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Abstract
Single-cell mass cytometry significantly increases the dimensionality of cytometry analysis

as compared to fluorescence flow cytometry, providing unprecedented resolution of cellular

diversity in tissues. However, analysis and interpretation of these high-dimensional data

poses a significant technical challenge. Here, we present cytofkit, a new Bioconductor pack-

age, which integrates both state-of-the-art bioinformatics methods and in-house novel algo-

rithms to offer a comprehensive toolset for mass cytometry data analysis. Cytofkit provides

functions for data pre-processing, data visualization through linear or non-linear dimension-

ality reduction, automatic identification of cell subsets, and inference of the relatedness

between cell subsets. This pipeline also provides a graphical user interface (GUI) for ease

of use, as well as a shiny application (APP) for interactive visualization of cell subpopula-

tions and progression profiles of key markers. Applied to a CD14−CD19− PBMCs dataset,

cytofkit accurately identified different subsets of lymphocytes; applied to a human CD4+ T

cell dataset, cytofkit uncovered multiple subtypes of TFH cells spanning blood and tonsils.

Cytofkit is implemented in R, licensed under the Artistic license 2.0, and freely available

from the Bioconductor website, https://bioconductor.org/packages/cytofkit/. Cytofkit is also

applicable for flow cytometry data analysis.

This is a PLOS Computational Biology Software Article.

Introduction
Mass cytometry, or cytometry by time-of-flight (CyTOF), uniquely combines metal-labeling of
antibodies with mass spectrometry to enable high-dimensional measurement of the character-
istics of individual cells [1,2]. The high purity and choice of metal isotopes overcome the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005112 September 23, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Chen H, Lau MC, Wong MT, Newell EW,
Poidinger M, Chen J (2016) Cytofkit: A Bioconductor
Package for an Integrated Mass Cytometry Data
Analysis Pipeline. PLoS Comput Biol 12(9):
e1005112. doi:10.1371/journal.pcbi.1005112

Editor: Dina Schneidman, Hebrew University of
Jerusalem, ISRAEL

Received: April 14, 2016

Accepted: August 22, 2016

Published: September 23, 2016

Copyright: © 2016 Chen et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This study was funded by A-STAR/SIgN
core funding (JC). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

https://bioconductor.org/packages/cytofkit/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005112&domain=pdf
http://creativecommons.org/licenses/by/4.0/


limitations of spectral overlap in flow cytometry, and allow for simultaneous analysis of more
than 40 markers per cell [3,4]. This technology has been successfully applied in a number of
areas including mapping phenotypic heterogeneity of leukemia [5], inferring cellular progres-
sion and hierarchies [6], assessing drug effects on immune cells [7,8] and uncovering mecha-
nisms of cellular reprogramming [9]. Despite the advantages of mass cytometry, effective
analysis and interpretation of these high dimensional and large-scale datasets remain challeng-
ing. Traditional manual gating, the gold-standard method for flow cytometry data analysis, is
not practical for mass cytometry due to its high dimensionality. In addition, most automated
methods designed for flow cytometry data do not perform well for mass cytometry data [10].

Analysis of mass cytometry data has several key challenges including debarcoding [11], batch
normalization [12], visualization of high-dimensional data, identification of cell subsets, infer-
ence of relatedness between cell subsets, and detection of changes in subset abundance. This
manuscript focuses on addressing the following three key challenges for data that don’t display
batch effect. The first challenge is efficient visualization of these high-dimensional data. A biax-
ial plot that displays the correlation of every two markers is a common way to visualize flow
cytometry data. With the fact thatm(m − 1)/2 biaxial plots are needed to fully visualize an m-
dimensional dataset, this approach is impractical for mass cytometry data as the parameter m of
mass cytometry is usually greater than 40. Alternative dimensionality reduction approaches
have been used to transform the high-dimensional data to a low-dimensional representation,
thus allowing visualization of the cells in a single plot. In Newell et al. [13], principal component
analysis (PCA) was used to visualize a 25-parameter mass cytometry panel for CD8+ T cells.
However, PCA is a linear transformation, and it cannot capture nonlinear relationships. To
address this limitation, Amir et al. [5] developed a visualization tool named viSNE which utilizes
the t-distributed stochastic neighbor embedding (t-SNE) algorithm. t-SNE is a nonlinear
dimensionality reduction approach [14] which embeds the data from high dimensional space
into a lower dimensional map based on similarities. On a t-SNE map, similar cells are placed to
nearby points, while dissimilar cells are placed far apart. It has been demonstrated that t-SNE
can effectively visualize cellular heterogeneity in normal and leukemic bone marrow [5].

