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Abstract

Cadherin subtype switching from E-cadherin to N-cadherin is associated with the epithelial-to-

mesenchymal transition (EMT), a process required for invasion and dissemination of carcinoma 

cells. We found N-cadherin is expressed in human and mouse pancreatic intraepithelial neoplasia 

(PanIN), suggesting that N-cadherin may also play a role in early stage pancreatic cancer. To 

investigate the role of N-cadherin in mouse PanIN (mPanIN), we simultaneously activated 

oncogenic K-rasG12D and deleted the N-cadherin (Cdh2) gene in the murine pancreas. Genetic 

ablation of N-cadherin (N-cad KO) caused hyperproliferation, accelerated mPanIN progression, 

and early tumor development in K-rasG12D mice. Decreased E-cadherin and redistribution of β-

catenin accompanied the loss of N-cadherin in pancreatic ductal epithelial cells (PDEC). Nuclear 

accumulation of β-catenin and its transcription co-activator Tcf4 led to activation of Wnt/β-catenin 

target genes. Unexpectedly, loss of N-cadherin in the K-rasG12D model resulted in increased 

mPanIN progression and tumor incidence. These in vivo results demonstrate for the first time that 

N-cadherin functions as a growth suppressor in the context of oncogenic K-ras.
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 Introduction

Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer death. In the 

United States approximately 48,000 patients are diagnosed with pancreatic cancer annually, 

and nearly an equal number will die from the disease (ACS, 2015). It is among the most 

lethal of all cancers, with a 5-year survival rate of only 5%. Activating point mutations in the 

KRAS oncogene are found in nearly 100% of PDA cases. Although KRAS mutations are 

important initiating events, it is clear that inactivation of the TP53 and p16/CDKN2A tumor 

suppressor genes, as well as SMAD pathway genes, are also important for tumor 

development and progression (1). A better understanding of the molecular changes driving 

PDA development is crucial for identifying potential therapeutic targets for this devastating 

disease.

PDA is thought to evolve through progression of precursor lesions, called pancreatic 

intraepithelial neoplasias (PanINs). PanINs are classified into four subgroups (1A, 1B, 2, 

and 3), based upon histological criteria, to describe the progression from hyperplastic to 

dysplastic ducts. PDA is characterized by genomic instability, and a large number of 

mutations and chromosomal abnormalities are found in each individual carcinoma (2, 3). 

Most human PDAs display mutations in 12 core signaling pathways including homophilic 

cell adhesion, KRAS and Wnt signaling pathways (3), but whether these pathways work in 

concert to enhance disease progression is unknown.

Classical cadherins are a family of cell surface glycoproteins that mediate calcium-

dependent cell-cell adhesion primarily in a homophilic manner. Their adhesive function 

requires interaction with the actin cytoskeleton through catenins. It has been shown that 

cadherins play a role in late stage tumorigenesis (4). Specifically, cadherin subtype 

switching – from E-cadherin to N-cadherin – occurs during neoplastic cell invasion and 

metastasis and is associated with the epithelial-to-mesenchymal transition (EMT) (5, 6). 

Cadherin switching usually refers to a change in expression from E-cadherin to N-cadherin, 

but also includes situations in which E-cadherin levels do not change significantly but cells 

turn on N-cadherin expression. N-cadherin is not required for the EMT process itself, but it 

regulates the cell’s behavior following EMT including the cell’s migratory ability (7). This 

hypothesis is supported by genetic studies demonstrating that neoplastic cell behavior is 

sensitive to changes in N-cadherin expression levels (8–10).

A role for N-cadherin in the early stage of cancer development has not been studied. 

However, one study suggested that changes in E-cadherin might play a role in human PanIN 

development (11). E-cadherin was reduced at the membrane and increased in the cytoplasm 

in PanIN compared to normal ducts (11). Notably, β-catenin, a downstream effector of the 

Wnt signaling pathway, was found in the cytoplasm and nucleus of high-grade PanIN 

lesions. Furthermore, K-rasG12D-induced mPanINs express Tcf4 in the nucleus and exhibit 

activation of the β-catenin/Tcf4-responsive LacZ-reporter consistent with a role for Wnt 

signaling in mPanIN development (12). To our knowledge, N-cadherin protein expression 

has not been examined in PanIN, although its expression has been reported in primary and 

metastatic PDA (13).
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Canonical Wnt signaling was shown recently to be required for mPanIN formation (14). 

