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Abstract

As cancer cell populations evolve, they accumulate a number of somatic mutations, result-

ing in heterogeneous subclones in the final tumor. Understanding the mechanisms that pro-

duce intratumor heterogeneity is important for selecting the best treatment. Although some

studies have involved intratumor heterogeneity simulations, their model settings differed

substantially. Thus, only limited conditions were explored in each. Herein, we developed a

general framework for simulating intratumor heterogeneity patterns and a simulator

(tumopp). Tumopp offers many setting options so that simulations can be carried out under

various settings. Setting options include how the cell division rate is determined, how daugh-

ter cells are placed, and how driver mutations are treated. Furthermore, to account for the

cell cycle, we introduced a gamma function for the waiting time involved in cell division.

Tumopp also allows simulations in a hexagonal lattice, in addition to a regular lattice that

has been used in previous simulation studies. A hexagonal lattice produces a more biologi-

cally reasonable space than a regular lattice. Using tumopp, we investigated how model set-

tings affect the growth curve and intratumor heterogeneity pattern. It was found that, even

under neutrality (with no driver mutations), tumopp produced dramatically variable patterns

of intratumor heterogeneity and tumor morphology, from tumors in which cells with different

genetic background are well intermixed to irregular shapes of tumors with a cluster of closely

related cells. This result suggests a caveat in analyzing intratumor heterogeneity with simu-

lations with limited settings, and tumopp will be useful to explore intratumor heterogeneity

patterns in various conditions.

Introduction

Tumors begin from single cells that rapidly grow and divide into multiple cell lineages by accu-

mulating various mutations. The resulting tumor consists of heterogeneous subclones rather

than a single type of homogeneous clonal cells [1–4]. This phenomenon is known as intratu-

mor heterogeneity (ITH) and is a significant obstacle to cancer screening and treatment. Thus,

understanding how tumors proliferate and accumulate mutations is essential for early
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detection and treatment decisions [5–8]. Multiregional and single-cell sequencing are promis-

ing way for uncovering the nature of ITHs within tumors [9–11], and a large amount of high-

throughput sequencing data have been accumulating [12, 13] together with bioinformatic

tools to interpret such data [14, 15]. However, the spatial structure and its evolution are still

poorly understood [16] because of the lack of well established theoretical framework.

Although some studies have involved ITH simulations, their model settings differed substan-

tially [9, 17–21]. The purpose of the current study was to develop a general framework for sim-

ulating ITH patterns in a cancer cell population to explore all possible spatial patterns that

could arise and under what conditions. To do so, we aimed to ensure that simulations do not

take a very long time so that it can be used within the framework of simulation-based inference

as outlined in Marjoram et al. [22] (see also refs therein).

Of the various types of cancer cell growth models, single-cell-based models are more appro-

priate for our purposes than continuum models that treat tumors as diffusing fluids. There are

two major classes of single-cell-based models, on- and off-lattice. The former assumes that

each cell is placed in a space with discrete coordinates, while the latter defines cells in more

complicated ways. The current study highlights on-lattice models because they do not involve

as large amounts of computation as off-lattice models. Even in simple settings, off-lattice mod-

els represent cells as spheres in a continuous space, whose position is affected by attractive and

repulsive interactions with other cells [23]. Other examples include immersed boundary

model [24] and subcellular element model [25], which define cells by modeling a plasma mem-

brane and network of particles, respectively. On-lattice models define cells as either single or

multiple nodes on a lattice. The cellular Potts model [26–28] is a multiple node-based on-

lattice model in which a cell is represented by several consecutive nodes. This model is similar

to the subcellular element model in that complicated cell shapes can be defined. In contrast,

single node-based on-lattice models assume that a cell is represented by a single node on the

lattice and, thus, can be considered as a kind of cellular automaton model. The computational

load can be minimized with this one-by-one relationship between cells and nodes.

Of the several cellular automaton models available for cancer cell growth [9, 17–21], most

are quite simple and can be readily used for simulation-based inference of parameters in can-

cer cell growth. These models generally consider simple patterns of cell behavior; cells can pro-

duce new cells (cell division), die or migrate somewhere else, and each cell’s behavior can be

stochastically determined depending on its own state and that of its neighbors. However, there

are substantial differences in model settings among previous studies, and how these differences

affect the final outcome is poorly understood. Herein, we developed a general framework for

simulating cellular automaton models of tumor growth called tumopp. We made our frame-

work as flexible and reasonable as possible for on-lattice models in which each cell is located

on a single node, and normal cells and extracellular matrix surrounding the tumor cells are

ignored. Moreover, the environment is independent of the configuration and dynamics of the

tumor cells. In other words, while tumor growth does not change the surrounding environ-

ment, its growth is affected by the environment. These conditions are commonly assumed in

most previous studies [9, 17–21].

Even with these conditions for minimizing computational load, our framework is flexible

enough to incorporate various factors that determine the rates of cell birth and death and how

a new daughter cell is placed in the lattice. Therefore, most previous models can be described

within our framework. Using our framework, we explored the effect of model settings on vari-

ous aspects of the final tumor. Because some settings can have rather large effects, particularly

on the spatial distribution of heterogeneous cells (i.e., ITH), it is important to choose a model

that best suits the specific properties of the focal cancer being investigated. Overall, the present

work provides a guideline for future simulation studies of cancer cell populations.

Simulation framework for generating ITH in a cancer cell population
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Model

General framework of tumopp

Tumopp was developed to enable fast simulation of tumor growth by assuming (i) a cell occu-

pies a single node in the lattice, (ii) normal (noncancer) cells are not simulated, (iii) extracellu-

lar matrix surrounding the tumor is ignored, and (iv) the environment is not affected by

changes in the configuration of the tumor. Table 1 summarizes the symbols used in this

article.

The initial state could be either one or multiple tumor cells distributed in a two-dimensional

(2D) or 3D lattice. The entire process can be handled step by step. Suppose there are Nt number

of tumor cells at time t, and Eglobal, t denotes the global environment at time t. The system waits

for the next event (birth, death, or migration) of one of the Nt cells or any kind of environmen-

tal change. Potential events that cause environmental changes include medical treatments and

angiogenesis. The time to the next environmental change, wE, can be determined either ran-

domly or arbitrarily. The waiting times for birth (wb, i), death (wd, i), and migration (wm, i)

events for the ith cell are random variables that depend on the status of each cell.

