective studies
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with long follow-up will be able to uncover the true dimensions of
perinatal COVID-19 infections.
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Clinical implications: The most effective passive transfer of
functional antibodies against SARS-CoV-2 in utero is achieved
through vaccination, highlighting the importance of vaccina-
tion in pregnant women.
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