The second challenge is to identify cell subpopulations. To address this challenge, the
ACCENSE method has been developed to automatically identify cellular subpopulations using
a density peak-finding algorithm on a t-SNE transformed 2-D map [15]. However, not all cells
are assigned to a defined subpopulation in this method. DensVM extends ACCENSE by using
support vector machine (SVM) to assign any unassigned cells to the subpopulations in a
machine learning manner [16]. This approach has been demonstrated to precisely detect the
boundaries of cell populations in murine myeloid data. DensVM has also been applied to map
the numerous subtypes of follicular helper T cells derived from human blood and tonsils
[16,17]. However, both ACCENSE and DensVM rely on a computationally intensive search for
an optimal number of subpopulations. PhenoGraph, a graph-based partitioning method, has
demonstrated efficiency in subpopulation detection [10]. PhenoGraph first constructs a near-
est-neighbor graph which captures the phenotypic relatedness of the high-dimensional data,
and then it applies a graph partition algorithm called Louvain [18] to dissect the nearest-neigh-
bor graph into phenotypically coherent subpopulations. Applied to the study of acute myeloid
leukemia, PhenoGraph provided a comprehensive view of the major phenotypes and eluci-
dated intra- and inter-tumor heterogeneity. PhenoGraph has also been tested on three different
mass cytometry datasets of healthy human bone marrow, and it displayed superior accuracy
and robustness in immune cell type detection as compared to other methods.

The third challenge is to detect cellular progression. In addition to defining distinctive cell
subsets, there is great interest in resolving the order of cellular differentiation to reveal their
developmental relationships. For example, Bendall et al. developed a graph-based trajectory
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detection algorithm namedWanderlust, which orders cells into a unified trajectory that reflects
the developmental path [19]. This method correctly predicted the early developmental path of
human B-lymphocytes. Nevertheless, this algorithm was designed for linear and non-branch-
ing developmental path, and hence is less useful for interpreting complex single-cell data with
multiple developmental lineages. Wishbone extended the ability of Wanderlust to capture
bifurcating developmental trajectories through introducing waypoints and identifying branch
points [20]. Wishbone is based on diffusion map, which has been demonstrated to be powerful
and robust for detecting the global geometric structures from the data [21]. However, Wish-
bone requires the input of a starting cell. SPADE is an innovative approach designed to extract
cellular hierarchy using minimum spanning tree (MST) [6]. While SPADE enables the predic-
tion of multi-branched cell developmental pathways, the hierarchical clustering used in
SPADE needs a pre-specification of the number of clusters, additionally, the MST used by
SPADE is susceptible to over-fitting and is not robust for local variation [9]. Our recent novel
method named Mpath constructs multi-branching cell lineages from single-cell data using
neighborhood-based cell state transitions [22]. However we have only demonstrated its appli-
cations for single-cell RNA-sequencing data. We are currently testing and optimizing Mpath
for mass cytometry and flow cytometry data.