The system proceeds from time t by an increment of Δt. If wE is smaller than any other wait-

ing time, then Δt = wE is given, and the environmental change is implemented at time t + Δt.
Then, wb, i, wd, i, and wm, i will all be re-evaluated under the new environment. Otherwise,

no environmental change occurs during Δt = min(wb, 1, . . ., wb, Nt
, wd, 1, . . ., wd, Nt

, wm, 1, . . .,

wm, Nt
), so that the next event is cell division, death, or migration (Fig 1). If wb, i is the smallest,

the next event is division of the ith cell. While one of the two daughter cells stays as it is, the

other is placed at an adjacent node. The cell division event might involve genetic changes or

differentiation of the daughter cells that could result in an increase or decrease in the ability

of cell division. In the Nt = 3 example shown in Fig 1A, because the minimum waiting time is

wb, 2 (in blue), the second cell undergoes cell division. In a case where wd, i is the smallest, the

next event is the death of the ith cell, and the cell is removed from the lattice. If wm, i is the

smallest, the next event is migration of the ith cell. The ith cell may simply move to an empty

neighbor site or result in a position swap with an adjacent cell. Thus, this procedure allows

Table 1. Summary of the symbols in this article.

Symbol Description

Nt Number of tumor cells at time t

C Internal state of a cell

E External environment of a cell

w Waiting time for a next event on a cell

f(w) Probability density function of waiting time (Eq 1)

k Shape parameter for the gamma distribution of waiting time

β Birth rate (see Eq 5)

δ Death rate (see Eq 12)

ρ Migration rate (see Eq 13)

ps Probability of symmetric division (0� ps� 1)

ω Number of cell division allowed for a TAC

s Effect of driver mutation (Eq 6)

�s;s Mean and standard deviation of mutation effect

~p ¼ ðx; y; zÞ Coordinate of a cell in a lattice (Eq 7)

ϕ Proportion of empty nodes in the adjacent sites (Eq 8)

lmin Minimum distance to the nearest empty site

https://doi.org/10.1371/journal.pone.0184229.t001
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Fig 1. Illustration of the simulation algorithm for determining the next event. (A) An example with three cells, 1, 2, and 3 (Nt = 3). The

three waiting times are randomly generated for each cell as elaborated in the main text. Because wb, 2 is the smallest (blue), the next event is

cell division of the second cell, which gives birth to the fourth cell. (B) Again, the waiting times are computed for all four cells. Note that the

waiting times have to be newly generated for second and fourth cells that just experienced a cell division, whereas we can reuse the waiting

times for the first and third cells with Δt subtracted. Because wb, 3 is the smallest (blue), the next event is cell division of the third cell, creating

the fifth cell.

https://doi.org/10.1371/journal.pone.0184229.g001
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simulation of a tumor growth pattern once wb, i, wd, i, and wm, i are determined for all cells (see

Fig 1 for details).

wb, i, wd, i, and wm, i may be random variables from certain probability density functions

(PDFs), which should be flexible enough to incorporate a number of factors. These PDFs

should reflect both internal cell status (Ci, t) and external environment (Ei, t) for the ith cell at

time t. Ci, t includes various genetic and nongenetic factors:

C1 Cell types with different proliferation potential (e.g., cancer stem cells [CSCs], transient

amplifying cells [TACs], or terminally differentiated cells [TDCs]).

C2 Genetic basis of malignancy, including the potential of cell division and death (e.g., driver

mutations that have accumulated in the cell). This should also be related to the rate of

migration (invasion) into nearby tissues.

Ei, t represents environmental factors that may be classified into two categories:

E1 The global environment that affects the entire tumor.

E2 The local environment within the tumor, mainly due to surrounding cancer cells.

Ei, t should be determined by the joint effects of various factors including E1 and E2, which

may not be mutually exclusive to one another. In addition to Ci, t and Ei, t, the cell status in the

cell cycle may play an important role (see below for cell cycle treatment).

Modeling with simplifying assumptions

The above framework is designed to be flexible enough to incorporate various factors, but

making the model too complex would involve a substantial amount of simulation time. Here

we provide several assumptions to simplify the process while keeping the model in tumopp as

biologically reasonable as possible. First, we defined the simulation space, which is either regu-

lar (square) or hexagonal in 2D or 3D space (Fig 2). The neighborhood, or adjacent sites, must

also be defined because it is involved in the algorithms that determine how new cells are

placed. In a regular lattice (Fig 2), there are at least two methods to define the neighborhood.

The Moore neighborhood assumes that each cell has 8 and 28 neighbors in 2D and 3D lattices,

respectively, whereas the von Neumann neighborhood assumes only 4 and 6 neighbors,

respectively. In the current work, we use the Moore neighborhood as in previous studies,

unless otherwise mentioned. The von Neumann neighborhood assumes unrealistic behavior,

thereby creating a strange tumor shape (see Discussion). The situation is simpler in a hexago-

nal lattice, where each cell has 6 and 12 neighbors in 2D and 3D lattices, respectively. It should

be noted that there are two versions of a 3D hexagonal lattice, hexagonal close-packed and

face-centered cubic. Because the difference is very small, we used the latter in the present

study, which is computationally a little more tractable.

The simulation process consists of a large number of steps, at which one of the cells under-

goes birth, death, or migration in the simulation space. As described above (Fig 1), the event is

determined by generating random variables for waiting times (wb, i, wd, i, and wm, i) from cer-

tain PDFs. In this section, we describe how to model the process and determine these PDFs

denoted by fb, i(wb, ijCi, t, Ei, t), fd, i(wd, ijCi, t, Ei, t), and fm, i(wm, ijCi, t, Ei, t).

Modeling waiting times. A gamma function is useful for handling the three waiting times

(wb, i, wd, i, and wm, i) for the ith cell. First, consider the waiting time for cell division (wb, i).

Suppose that the ith cell is a newborn cell that has just undergone cell division at time t. We

assume that the time to the next environmental shift (wE) is very long (i.e., the environment is

constant on the cell division time scale). Thus, the waiting time for the next cell division can be

Simulation framework for generating ITH in a cancer cell population
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assumed to follow a gamma function:

fb;iðwb;i j Ci;t;Ei;tÞ ¼ gammaðwb;i j kb; biÞ;

E½wb;i� ¼
1

bi
;

Var½wb;i� ¼
1

kbb
2

i

;

ð1Þ

where fb, i(wb, ijCi, t, Ei, t) can be specified by only two parameters: (1) birth rate (βi), which is

the reciprocal of the mean waiting time of cell division since the last cell division and referred

to as the potential birth rate because it applies only to a newborn cell (see below for details);

and (2) the shape of the distribution (kb). If kb =1 is assumed, Eq 1 is given by a delta function

(wb;i ¼
1

bi
); as kb decreases, the distribution spreads around the mean 1

bi
, and is identical to an

exponential distribution with parameter 1

bi
when kb = 1 (Fig 3).