Three complementary approaches were used to inhibit Wnt/β-catenin signaling in the K-

rasG12D mouse model. First, genetic mosaicism of β-catenin in the K-rasG12D pancreas 

demonstrated that β-catenin-null cells did not contribute to mPanIN lesions. Second, 

induction of the secreted Wnt inhibitor Dkk1 in the K-rasG12D pancreas inhibited mPanIN 

development and progression. Third, treatment of K-rasG12D mice with a monoclonal 

antibody that binds to multiple Frizzled receptors and blocks their activity resulted in fewer 

mPanINs compared to nontreated K-rasG12D animals. Taken together, these data demonstrate 

a need for canonical Wnt signaling in K-rasG12D-induced mPanIN development.

Herein we report that N-cadherin is induced in human and murine PanINs, and that deletion 

of N-cadherin (Cdh2) gene in ductal cells leads to activation of Wnt/β-catenin target genes 

and accelerated mPanIN formation in the K-rasG12D mouse model. These in vivo results 

demonstrate for the first time that N-cadherin functions as a growth suppressor in the context 

of oncogenic K-ras.

 Results and Discussion

 N-cadherin is expressed in PanIN lesions

N-cadherin expression is associated primarily with poorly differentiated tumors, but no 

information is available concerning N-cadherin expression in PanIN, precursor lesions to 

PDA. Therefore, we examined N-cadherin expression in both human and murine PanIN 

specimens. In human pancreas, E-cadherin was located primarily at the lateral borders 

between the pancreatic ductal epithelial cells (PDEC) in normal tissue, whereas N-cadherin 

was never observed in normal ducts (Fig. 1A,B). By contrast, in human PanIN lesions N-

cadherin was found to be expressed in ductal cells where it localized to regions of cell-cell 

contact together with E-cadherin (Fig. 1C,D and Suppl. Fig. 1). N-cadherin staining was 

heterogeneous and often less intense compared to E-cadherin in PanINs. The human data 

were confirmed in LSL-K-rasG12D; Pdx1/Cre mice (referred to as KC mice) that develop 

mPanIN lesions similar to humans (15). Co-expression of N-cadherin and E-cadherin was 

observed in mPanIN, along with N-cadherin-positive ductal cells with weak or little E-

cadherin expression (Fig. 1E,F). Next, we took advantage of a N-cadherin reporter mouse 

line (NcadlacZ/+) where the lacZ gene is under the transcriptional regulation of the 

endogenous N-cadherin promoter (16). The NcadlacZ/+ reporter allele was introduced into 

the KC and KPC (17) (i.e., LSL-K-rasG12D; LSL-Trp53R172H; Pdx1/Cre) mouse models. In 

addition to islets of Langerhans and nerve bundles where N-cadherin is expressed normally, 

β-galactosidase activity was observed in PDA of the KPC mice confirming the utility of the 

NcadlacZ/+ reporter (Suppl. Fig. 2). Importantly, the NcadlacZ/+ reporter was active in 

mPanIN lesions of the KC mice, thus confirming expression of N-cadherin in these early 

precursor lesions (Fig. 1H). Collectively, these in vivo data demonstrate that ectopic N-

cadherin expression occurs initially at the PanIN stage of the disease prior to EMT.
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 Loss of N-cadherin in the context of oncogenic K-ras leads to increased mPanIN 
incidence and progression

To determine the consequences of interfering with N-cadherin function during mPanIN 

development, the N-cadherin floxed allele (18) was introduced into the KC model to 

generate LSL-K-rasG12D; N-cadfl/fl; Pdx1/Cre mice referred to as Ncad knockout (KO). KC 

mice not containing the N-cadherin floxed alleles are referred to as Ncad wild-type (WT). 

LSL-K-rasG12D; N-cadfl/fl mice lacking the Cre transgene served as negative controls. 

Pancreas development and morphology are normal in N-cadfl/fl; Pdx1/Cre mice lacking the 

K-ras mutation (19). Surprisingly, the Ncad KO pancreata were significantly larger 

compared to Ncad WT (Fig. 2A,B). In comparison to Ncad WT, the Ncad KO exhibited 

extensive mPanINs accompanied by periductal desmoplasia (Fig. 2C). Significant collagen 

deposition was associated with the desmoplastic reaction in the Ncad KO as depicted by 

Masson Trichrome stain (Fig. 2D). Alcian blue staining identified abundant mucin in the 

Ncad KO mPanIN lesions (Fig. 2E). The changes in Ncad KO mice were not seen in Ncad 

heterozygous mice (LSL-K-rasG12D; N-cadlacZ/+; Pdx1/Cre) (data not shown). The 

proliferative index of mPanINs was assessed by PCNA immunohistochemistry. There was a 

two-fold increase in PCNA-positive ductal cells in N-cad KO compared to N-cad WT 

mPanIN lesions at comparative mPanIN grades (Fig. 2F,G). To determine if loss of N-

cadherin affected K-ras activity, we examined levels of activated, or GTP-bound, Ras. There 

was no change in Ras-GTP levels between Ncad KO and WT pancreata (Suppl. Fig. 3). 