In this report, we present an integrated analysis pipeline, named cytofkit. It is designed to ana-
lyze mass cytometry data in four main steps. In the first step, cytofkit performs data pre-process-
ing, and enables combined analysis of multiple Flow Cytometry Standard (FCS) files. Users are
allowed to customize their data merging strategy to combine the data using selectable transfor-
mation methods. The remaining three steps address respectively, each of the three challenges dis-
cussed above. Firstly, cytofkit provides state-of-the-art clustering methods including DensVM
[16], FlowSOM [23] and PhenoGraph [10], as well as an in-house newly developed algorithm
named ClusterX for automatic detection of cell subpopulations. Secondly, it provides functions
to visualize the high-dimensional data with color-labeled cell types using either linear transfor-
mation such as PCA or non-linear dimensionality reduction such as ISOMAP [24], diffusion
map or t-SNE (we use Barnes-Hut variant of t-SNE, a speed optimized implementation of t-SNE
[25]). Lastly, it infers the relatedness between cell subsets using ISOMAP or diffusion map. In
addition to providing an integrated analysis pipeline, cytofkit provides a user-friendly GUI and
an interactive shiny APP to facilitate result exploration and interpretation. Through the applica-
tion of cytofkit to a CD14−CD19− PBMCs dataset, cytofkit was able to accurately identify known
populations of lymphocytes including CD4+, CD8+, γδT, NK, and NKT cells, and further segre-
gate these subsets to reveal subpopulations such as different stages of CD4+ and CD8+ T cell dif-
ferentiation, as well as three subsets of γδT and two subsets of NK cells. Moreover, as shown in
our previous publication [17], application of cytofkit for an objective comparison of human T
helper (TH) cells derived from peripheral blood versus tonsils revealed numerous subtypes of fol-
licular helper T cells (TFH) cells that followed a continuum spanning both blood and tonsils.

Design and Implementation
We have developed an integrated mass cytometry data analysis pipeline as an open-source R/
Bioconductor package called cytofkit. As shown in Fig 1, the pipeline consists of four major
components: (1) pre-processing, (2) cell subset detection, (3) cell subset visualization and inter-
pretation and (4) Inference of the relatedness between cell subsets.

Pre-processing
Pre-processing is performed on one or multiple FCS files involving three steps to generate the
expression matrix. Firstly, expression values of user selected markers are extracted from each
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FCS file; secondly the extracted data are transformed using either negative value pruned inverse
hyperbolic sine transformation (cytofAsinh) or automatic logicle transformation (autoLgcl)
[26] (see details in S1 file); finally expression matrixes from each FCS file are combined into a
single matrix using one of the four selectable strategies, including i) ceil which samples up to a
user specified number of cells without replacement from each FCS file, ii) all which takes all
cells from each FCS file, iii)min which samples the minimum number of cells among all the
selected FCS files from each FCS file and iv) fixed which samples an user specified number of
cells (with replacement when the total number of cell in the file is less than the specified

Fig 1. Schematic view of cytofkit pipeline. The cytofkit pipeline consists of four major components: (1) pre-processing, (2) cell subset
detection, (3) cell subset visualization and interpretation and (4) inference of the relatedness between cell subsets.

doi:10.1371/journal.pcbi.1005112.g001
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number) from each FCS file. In the combined expression matrix, each cell is given a unique ID,
which is the concatenation of its original FCS file name and its sequence ID in the file.

Cell subset detection
The subset detection is implemented by clustering algorithms. Cytofkit provides three state-of-
the-art clustering methods DensVM [16], PhenoGraph [10], FlowSOM [23] and one in-house
developed clustering algorithm called ClusterX. DensVM and ClusterX are density-based clus-
tering algorithms, which are applied to the t-SNE embedded map, whereas PhenoGraph is a
graph based clustering algorithm, which works directly on the high-dimensional data.