A relatively large kb might provide a reasonable PDF considering the cell cycle illustrated in

Fig 4. A cell has to go through interphase to get to metaphase, during which cell division

occurs. This is why Eq 1 can only be applied to a newborn cell. For a cell that experienced the

last cell division t = τ before, Eq 1 should be modified as follows:

fb;iðwb;i; t j Ci;t;Ei;tÞ ¼
gammaðwb;i � t j kb; biÞR1

t
gammaðwb;i j kb; biÞ

: ð2Þ

Fig 2. Definitions of neighborhood, or adjacent sites, in 2D (A) and 3D space (B). The focal site (ith cell) is shown in blue, and its

adjacent sites are in black. Note that there are not multiple definitions of neighborhood in a hexagonal lattice.

https://doi.org/10.1371/journal.pone.0184229.g002
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It should be noted that most previous studies [9, 17–21] ignored this effect of the cell cycle and

used an exponential distribution (kb = 1) instead, where extremely short cell division after the

previous one is allowed. As demonstrated in Results, this simplification has a non-negligible

effect on many features in simulated tumors.

Similarly, the waiting times for death (wd, i) and migration (wm, i) of the ith cell may be

described with gamma distributions:

fd;iðwd;i j Ci;t;Ei;tÞ ¼ gammaðwd;i j kd; diÞ;

fm;iðwm;i j Ci;t;Ei;tÞ ¼ gammaðwm;i j km; riÞ;
ð3Þ

where δi and ρi are the expected wd, i and wm, i, respectively. In contrast to cell division, cell

death and migration may not have a clear correlation with the cell cycle. If so, an exponential

distribution may be used (by assuming kd = 1 and km = 1 in the equations above). An exponen-

tial distribution does not require adjustment in the cell cycle (i.e., τ) because the following

equation holds, which reduces the computational load:

exponentialðwb;i � t j biÞR1
t

exponentialðwb;i j biÞ
¼ exponentialðwb;i j biÞ: ð4Þ

There is also an alternative treatment for cell division and death [17, 19]. Cell death might

occur when the cell gets into metaphase and tries to undergo cell division but fails [29]. This

can be modeled such that wb, i and wd, i follow a single PDF (i.e., a gamma distribution), and

the outcome could be randomly assigned to cell division and death with probabilities 1 − αi
and αi, respectively. Tumopp implements these two alternative treatments. Thus, the PDFs for

the three waiting times can be given once the potential rates (βi, δi, and ρi) are determined (see

below).

Fig 3. Effect of shape parameter (k) on gamma distribution with mean t ¼ 1

bi
. When k is very large, the variance of t is very small; when k

is small, t has a wide distribution. In the extreme condition where k = 1, the distribution is identical to the exponential distribution with mean

t ¼ 1

bi
.

https://doi.org/10.1371/journal.pone.0184229.g003
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Potential birth rate. βi should be determined by genetic and environmental factors. To

incorporate the effects of the two genetic (C1 and C2) and two environmental (E1 and E2) fac-

tors, we define βi as:

bi ¼ b0bC1bC2bE1bE2; ð5Þ

Fig 4. Illustrating the biological background behind using a gamma distribution with a reasonably large k. When a cell undergoes

division, its daughter cells should enter interphase, during which they prepare for the next cell division, and it should be difficult to predict a

cell division in early interphase (see text for details).

https://doi.org/10.1371/journal.pone.0184229.g004
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where β0 is a constant value shared by all cells. βC1, βC2, βE1, and βE2 are the coefficients deter-

mined by the above-mentioned factors that constitute C1, C2, E1, and E2, respectively.

C1 The proliferation potential of a cell largely depends on the cell types, including CSCs,

TACs, and TDCs. This can be implemented through subsequent asymmetric cell divisions

[19, 30]. In a simple setting, CSC can be assumed to produce another CSC with probability

ps, and divides asymmetrically to produce a TAC with probability 1 − ps. A TAC has limited

proliferation capacity. With ω as the number of cell divisions allowed for a TAC and ωmax

as the maximum number of cell divisions for an initial TAC, an initial TAC has ω = ωmax,

and ω decreases by one when it undergoes cell division. Then, the TAC becomes a TDC

when ω reaches zero. Under this setting, it may be reasonable to assume βC1 = 1 for a CSC

and TAC with ω> 0, and βC1 = 0 for a TDC. Previous models with a single-cell type with

unlimited proliferation potential [17, 18] can be considered a special case with ps = 1 for all

cells.

C2 The rate of cell division should be largely affected by driver mutations, which may be incor-

porated as follows. Driver mutations are assumed to occur at rate μ per cell division. Sup-

pose the ith cell has accumulated M driver mutations. Here, we define a driver mutation

such that it affects the birth, death, and/or migration rates, either positively or negatively,

and the relative effects on the three rates are denoted by sβ, sδ, and sρ (sδ and sρ are relevant

to death and migration rates as explained below). Then, assuming the effects of driver

mutations are additive, βC2 may be written as follows:

bC2 ¼
YM

j

ð1þ sb;jÞ; ð6Þ

where sβ, j is the relative effect of the jth driver mutation. sβ, • may be given by a random var-

iable from a certain distribution. Herein, we use a Gaussian distribution [N ð�sb; sbÞ] where

�sb and σβ are the mean and standard deviation of the distribution, respectively.

E1 The behavior of cancer cells should depend on their surrounding environment. For exam-

ple, cells close to a nutrient source may have higher cell division rates. This might apply to

cells that are close to the outer layer of the tumor or blood vessels. If so, the proliferation

potential may be given by a decreasing function of the distance from these surfaces and/or

blood vessels. In contrast, cell divisions will be suppressed when an anticancer drug is

given. Thus, the birth rate of a cell may be given by a function of its position in the lattice:

bE1 ¼ E1ð~piÞ; ð7Þ

where ~pi is the position [i.e., ~pi ¼ ðxi; yi; ziÞ] if we set a 3D lattice. Here, we assume E1

accounts for the environment without considering the interaction between nearby cells,

and the local resource competition among nearby cells is included in E2 (see below). For

simplicity, tumopp assumes a uniform environment across the whole tumor. The environ-

ment might change over time, especially when a medical treatment is introduced. In our

model, such an environmental change is incorporated arbitrarily, and the effect of an envi-

ronmental change on each cell might depend on its genotype (i.e., configuration of driver

mutations).

E2 Growing cells are in resource competition because cell proliferation should depend on

resources, such as space, oxygen, and other nutrients. It should be noted that this factor is

not mutually exclusive with E1. Because competition may correlate with local density, βE2

Simulation framework for generating ITH in a cancer cell population
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can be given by

bE2 ¼ E2ð�iÞ; ð8Þ

where ϕi is the proportion of empty nodes in the adjacent sites of the ith cell.