Together, these data indicate that loss of N-cadherin caused an increase in ductal cell 

proliferation leading to excessive mPanIN development in the context of K-rasG12D.

Similar to human disease, the KC mice recapitulate the progression from mPanIN-1 – 

PanIN-3 eventually developing PDA after 1 year of age (15). We examined sections from the 

pancreata of each transgenic model to score the presence of different grades of mPanIN or 

PDA, which were defined by the consensus criteria of the pancreatic mouse modeling 

community (20). Histological examination showed evidence of accelerated mPanIN 

development in Ncad KO compared to Ncad WT KC mice. Between 8 and 12 months of 

age, the majority of mPanIN lesions in Ncad WT mice were classified as mPanIN-2 whereas 

Ncad KO displayed less mPanIN-2 and more advanced mPanIN-3 lesions as well as invasive 

carcinoma (Ncad KO, 6/26 vs Ncad WT 1/18, p < 0.05) (Fig. 3A). PET imaging detected a 

strong 18F-FDG signal in the abdominal region of an 8-month-old Ncad KO (Fig. 3B). The 

pancreas was removed and a solid mass identified (Fig. 3C), and histological examination 

confirmed the carcinoma pathology (Fig. 3D). Taken together, we conclude that mPanIN 

progression and tumorigenesis were accelerated in Ncad KO compared to Ncad WT KC 

mice.

 E-cadherin and β-catenin expression in N-cadherin KO mPanIN lesions

E-cadherin was expressed strongly at the lateral borders of the Ncad WT ductal epithelial 

cells (Suppl. Fig. 4B). In comparison, E-cadherin expression was weaker in the Ncad KO 

ducts (Suppl. Fig. 4C). Western analysis was performed on total pancreata lysates (Suppl. 

Fig. 4D). Quantification of E-cadherin relative to the ductal marker cytokeratin 19 (CK19) 

indicated a reduction in E-cadherin levels in Ncad KO compared to Ncad WT KC mice 

(Suppl. Fig. 4E).
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Changes in E-cadherin levels can modulate β-catenin activity and growth of neoplastic cells 

(21). Therefore, we examined β-catenin expression in pancreata from 6-month old Ncad KO 

and WT KC mice. β-catenin was increased in the cytoplasm and nuclei of the Ncad KO 

compared to WT ductal cells (Fig. 4A). Moreover, in adjacent Ncad KO sections we 

observed an increase in nuclear localization of the β-catenin binding partner, Tcf4 (Fig. 

4B,C). Next, we examined the expression of representative β-catenin/Tcf4 target genes in 

these pancreata from 6-month-old mice. Loss of N-cadherin was associated with increased 

expression of axin2 and MMP-7 transcripts in Ncad KO pancreata compared to Ncad WT 

(Fig. 4D). To further examine the cellular distribution of β-catenin, primary PDEC lines 

were derived from Ncad KO and WT pancreata as previously described (22). As predicted 

from the genotypes, N-cadherin was absent from the N-cad KO PDEC lines (Fig. 4E). 

Cellular fractionation demonstrated that β-catenin was increased in the nuclear fraction of 

the Ncad KO PDECs (Fig. 4F). Moreover, expression of cyclin D1, a Wnt/β-catenin target, 

was increased in the Ncad KO PDECs (Fig. 4E). Taken together, these data suggest that an 

overall decrease in cadherin expression leads to increased nuclear β-catenin and expression 

of Wnt/β-catenin target genes, thus contributing to the acceleration of mPanIN development 

in the Ncad KO KC mice.

 Perspective

Contact inhibition of cell proliferation is often invoked in the context of epithelial cells 

where E-cadherin-mediated adhesion restrains cell growth and division (23). By contrast, N-

cadherin expression is generally associated with EMT and the acquisition of mesenchymal 

morphology and migratory capabilities (6). In this study, we found N-cadherin expression at 

an earlier stage of pancreatic cancer than previously appreciated. Subpopulations of ductal 

cells in human and murine PanIN lesions were positive for N-cadherin. Surprisingly, genetic 

ablation of N-cadherin caused ductal cell hyperproliferation and accelerated mPanIN 

progression in the K-rasG12D mice. This result indicates that N-cadherin regulates the 

proliferative potential of a unique subset of ductal cells in mPanIN lesions.