DensVM. DensVM (Density-based clustering aided by support Vector Machine) is an
extension of ACCENSE’s density-based clustering algorithm [15]. ACCENSE’s clustering algo-
rithm first computes 2D probability density from the t-SNE map using the Gaussian kernel
transform. A 2D peak-finding algorithm is then applied to identify local density maxima that
represent the center of cellular subpopulations. For each peak k, the nearest neighboring peak
is identified and distance to the nearest neighbor dk is calculated. ACCENSE then draws a circle
of radius dk/2 centered at the peak k, and assign all cells within the circle to cluster k. By using
this approach, a significant number of cells are located outside any circle and left unclassified,
which hampers the estimation of subpopulation frequencies and downstream statistical tests.
DensVM overcomes this limitation by utilizing a machine-learning algorithm called support
vector machine to train a classifier that learns the patterns of cells that were assigned to
ACCENSE clusters. The trained classifier then takes as an input the marker expression profiles
of unclassified cells and assigns each of them to one of the ACCENSE clusters based on the
assumption that cells from the same cluster should share similar patterns of marker expression
(details in paper [16]). DensVM is able to objectively assign every cell to an appropriate cluster.

PhenoGraph. PhenoGraph works on an m-by-N intensity matrix, which comprises m
parameters of N cells. For each cell, PhenoGraph first identifies k nearest neighbors using
Euclidean distance, resulting in N sets of k-neighbors. Based on the number of neighbors
shared by every two cells, it calculates the similarity between cells using the Jaccard similarity
coefficient and generates a cell-cell similarity matrix, which is then converted into a network.
Subsequently, PhenoGraph partitions the network using the Louvain algorithm to extract com-
munities with optimal modularity [18]. This algorithm makes no assumption about the size or
number of subpopulations, which make it applicable to many different datasets. In cytofkit, we
converted the original python code of PhenoGraph into R script.

ClusterX. ClusterX is a clustering method improved from Clustering by fast search and
find of density peaks (CFSFDP) [27]. The CFSFDP algorithm is fast and able to recognize clus-
ters regardless of their shape. However it has two main limitations. The first limitation is that it
takes a dissimilarity matrix as the input, which results in an O(n2) memory burden for a dataset
of n cells. The second is that it requires manually decided cut-off values to determine density
peaks, which is inefficient and subjective. ClusterX addresses the memory issue with a split-
apply-combine strategy [28], and automates density peak detection using generalized (extreme
Studentized deviate) ESD test [29]. When combined with t-SNE, ClusterX extends its capacity
for clustering high-dimensional data. The workflow of ClusterX for mass cytometry data clus-
tering is illustrated in Fig 2 (see detailed description of ClusterX in S1 file).

Cell subset visualization and interpretation
Three dimensionality reduction methods are integrated into cytofkit for visualizing the high
dimensional mass cytometry data. These include one linear transformation method PCA and
two non-linear transformation methods ISOMAP and t-SNE. After dimensionality reduction,
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cytofkit plots the transformed two-dimensional maps with point color representing the cell
type detected from cluster analysis and point shape representing which sample (i.e. FCS file)
the cell belongs to. The expression pattern of a specified marker can also be visualized on the
dimensionality-reduced map with values represented by colors. A heat map is generated to
visualize the median expression level of each marker in each cell type. This heat map facilitates
the annotation of known cell types based on prior knowledge of cell type specific marker
expression, as well as the detection of novel cell types with novel expression patterns. The per-
centage of cells in each cluster for each FCS file can also be visualized using a heat map, which
helps the detection of changes in abundance of subsets among different samples. All these plots
can be either saved automatically by the cytofkit package or interactively visualized with our
specifically designed shiny APP (see in Pipeline Implementation section). Example t-SNE
plots and heat map plots can be found in the Results and Discussion section.