In practice, tumopp employs three models to incorporate this factor:

Constant-rate model where the birth rate is constant regardless of the availability of empty

sites (ϕi).

bE2 ¼ 1: ð9Þ

Step-function model where birth rate is given by a Heaviside function of ϕi such that cell divi-

sion can occur only when there is at least one empty site available around the ith cell.

bE2 ¼

(
0 ð�i � 0Þ

1 ð�i > 0Þ
ð10Þ

Linear-function model where birth rate is proportional to the number of empty neighbors

[18].

bE2 ¼ �i: ð11Þ

Death rate. Similar to the birth rate case, we can define the potential death rate as:

di ¼ d0dC1dC2dE1dE2: ð12Þ

The situation may not be as complicated for the death rate as with the birth rate. C1 and E2

may not be very relevant if we consider that cell death occurs simply by chance regardless of

cell type or local environment (δC1 = δE2 = 1 is assumed in tumopp). C2 should play a crucial

role because some driver mutations significantly reduce the death rate (e.g., by avoiding apo-

ptosis). By assuming all mutation effects are additive, this effect can be incorporated using

Eq 6 with sβ replaced by sδ. Environmental changes (E1) are incorporated arbitrarily following

the birth rate.

Migration rate. The potential migration rate is given by

ri ¼ r0rC1rC2rE1rE2: ð13Þ

Similar to the death rate, C2 should be most relevant to the migration rate because some muta-

tions may provide higher mobility to the host cell (e.g., by changing adhesion molecules on

membranes). Again, Eq 6 can be used here with sβ replaced by sρ. C1 and E2 are ignored, and

E1 is incorporated arbitrarily (see above).

Treatment of cell division, death, and migration in a lattice

Cell division produces two daughter cells. When placing these two cells in a lattice, we assume

that one of them stays at the original site. There are several methods for placing the other cell.

Tumopp employs four push methods following previous studies, which are explained by

assuming that cell division occurs at (x, y, z) in a 3D lattice. We first describe the four methods

Simulation framework for generating ITH in a cancer cell population
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assuming the constant-rate model, followed by their behavior in the step- and linear-function

models.

Push method 1 One new daughter cell is placed randomly on one of the adjacent neighboring

sites (Fig 2 defines adjacent sites). The direction to the adjacent site in which the cell is

placed is randomly determined; for example, if the direction increases the value of x, then

the daughter cell is placed at (x + 1, y, z). If (x + 1, y, z) is already occupied, the pre-existing

cell is moved in the same direction to (x + 2, y, z). If a cell has already occupied (x + 2, y, z),

then it is further shifted to (x + 3, y, z). Thus, the succeeding movement is repeated along

in the same direction until no more push is needed. This model is used by Sottoriva et al.

[17].

Push methods 2–4 are different from 1 in that if there are any empty adjacent neighboring

sites available, a new daughter cell is placed to fill one of them. When no empty sites are avail-

able, methods 2–4 differ in the way they determine which neighboring cell to push out. All of

the push methods use statistic lmin, the minimum distance (the number of consecutive occu-

pied sites) to the nearest empty site for a specific direction. If we assume the Moore neighbor-

hood (Fig 2), it is computed in all of 26 possible directions.

Push method 2 The push direction is randomly determined, and the probability for each

direction is weighted by 1
lmin. Once the direction is determined such that the direction

increases the value of x, for example, the daughter cell is placed at (x + 1, y, z). If (x + 1, y, z)

is already occupied, the pre-existing cell is moved in the same direction to (x + 2, y, z). If a

cell has already occupied (x + 2, y, z), then it is further shifted to (x + 3, y, z). Thus, the suc-

ceeding movement is repeated in the same direction, such that lmin cells are automatically

pushed toward the surface. This method was adopted by Uchi et al. [9].

Push method 3 The new cell is placed at the adjacent site in the direction with the smallest

lmin. At that site, lmin for the pre-existing cell is again computed in all directions, and the

pre-existing cell is moved one step in the direction with the smallest lmin. This process is

continued until an empty site is found so that no more push is needed. This method is

according to model C of Waclaw et al. [18].

Push method 4 Simplified version of push methods 2 and 3, wherein the push direction is

determined only once with the smallest lmin. Then, lmin cells in a row are all pushed toward

the surface as described for push method 2.

Thus, tumopp implements four push methods in combination with the constant-rate

model, whereas the situation is much simpler in the step- or linear-function models that

assume only cells with empty sites available in the neighborhood can undergo cell division.

Thus, there are virtually only two distinct methods; push method 1 also works in the step- or

linear-function models, while the behavior of push methods 2–4 are identical. This is because

one of the empty sites in the neighborhood is automatically filled by a new cell, otherwise no

cell division occurs (with no empty sites available), and how a pre-existing cell is pushed is

irrelevant.

For cell death, the cell simply disappears, and the node becomes empty, while migration is

defined as a single-step move of a cell in the lattice. Suppose that the cell at (x, y, z) is migrant

and moves to (x, y, z + 1). If (x, y, z + 1) is empty, the cell simply moves and (x, y, z) becomes

empty. If there is a pre-existing cell at (x, y, z + 1), the cells at (x, y, z) and (x, y, z + 1) are

replaced by each other.
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Simulation

Tumopp was developed as a simulator for generating patterns of cancer cell growth under the

setting described in the previous section. Table 2 summarizes the options and parameters

involved in tumopp. It is first necessary to set either a regular (square) or hexagonal lattice in

2D or 3D space. Then, an initial cell is placed at position~pð0; 0; 0Þ in 3D space or~pð0; 0Þ in 2D

space. The initial cell has to be a stem cell (CSC) with ω = ωmax. This initial cell and its descen-

dants undergo cell division, death, and migration. Their rates are determined by Eqs 5, 12, and

13, respectively.

Our model is flexible so that most previous models can be described in our framework;

Table 2 compares our model with four representative simulation studies on ITH. For example,

while all previous studies used a regular lattice for the simulation space, we added a hexagonal

lattice. We believe a hexagonal lattice is biologically more reasonable because the distance to

all neighbor cells is identical. Following Poleszczuk et al. [19], our model has a flexible setting

for different cell types, from CSC to TDC with intermediate states, although the other three

Table 2. Summary of tummop compared with four previous studies.

tumopp Sottoriva et al. [17] Waclaw et al. [18] Poleszczuk et al. [19] Uchi et al. [9]

Simulation space

• 2D or 3D

• regular or hexagonal lattice

2D/3D

regular

3D

regular

2D

regular

2D

regular

Cell types

• CSC with ps and TAC with 1 − ps

(proliferation potential of TAC:

ωmax)

CSC only

(ps = 1 fixed)

CSC only

(ps = 1 fixed)

�* CSC only

(ps = 1 fixed)

Cell division (Potential rate = β0)

• PDF of waiting time:

gamma(k, β)

• Effect of empty space:

constant-rate, step-function, or

linear-function model

• push method: 1, 2, 3, 4

k = 1 fixed

constant-rate

1

k = 1 fixed

�*
3

k� 1 fixed†

step-function

2

k� 1 fixed†

constant-rate

2

Cell death and migration

(Potential rate = δ0 and ρ0)

Cell death occurs independently

from cell division, or in couple with

cell division.