It has been proposed that oncogenic K-ras regulates N-cadherin expression in pancreatic 

cancer, however its relevance to disease progression is poorly understood. In PDEC grown in 

culture, activated K-ras was shown to induce N-cadherin expression (24, 25). In comparison 

to these in vitro results, here we show that only a subset of ductal cells express N-cadherin in 

K-rasG12D-induced mPanIN lesions. However, when PDEC isolated from N-cad WT K-

rasG12D mice were grown in vitro, N-cadherin induction was observed in all the cells. 

Interestingly, N-cadherin expression in pancreatic cancer cell lines depends on signals from 

the extracellular matrix. Cells grown on collagen I activate N-cadherin whereas fibronectin 

or laminin substrates had no effect on N-cadherin expression (9). The difference between 

these in vitro and in vivo findings suggest the PanIN microenvironment, e.g., basement 

membrane, may regulate N-cadherin activation in vivo. In the future, it will be of interest to 

examine N-cadherin expression in PanIN lesions with respect to changes in basement 

membrane integrity.

Studies indicate that the ability of N-cadherin to regulate cell proliferation depends on the 

cellular context and the health of the tissue. N-cadherin-mediated adhesion was shown to 
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promote cell cycle arrest of CHO cells (26) and C2C12 myoblasts (27, 28) in culture. 

Moreover, we reported recently that interfering with α-catenins, which link N-cadherin to 

the actin cytoskeleton, results in aberrant N-cadherin expression and hyperproliferation of 

cardiomyocytes (29). By contrast, in another study it was shown by use of N-cadherin 

conditional knockout mice that N-cadherin is a positive regulator of smooth muscle cell 

proliferation following vascular injury (30). Moreover, we previously reported that reduced 

N-cadherin levels in the context of both K-rasG12D and p53R172H mutations (i.e. KPC mice) 

led to a decrease in proliferation of pancreatic cancer cells consistent with a growth-

promoting role for N-cadherin in later stage cancer (10). The different affects of N-cadherin 

on PDEC growth in the KPC (10) and KC (this study) mouse models depends on N-cadherin 

gene dosage (summarized in Suppl. Table I). Taken together, these data show that N-

cadherin can either inhibit or promote cell proliferation depending on the cellular context 

and disease state.

It is well established that activation of Wnt signaling plays a critical role in mPanIN 

development (14). In the present study, we demonstrate an increase in nuclear localization of 

β-catenin and Tcf4, and in expression of target genes in the N-cad KO KC mice. These data 

support the idea that decreased cadherin expression in N-cad KO KC mice alters the cellular 

distribution of β-catenin (membrane vs. cytoplasmic) and facilitates its accumulation in the 

nucleus where it activates genes involved in mPanIN formation. Additional signaling 

pathways including the Hippo pathway may work in concert with N-cadherin-mediated 

adhesion to regulate proliferation in the K-rasG12D mice (31). Interestingly, it was shown 

recently that E-cadherin mediates contact inhibition of proliferation in mammary epithelial 

cells via Hippo signaling pathway components and the regulation of the subcellular 

localization of Yes-associated protein (Yap) (32). Yap is a transcriptional co-activator that 

interacts with members of the TEAD transcription factor family to regulate genes involved 

in cell proliferation and survival. Importantly, it was shown that Yap is required in β-catenin-

dependent cancers (33). Yap and the transcription factor Tbx5 were found to form a complex 

with β-catenin. Whether loss of N-cadherin modulates Yap nuclear translocation in mPanIN 

lesions is under investigation.

Previous studies indicated that N-cadherin was capable of promoting pancreatic tumor cell 

growth (9, 10). By contrast, here we report for the first time that N-cadherin functions as a 

growth suppressor in the context of K-ras-induced mPanIN development. Loss of N-

cadherin causes activation of the Wnt/β-catenin signaling pathway and ductal cell 

hyperproliferation in K-rasG12D mice. Our unexpected results provide new insight into N-

cadherin function in early pancreatic cancer.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. E- and N-cadherin expression in human and murine PanIN
Double immunofluorescence analysis of E-cadherin (antibody from Santa Cruz) and N-

cadherin (antibody from Invitrogen) in human (A–D) and murine (E, F) pancreas specimens. 

Pancreas samples were obtained from patients at Johns Hopkins Medical Center (JHMC) 

following approval by JHMC IRB. E-cadherin was present both in normal pancreatic duct 

(A) and PanIN (C). By contrast, N-cadherin was absent from normal ducts (B), but found 

upregulated in a subset of PanIN lesions (D). Arrowheads point to areas shown in merged 

image (insets). E-cadherin (E) and N-cadherin (F) expression in mPanIN from K-rasG12D; 
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Pdx1/Cre (KC) mice. Note ductal cells with decreased E-cadherin and increased N-cadherin. 