Inference of inter-subset relatedness
Instead of directly estimating cellular developmental path from individual cells, which is com-
putationally challenging and error prone, cytofkit provides assistant approaches for inferring

Fig 2. Workflow of ClusterX for mass cytometry data clustering. (a) depict the workflow of ClusterX for mass cytometry data clustering,
which contains four steps: (i) t-SNE dimensionality reduction (ii) estimate the local density on the t-SNEmap (iii) detect the density peaks
represented as cluster centers and (iv) assign the remaining cells to clusters. (b) Explains the local density estimation method. (c) Illustrate
the cluster assigning step using two peaks, peak1 and peak 2. Each point is a cell and the color intensity represents the local density of the
cell. Then each cell is assigned to be the same cluster as its nearest neighbor cell which has higher density than it.

doi:10.1371/journal.pcbi.1005112.g002
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the progression based on the relationship of cell subsets. As we will demonstrate later in our
Results and Discussion section, ISOMAP or diffusion map perform better for reserving the
global inter-relatedness between cell subsets compared to tSNE. ISOMAP takes into account
local distances between similar cells and is able to capture the global geometry between differ-
ent cell types. In CD4+ T cell dataset, we applied ISOMAP to detect three hypothesized pro-
gression paths spanning across blood and tonsils derived from the naïve T cells (see details in
our previously published paper [17]). Diffusion map is a dimensionality reduction algorithm,
which captures the non-linear structure of data as a continuum. It demonstrated considerably
better performance than the other dimensionality reduction methods PCA or t-SNE for reveal-
ing the differentiation structure in single-cell data analysis [21]. In cytofkit, we combined
dimensionality reduction methods including ISOMAP and diffusion map with the clustering
results to infer inter-subset relatedness, which is expected to help detection of cell differentia-
tion trajectories. Firstly, we down-sampled the number of cells in each cluster to an equal size,
thus reducing cell subset density heterogeneities and removing the dominating effect of large
populations in the data. Then we ran ISOMAP or diffusion map on the down-sampled dataset
and overlaid the clusters onto the transformed dimensions. By checking the median position of
clusters in ISOMAP or diffusion map, hypothesized paths of subset progression can be drawn
and annotated. The expression profiles of selected markers can be visualized with a Tobit-fam-
ily generalized linear model (GLM) [30] along the manually defined progression path to either
validate the hypothesized path or detect potential progression dynamics.

Pipeline implementation
We implemented the cytofkit pipeline in R, and built it as a Bioconductor package (https://
bioconductor.org/packages/cytofkit/). ClusterX, as a newly developed clustering algorithm,
was implemented as an R package named ClusterX and is available on github (https://github.
com/JinmiaoChenLab/ClusterX). PhenoGraph is originally available as python code. We re-
implemented the algorithm into an R package named Rphenograph and it is also available on
github (https://github.com/JinmiaoChenLab/Rphenograph). ClusterX and Rphenograph are
both integrated into the cytofkit package. To facilitate the easy access of cytofkit package, we
developed a user-friendly GUI using R tcltk package as shown in Fig 3. To facilitate interactive
visualization of the analysis results, the cytofkit package provides a shiny APP which can be
deployed locally with function cytofkitShinyAPP(). The analysis results from cytofkit will be
saved as an RData object, which can be easily loaded into this shiny APP. This shiny APP pro-
vides an interactive interface to visualize and explore the analysis results as shown in Fig 4. In
addition, an online version of the shiny APP is also publicly available at https://chenhao.
shinyapps.io/cytofkitShinyAPP/. An instruction on usage of the GUI and the package can be
found in S2 File as well online in the package vignettes (https://www.bioconductor.org/
packages/release/bioc/vignettes/cytofkit/inst/doc/cytofkit_example.html). An instruction on
the usage of the shiny APP is included in S3 File as well as online in the package vignette
(https://www.bioconductor.org/packages/release/bioc/vignettes/cytofkit/inst/doc/cytofkit_
shinyAPP.html). A detailed Rmarkdown file including the analysis procedures and all the
data used in the manuscript are available on github (https://github.com/JinmiaoChenLab/
cytofkit_analysis_data_code) for reproducing our analysis results. Cytofkit package adds
dimensionality reduction and clustering results as additional parameters to the FCS files.
Users can open the modified FCS files using other software such as FlowJo to visually verify
the clusters with their prior knowledge. They can also overlay manually gated populations
onto the t-SNE (ISOMAP, diffusion map) plots; perform manual gating according to the t-
SNE plot or clustering results.
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Results and Discussion
We demonstrate the utility of this package using two datasets (included in S1 Dataset). One is a
CD14−CD19−PBMCs dataset and the other is a CD4+ T cell dataset combined from human
blood and tonsils. In order to assess the accuracy of cytofkit, we manually gated populations of
CD4+, CD8+, γδT, CD3+CD56+ NKT and CD3−CD56+ NK cells from the CD14−CD19−