Migration occurs independently

from cell division.

Cell death is coupled

with cell division.

Migration is ignored.

The death rate is

proportional to the cell

division rate.

Migration forms a metastatic

sphere nearby the primary

tumor.

Cell death is coupled with cell

division.

Migration occurs only when

there is empty space in the

neighborhood.

Cell death occurs

independently from cell

division.

Migration is ignored.

Driver mutation

Three kinds of driver mutations are

considered:

• to increase cell division rate: rate

μβ; effect sb � N ð�sb;sbÞ

• to decrease death rate: rate μδ;
effect sd � N ð�sd;sdÞ

• to increase migration rate: rate

μρ; effect sr � N ð�sr;srÞ

Driver mutation

causes a decrease of

death rate.

�* Driver mutation causes a

decrease of death rate.

Driver mutation causes an

increase of cell division

rate.

*Modeled as flexible as tumopp.
†Although essentially the same, the waiting time is treated by a discrete function.

https://doi.org/10.1371/journal.pone.0184229.t002
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studies assumed that all cells are CSCs (i.e., ps = 1 is fixed). In our model, the rates of cell divi-

sion, death, and migration are defined such that a number of factors are taken into account,

while the four previous studies only incorporated part of them. Moreover, our model includes

all of the methods for placing a new daughter cell that were used in the four previous studies.

Tumopp is unique because it employs a gamma function for wb, i, while all four previous stud-

ies used an exponential or geometric function. Both are essentially identical, simple decreasing

functions, except that an exponential function is continuous while a geometric function is dis-

crete. Note that an exponential function is a special case of a gamma function with the shape

parameter k = 1. Importantly, considering the cell cycle, a gamma function (with a large k)

should make more sense biologically, and using an exponential (or geometric) function might

create quite a different pattern of ITH from those simulated with a gamma function (see

below). In summary, tumopp is flexible enough to simulate a tumor under various conditions.

It not only allows simulations under near identical settings as most previous simulation studies

but also exploration of the robustness of any findings by comparison of simulation results with

various settings.

Results

As shown in Table 2, tumopp is much more flexible compared with the four previous models,

which arbitrarily explored only limited conditions. Our simulator has a number of options

listed in Table 2, which cover almost all settings used in the previous studies. Here, we demon-

strate how the different options in tumopp affect the final outcome. In the current work, we

used a 3D regular lattice and Moore’s definition of neighborhood to be comparable with previ-

ous studies. Essentially identical results can be obtained in a 3D hexagonal lattice, whereas

some unrealistic outcomes may be obtained if the von Neumann neighborhood is assumed

(see Discussion). First, we give an overview of the results under neutrality (assuming no driver

mutations), followed by a discussion of the results with driver mutations.

Tumor growth patterns and cell genealogy under neutrality

Because the cell division rate should be much larger than the death and migration rates in a

tumor, we first ignored the latter two rates. Push method 2 was used because the effect of push

methods is negligible on the pattern of tumor growth (but quite large on ITH, as shown in

the next section). We first assume that all cells are CSCs (i.e., ps = 1) having the same cell divi-

sion rate regardless of local density (i.e., constant-rate model). Under this condition, the major

factor used to determine the growth curve of a tumor is the shape parameter of the gamma dis-

tribution, k. We performed simulations with various values of k, and typical patterns are

shown in Fig 5. Each simulation run was terminated when the total number of cells reached

N = 214� 16,000. When k =1 and all cells undergo cell division at the same time, the tumor

grows stepwise (right panel, Fig 5), and the number of cell divisions experienced (denoted by

ν) is identical for all cells in the final tumor, resulting in a symmetric genealogy with ν = 14 for

all cells (top left genealogy, Fig 5). As k decreases, the variance in wb, i increases along with the

variance of ν. The other extreme case is k = 1 where cell division occurs regardless of the cell

cycle, which is the assumption used in most previous studies [9, 17–19]. The growth curve is

near exponential, and we observe a substantial variation of ν in the final tumor (bottom geneal-

ogy, Fig 5). This means that some cells may undergo a large number of cell divisions and some

may not.

It should be noted that the growth rate in the right panel of Fig 5 is negatively correlated

with k, even when we set an identical birth rate, like β = 1 and wb = 1 for all cells at birth (or

cell division). The growth rate is smallest when k =1, where the growth curve is
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deterministically given by Nt = 2t because Δt = 1 at any cell division event. When k is finite, the

growth curve is not deterministic because it involves a random process; the system proceeds

by choosing the smallest waiting time, which presumes E(Δt)< 1. The growth rate is largest

when k = 1, where the expected number of tumor cells at time t is given by Nt = et.
Fig 6A shows typical growth curves and genealogies under the constant-rate (blue), step-

function (yellow), and linear-function (red) models for E2 that determines how local density

Fig 5. Effect of the shape parameter of the gamma distribution (k) on the tumor growth curve and cell genealogy. Three values of

k = {1, 8,1} are used. The cells from the final tumor are represented by blue circles on the genealogies. The constant-rate model is

assumed to demonstrate the point.

https://doi.org/10.1371/journal.pone.0184229.g005
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Fig 6. The effect of local density on the tumor growth curve and cell genealogy under the constant-rate, step-function, and linear-

function models for E2. Simulation results with (A) no cell death or migration, (B) migration (ρ0 = 2) but no death, (C) death (δ0 = 0.2) but no

migration, (D) both migration and death (δ0 = 0.2 and ρ0 = 2).

https://doi.org/10.1371/journal.pone.0184229.g006
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affects the cell division rate. The constant-rate model assumes a fixed cell division rate, while

the latter two assume the rate as a function of local density. k =1 is fixed to demonstrate the

point because essentially identical results were obtained for other values. The tree on the top

with blue nodes for the constant-rate model is the same as the top genealogy in Fig 5. This fig-

ure shows that if the step- and linear-function models are used, competition with neighboring

cells is incorporated such that the cell division rate decreases (E2, Eq 8). This causes a substan-

tial variance in the number of cell divisions per cell (ν). Consequently, growth under these

models (yellow and red, inner panel, Fig 6A) is slower than that under the constant-rate model

(blue, inner panel, Fig 6A).

This slowing of growth is somewhat diminished when we introduce migration (Fig 6B).