Histological analysis of β-galactosidase-stained mPanIN from Ncad+/+ (G) and NcadlacZ/+ 

(H) KC mice. N-cadherin LacZ reporter showed a positive signal (blue) in ductal cells and 

islets of Langerhans (Is) in the KC NcadlacZ/+ mice (H) whereas KC mice lacking the LacZ 

reporter served as a negative control (G).
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Figure 2. Enlarged pancreata, increased mPanIN lesions and desmoplasia in Ncad KO KC mice
(A) Whole mount images of pancreata from 5- to 6-month old control (Cre minus), Ncad 

WT, and Ncad KO mice and (B) comparison of pancreas mass (gram) in 6- and 9- to 12-

month old mice. *, p<0.05. Transgenic mice were in a mixed genetic background. All mouse 

experiments were performed under the approval of the Thomas Jefferson University IACUC. 

Representative pancreas sections from 5- to 6-month old mice stained with H&E (C), 

Masson trichrome (D), and Alcian blue (E). Representative images of immunohistochemical 

analysis of PCNA (antibody from Invitrogen) in pancreata from 6-month old control, Ncad 
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WT, and Ncad KO mice (F). (G) Quantification of PCNA nuclear staining. n, number of 

independent animals examined by immunohistochemistry; **, p<0.01.

Su et al. Page 13

Oncogene. Author manuscript; available in PMC 2016 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Accelerated mPanIN and tumor development in Ncad KO KC mice
(A) Quantification of mPanIN and PDA in 8- to 12-month old Ncad KO (n=26) and WT 

(n=18) mice. Percent (%) total indicates the ratio of mice that developed mPanIN (highest 

grade counted) or PDA to the total number of mice. An experienced pancreatic pathologist 

(CS) reviewed tissue specimens in a blinded fashion. Chi-square analysis showed a 

significant difference between Ncad KO and Ncad WT KC mice (p < 0.05). (B) Whole-body 

PET scan using 18F-FDG (Fludeoxyglucose (18F)) on 8-month old control, Ncad WT, and 

Ncad KO mice. Strong uptake of 18F-FDG was observed in the pancreatic region of Ncad 
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KO mouse (arrow) and absent from control and Ncad WT mice. (C) Whole mount images of 

the pancreata removed from the PET imaged mice (B). A solid mass was found in the 

pancreas (arrow) of Ncad KO mouse consistent with PET image. (D) Histological analysis 

of the pancreata confirmed carcinoma in the Ncad KO and mPanIN in the Ncad WT.
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Figure 4. Enhanced β-catenin/Tcf4 activity Ncad KO KC
Immunohistochemical analysis of β-catenin (antibody from Invitrogen) (A) and Tcf4 

(antibody from Millipore) (B) expression on adjacent sections of 6-month old control, Ncad 

WT, and Ncad KO pancreata. Note the corresponding increase in both β-catenin and Tcf4 in 

cells from adjacent sections in Ncad KO. (C) Quantification of Tcf4-positive nuclei in 

mPanIN lesions. (D) qPCR of β-catenin/Tcf4 target genes axin2 and MMP7 in pancreata 

from control (n=3), Ncad WT (n=8), and Ncad KO (n=6) mice. Total RNA was isolated 

from pancreas tissue disassociated into single cells using RNeasy Mini Kit (Qiagen). 

Expression of the target gene was compared with the expression level of GAPDH. Primer 

sequences used were Axin2 forward: 5´ AGCCGCCATAGTC 3´, Axin2 reverse: 5´ 
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GGTCCTCTTCATAGC 3´; MMP7 forward: 5' GCAAGGAGAGATCATGGAGACAGCTT 

3', MMP7 reverse: 5' AAGTTCACTCCTGCGTCCTCACCAT 3'; GAPDH forward: 5’ 

CCACTCTTCCACCTTCGATG 3’, GAPDH reverse: 5’ TCCACCACCCTGTTGCTGTA 

3’. (E) Immunoblot analysis of N-cadherin and cyclin D1 (antibody from Santa Cruz) in 

total protein lysates of PDEC isolated from Ncad WT and Ncad KO mice. (F) Immunoblot 

analysis of β-catenin in total lysate, cytoplasmic, and nuclear fractions prepared from PDEC 

isolated from Ncad WT and Ncad KO mice. Lamin B1 (antibody from Abcam) served as a 

control for enrichment of the nuclear fraction.
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