Migration could transfer cells to less crowded sites, thereby resulting in an increase in growth

rate (Fig 6B). This applies to the step- and linear-function models, while the result for the con-

stant-rate model is identical to that in Fig 6A because it assumes a constant cell division rate

regardless of local density. If cell death is incorporated (Fig 6C), we observe an obvious reduc-

tion in growth rate in all three models for E2. Fig 6D shows the joint work of migration and

cell death.

Next, we considered the effect of cell differentiation by additional simulations with the

same parameter sets as Fig 6, except that the assumption of all CSCs is relaxed. Fig 7 shows the

result for the step-function model because we obtained essentially the same result for the lin-

ear-function model (the constant-rate model was not relevant here because it allows cell divi-

sion regardless of the availability of space in the neighborhood). The case wherein no CSCs

migrated or died (yellow curve, Fig 7) is shown as a standard for comparison, which is identi-

cal to Fig 6A; the growth curve with ps = 0.2 (purple line) illustrates that a CSC undergoes an

asymmetric cell division and produces a TAC at probability 1 − ps = 0.8, and a TAC eventually

becomes a TDC after ωmax = 5 cell divisions. This figure also shows the tumor stopped growing

at t = 25 because it was completely surrounded by immortal TDCs, thereby creating a barrier

that prohibits inside cells from undergoing further divisions. The inner panel of Fig 7 illus-

trates this type of situation, where a 2D hexagonal lattice is assumed to demonstrate the point.

The dark purple cells with ω = 0 are TDCs that completely surround the entire tumor, prohib-

iting further division of inner cells. This applies only when there is no migration or death so

that the barrier will work “forever” once established. If migration or cell death is introduced,

the barrier is not permanent or may not even be established (dark and light green lines, Fig 7).

This phenomenon was pointed out in a previous study [19] and is well confirmed in our

simulation.

ITH and tumor shape under neutrality

The choice of setting in our simulator markedly affects the ITH pattern and shape of the final

tumor. Again, we first assumed that no migration or cell death occurs and that all cells are

CSCs (ps = 1 fixed). After performing a large number of simulations under various settings,

Fig 8 shows the observed patterns in eight pairs of E2 models and push methods: 4 push meth-

ods under the constant-rate model; 2 push methods under each step- and linear-function

model (the behaviors of push methods 2–4 under the step- and linear-function models are

identical). For each pair, Fig 8 presents the results of three independent replicates for two val-

ues of k (k = 1 and1). All simulation runs started with a single-cell, and division was allowed

until the number of cells hit 10,000; descendants of the first four cells are shown in blue, green,

yellow, and red in 3D space (Fig 8).

One major difference is seen between k = 1 and1 (left and right halves, Fig 8): all cells

undergo cell division simultaneously when k =1 (Fig 5), so the proportion of cell colors is
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Fig 7. Typical tumor growth behavior when the assumption of all CSCs is relaxed. ps = 0.2 andωmax = 5 are assumed, except for the

case of involving all CSCs (ps = 1) for comparison (yellow line). With no cell death or migration (purple line), growth likely stops when the

tumor is surrounded by immortal TDCs (inner panel). This effect can be moderated by cell death and/or migration (light and dark green

lines).

https://doi.org/10.1371/journal.pone.0184229.g007
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Fig 8. 3D structures of simulated tumors for push methods 1–4 under constant-rate, step-function, and linear-function

models under neutrality. Results for k = 1 and1 are shown. Descendants from the first four cells in each simulation run are shown

in blue, green, yellow, and red. The results of three independent runs are shown for each setting.

https://doi.org/10.1371/journal.pone.0184229.g008
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always 25%:25%:25%:25%, and the proportion deviates from this ratio as k decreases. This

effect is theoretically true, although not visually obvious in Fig 8. Another difference is how the

four colors of cells distribute in 3D space. In the top four rows of the constant-rate model, the

four colors of cells are generally intermixed, particularly when push method 1 is employed.

This is because cell divisions occur independently of local density in the constant-rate model,

and new cells are placed by randomly pushing other cells toward the surface. In contrast, in

the step- and linear-function model rows, cells of the same color are more likely located close

to one another, making clusters of cells with the same color. This is particularly notable with

push methods 2–4, in which a new daughter cell is always placed at an adjacent site if space is

available so that closely related cells tend to be located close together.

This pattern is better documented by looking at the relationship between FST and physical

distance. FST is a measure of relative population differentiation at the DNA level. We com-

puted FST for a number of pairs of random subregions with size 20 cells from a single tumor.

Note that FST was computed based on the branch lengths on the genealogy rather than making

genetic data by distributing passenger (neutral) genetic markers (e.g., single nucleotide poly-

morphisms) across the genome; therefore, this FST is the expected value when there are an infi-

nite number of markers. The physical distance was computed as the Euclidean distance

between the central cells of two subregions. Fig 9 shows the relationship between FST and phys-

ical distance for all simulated tumors in Fig 8. As expected, FST and physical distance are more

positively correlated when the step- and linear-function models are used.

The shape (morphology) of the final tumor also varies depending on the models for E2 and

push methods. Tumors in most cases are more like spheres. Exceptions include cases with

push methods 3 and 4 under the constant-rate model, where the final tumors are angular with

quite flat surfaces. In these specific cases, there could be a systematic pressure to keep flat sur-

faces because hollows are quickly flattened by filling new cells from the inside. Other than

these exceptional cases, there is some quantitative variation in the deviation from a sphere. It

should be noted that irregular morphologies with dramatic deviation from a sphere may corre-

late with tumor invasiveness [20, 21, 31–33]. It seems the tumor shape is most distorted in the

linear-function model. This is because the linear-function model assumes high rates of division

for cells with many empty sites in the neighborhood, which largely applies to cells that form

outshoots on the surface. As a consequence, such an outshoot likely grows to be a lump,

thereby resulting in a marked deviation from a spherical shape. This also explains the observa-

tion that FST and physical distance are most strongly correlated in the linear-function model.

Fig 10 explores the effect of cell death and migration. We show only results for k =1

because essentially the same results were obtained for other values of k, including k = 1. The

plots in the left quarter were obtained with the same parameter sets as those in the right half of

Fig 8. It appears that the effect of adding cell death alone (ρ = 0.2) may be small, while migra-

tion tends to create more distorted tumors, with more intermixing of the four cell colors (right

half, Fig 10). It is also notable that we observe a number of outshoots on the surface when

migration is included.

In Fig 11, we further relaxed the assumption of all CSCs. We used two values for the cell dif-

ferentiation parameter ps = (0.6, 0.2), with ωmax = 5 and 10. We show the results when the

step-function model and push method 2 are assumed because essentially the same results were

obtained for other settings. The top row of Fig 11 shows the result for the case involving all

CSCs, which was obtained by simulations with the same parameter sets as the sixth row of

Fig 10. The most marked effect of ps is that tumor growth could stop when it was surrounded

by TDCs, as demonstrated in Fig 7. This effect is well observed particularly when ps is small

(i.e., ps = 0.2), ωmax is large, and migration is not allowed (ρ = 0.0) (see Poleszczuk et al. [19]).
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Fig 9. Correlation between FST and physical distance measured by Euclidean distance. The simulated

tumors shown in Fig 8 are used.

https://doi.org/10.1371/journal.pone.0184229.g009
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Fig 10. Effect of cell death and migration on the 3D structures of simulated tumors for push methods 1–4 under constant-rate,

step-function, and linear-function models. k =1 is assumed. Descendants of the first four cells in each simulation run are presented in

blue, green, yellow, and red. The results of three independent runs are shown for each setting.

https://doi.org/10.1371/journal.pone.0184229.g010

Fig 11. Effect of nonstem cells on the 3D structures of simulated tumors. Results for push method 2 under the step-function model are

shown. k =1 is assumed. Descendants from the first four cells in each simulation run are presented in blue, green, yellow, and red. The

results of three independent runs are shown for each setting.

https://doi.org/10.1371/journal.pone.0184229.g011
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Effect of driver mutations

Three kinds of driver mutations are implemented in tumopp, those that increase the cell divi-

sion rate, decrease the cell death rate, and increase the migration rate. Here, we focused on the

first type of driver mutations that increase the cell division rate because the effects of the other

two kinds of driver mutations are relatively simple (data not shown). If driver mutations are

assumed to decrease the death rate, the major effect is slowed tumor growth, and driver muta-

tions that increase the migration rate would create a more intermixed spatial distribution of

cells of different genotypes.

There would be two extreme cases for driver mutations that increase the cell division rate:

(i) driver mutations with small effects arising frequently (Fig 12) and (ii) a driver mutation

with a large effect occurs only once (Fig 13). We show some simulation results for these two

cases with relatively simple settings to demonstrate this point. Cell death and migration are

ignored (δ0 = 0, ρ0 = 0), and all cells are CSCs (ps = 1), which is the same setting used in Fig 6A,

with a slight modification: k = 100 is assumed instead of k =1. This modification was made

because k =1 predicts all cells undergo cell division simultaneously and that the cell number

grows stepwise (ladder line, Fig 5), which is not suitable if we want to introduce a driver

Fig 12. 3D structures of simulated tumors with frequent weak driver mutations. Results for push methods 1 and 2 under constant-rate,

step-function, and linear-function models are shown; k = 100 is assumed. The colors of cells represent their cell division rates, scaled from

blue to red. The results for one simulation run are shown for each setting.

https://doi.org/10.1371/journal.pone.0184229.g012
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mutation at an arbitrary time point specified by the size of tumor (Nμ). This applies to the sim-

ulation for (ii).

The effect is quite different between the cases (i) and (ii). In the simulation for case (i),

weak driver mutations were assumed to occur quite frequently with parameters μβ = 0.005,

�sb ¼ f0:2; 0:5; 1:0g, and σβ = 0. Fig 12 shows the results for push methods 1 and 2 under the

constant-rate, step-function, and linear-function models. The results for push methods 3 and 4

with the constant-rate model are not shown because they are quite similar to those of push

method 2 (push methods 2–4 assume the same behavior under the step- and linear-function

models). In Fig 12, cells are shown such that the cell division rate is scaled in color, from blue

(β = 1, default rate) to red. Under all settings, it is clearly demonstrated that as average intensity

of driver mutations (�sb) increases, the growth rate increases due to the cells that have acquired

driver mutations. Cells with driver mutations likely undergo more cell divisions and make a

cluster on the surface.

With �sb ¼ 1:0, the cell division rate increases to β> 200 (orange to red), creating quite skewed

tumor shapes with accelerated growth rates. Particularly for push methods 2–4 with the step-

and linear-function models, the 3D structure of the tumors is complicated because the step-

and linear-function models assume the cell division rate is on average higher on the surface.

Fig 13 considers the other extreme case (ii), where a single, very strong driver mutation is

introduced arbitrarily. During each simulation run, rather than setting the driver mutation

rate, we arbitrarily introduced a strong driver mutation with sβ when the number of tumor

cells reached Nμ = {2000, 5000, 10000}. Two values of sβ (9 and 99) were used. As we obtained

similar results for both values, we here show the result for sβ = 99 (see S3 Fig for sβ = 9). An

sβ = 99 means that a single mutation caused an increase in cell division rate 100 times as high

as the original value. Fig 13 shows the results for push methods 1 and 2 with constant-rate,

step-function, and linear-function models. Even with very low initial frequencies (i.e., {1/2000,

1/5000, 1/10000} for Nμ = {2000, 5000, 10000}, respectively), the cells with the driver mutation

(red, Fig 13) grow dramatically, resulting in an immediate increase of the total number of cells.

It seems that the red cells with the driver mutation likely result in a distinct cluster particularly

for push method 2 with the step- and linear-function models, whereas red and blue cells are to

some extent intermixed in the constant-rate model.

Discussion

Herein, we developed a simulator named tumopp that generates ITH patterns. Thus far, ITH

simulations have been conducted in several previous studies; however, the model settings used

varied (Table 2). This means that only limited conditions were explored in each study. Moti-

vated by this issue, we developed tumopp to be as flexible as possible so that all four previous

models could be included and making it extremely useful for exploring the effects of model

and parameter settings. Variations in the model settings include how the cell division rate is

determined, how daughter cells are placed, and how driver mutations are treated. Moreover,

to account for the cell cycle, we introduced a gamma function for the waiting time involved in

cell division, while all previous studies adopted simple decreasing (e.g., exponential) functions

(Fig 3). In our model, the shape of the gamma distribution can be specified by parameter k,

and a k = 0 gives an exponential distribution whereas k =1 assumes that all cells undergo

division simultaneously.

Moreover, tumopp uniquely implements a hexagonal lattice, which we believe is biologically

more reasonable because the distance to all neighbor cells is identical so that there is only one

definition of the neighborhood (Fig 2). S1 Fig briefly shows simulated tumors in a 3D hexago-

nal lattice with the same setting as those used in Fig 8. We suggest using a hexagonal lattice for
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future work although we here used a regular lattice to be comparable with the previous studies.

Although tumopp implements two definitions of the neighborhood in a regular lattice, we used

the Moore neighborhood as in previous studies. The von Neumann neighborhood has not

been used often and can create diamond-like tumors, which is obviously an unrealistic mor-

phology (S2 Fig).

Using tumopp, we investigated how model and parameter settings affect tumor growth

curves and ITH. We found that k (shape) for the waiting time mainly specifies the growth

curve (Fig 5). Moreover, the combined effect of local density on the cell division rate (con-

stant-rate, step-function, and linear-function models), the method to place new cells (push

methods 1–4), and cell differentiation plays a role in tumor growth (Fig 6).

Various patterns in the shape of tumor and ITH arose depending on the model setting. The

methods used to determine the cell division rate (i.e., constant-rate, step-function, and linear-

function models) and those to place new cells (i.e, push methods 1–4) had a major effect.

Under the constant-rate model with push method 1, all cells undergo cell division at a constant

rate regardless of local density, and new cells are placed randomly pushing out pre-existing

neighbor cells. This behavior makes shuffled patterns of ITH with weak isolation by distance

Fig 13. 3D structures of simulated tumors with a single strong driver mutation. Results for push methods 1 and 2 under constant-rate,

step-function, and linear-function models are shown. The cells with the string driver mutation (sβ = 99) are in red, while the others are in blue.

The results for one simulation run are shown for each setting. The time point when the driver mutation was introduced is shown by a pink

circle on the growth curve.

https://doi.org/10.1371/journal.pone.0184229.g013
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(Figs 8 and 9). By contrast, under the linear-function model with push methods 2–4, the cell

division rate is higher when more space (empty sites) is available in the neighborhood, which

generally applies to cells near the surface (particularly to cells that constitute outshoots from

the surface); new cells are placed to fill the empty space without pushing existing cells. This set-

ting likely creates a biased complex shape of tumor with clusters of genetically closely related

cells, resulting in strong isolation by distance.

The effects of driver mutations were implemented by increasing the cell division rate,

decreasing the death rate, and increasing the migration rate. Our simulation demonstrated that

the effect of driver mutations on ITH would be remarkable when introduced to increase the cell

division rate, especially when driver mutations with large effects are involved. Although this

mode of driver mutation was implemented in Waclaw et al. [18] and Uchi et al. [9], the effects

on ITH and tumor morphology were not fully explored. Tumor growth dynamics with various

kinds of driver mutations would be an intriguing subject for future study. It would also be inter-

esting to involve environmental changes, which can be easily incorporated in tumopp. For

example, chemical agents would cause a dramatic reduction in the size of the cancer cell popula-

tion, and a regrowth of remaining resistant cells might occur. Simulations with such environ-

mental changes would give insights into the behavior of tumors after medical treatments.

Although tumopp may take a considerable amount of time to simulate very large tumors,

this problem may be solved to some extent if the tumor is assumed to consist of compartments;

for example, glands in a colorectal tumor, as pointed out by Sottoriva et al. [17, 34]. Glands

proliferate through gland fission [35], and each gland is almost a clonal population of the cells

originated from a few CSCs [36–38]. If so, when simulating a tumor with tumopp, we can

ignore variation within a gland, and each compartment (gland) can be treated as a single unit

(cell). That is, gland fission can be treated as cell division, and mutation at the gland level cor-

responds to a fixation of a new mutation in the gland. Such a compartment-based simulation

would involve much less computational load than a cell-based simulation. On the other hand,

if we cannot ignore intra-gland variation and a gland has to be treated as an aggregate of cells,

it is difficult to make a realization of such a situation with tumopp.

Our work demonstrates that extremely variable patterns of ITH can be created even under

neutrality, depending on the model setting. This suggests a caveat in analyzing ITH data with

simulations with limited settings because another setting might predict a different ITH pattern,

which could result in a different conclusion. For example, Sottoriva et al. [17] investigated ITH

in colorectal tumors by sequencing a number of glands from single tumors. They found that

cancer cells with similar genetic backgrounds were observed on both the left and right sides of

the tumors. This observation led the authors to conclude that mutations that arose in early

stages spread during growth, and they confirmed that such intermixed tumors can be gener-

ated by simple simulations assuming push method 1 with the constant-rate model in our

framework. Our simulations agree that this setting produces intermixed tumors but not with

other settings, such as push methods 2–4 with the linear-function model. Thus, we suggest

that simulation setting be carefully chosen, and deep understanding of the typical behavior of

cancer cells is important. Otherwise, it is important to carry out simulations under various

conditions to confirm or verify the results. For this purpose, tumopp will be very useful, and

the source code is available on GitHub (https://github.com/heavywatal/tumopp).

Supporting information

S1 Fig. 3D structures of simulated tumors in a hexagonal lattice. All parameters except for

the lattice/neighborhood are the same as those in Fig 8.

(TIF)
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S2 Fig. 3D structures of simulated tumors assuming the von Neumann neighborhood in a

regular lattice. All parameters except for the lattice/neighborhood are the same as in Fig 8.

(TIF)

S3 Fig. 3D structures of simulated tumors with a single strong driver mutation. Results for

push methods 1 and 2 under constant-rate, step-function, and linear-function models are

shown; The cells with the string driver mutation (sβ = 9) are in red, while the others are in

blue. All parameters except for sβ are the same as in Fig 13.

(TIF)
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38. Siegmund KD, Marjoram P, Woo YJ, Tavaré S, Shibata D. Inferring clonal expansion and cancer stem

cell dynamics from DNA methylation patterns in colorectal cancers. Proc. Natl. Acad. Sci. USA. 2009;

106(12):4828–4833. https://doi.org/10.1073/pnas.0810276106 PMID: 19261858

Simulation framework for generating ITH in a cancer cell population

PLOS ONE | https://doi.org/10.1371/journal.pone.0184229 September 6, 2017 28 / 28

https://doi.org/10.3389/fonc.2013.00076
http://www.ncbi.nlm.nih.gov/pubmed/23596563
https://doi.org/10.1093/imammb/dqi005
http://www.ncbi.nlm.nih.gov/pubmed/15781426
https://doi.org/10.1158/0008-5472.CAN-09-3663
http://www.ncbi.nlm.nih.gov/pubmed/20048071
https://doi.org/10.1158/0008-5472.CAN-12-2273
https://doi.org/10.1158/0008-5472.CAN-12-2273
http://www.ncbi.nlm.nih.gov/pubmed/23090114
https://doi.org/10.1073/pnas.0505903103
http://www.ncbi.nlm.nih.gov/pubmed/16407113
https://doi.org/10.1016/j.jtbi.2014.05.027
http://www.ncbi.nlm.nih.gov/pubmed/24907673
https://doi.org/10.1371/journal.pone.0012002
http://www.ncbi.nlm.nih.gov/pubmed/20711251
https://doi.org/10.1073/pnas.0810276106
http://www.ncbi.nlm.nih.gov/pubmed/19261858
https://doi.org/10.1371/journal.pone.0184229