PBMCs dataset (gating strategy included in S1 Fig). Populations of naïve (CD45RA+CCR7+-

CD45RO-), TH1 (IFN-γ
+), TH17 (IL-17A

+) and TFH (CXCR5hiPD-1hi) cells are manually gated
from the CD4+ T cell dataset (see in [17]). More information about these two datasets is
included in the S1 File data description section.

Comparison of dimensionality reduction methods for visualization
In order to assess the performance of the three dimensionality reduction methods PCA, ISO-
MAP and t-SNE, we applied these methods to the above two datasets. For the CD14−CD19−

PBMCs dataset, we overlaid the gated lymphocyte and NK cell populations onto the plots of
the three methods. In Fig 5(a), we observed that PCA displayed a continuous U-shaped pattern
of cellular clusters. ISOMAP preserved the U-shaped continuum while showing better resolu-
tion of CD4+, CD8+, γδT, CD3+CD56+ NKT and CD3−CD56+ NK cells. The preserved contin-
uum shows the interrelatedness between these subsets. In contrast, t-SNE showed
geometrically distinct clusters at much higher resolution and discriminated several populations
within the CD4+ T cell population. However, we did not observe the continuum as seen with
ISOMAP. In the CD4+ T cell dataset, after overlaying naïve (CD45RA+CCR7+CD45RO−), TH1
(IFN-γ+), TH17 (IL-17A

+) and TFH (CXCR5hiPD-1hi) cells onto the dimensionality-reduced

Fig 3. The appearance of the GUI for cytofkit. The GUI provides full options of cytofkit with help buttons explaining the meaning of each
parameter.

doi:10.1371/journal.pcbi.1005112.g003
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map, we observed that each subset occupied distinct regions in ISOMAP and t-SNE, whereas
TH1 and TH17 cells overlapped in the same region for PCA, as shown in Fig 5(b). Overall,
these analyses of two independent datasets highlighted the advantages of non-linear
approaches over linear PCA for visualizing and interpreting mass cytometry data.

Comparison of clustering methods for subset detection
Cytofkit contains three clustering methods for automatic subset identification; they are Clus-
terX, DensVM and PhenoGraph. To assess the performance of these clustering methods, we
quantitatively calculated the precision, recall and F-measure of each clustering method, using
manually gated populations of CD4+, CD8+, γδT, NK and NKT cells from the CD14−CD19−

PBMCs dataset as the gold standard. Fig 6 shows that DensVM detected 13 clusters, Pheno-
Graph identified 14 clusters and ClusterX 15 clusters. These clusters were mapped to the man-
ually gated populations using FlowJo. As shown in Table 1, ClusterX produced the highest
precision in this case; nevertheless, the precision score differences among these three clustering
methods are quite small. The F-measures for DensVM, ClusterX and PhenoGraph are 0.886,
0.894 and 0.854 respectively, which shows that all three clustering methods can accurately
identify the manually gated cellular populations.

We annotated the clusters detected by ClusterX based on the median expression of markers,
which revealed different stages of CD4+ and CD8+ T cell differentiation, and three subsets of
γδT, NK and NKT cells (Fig 7(a)). Unlike ClusterX, DensVM did not distinguish the CD8

Fig 4. The appearance of the shiny APP for cytofkit. The shiny APP is designed to provide interactively visualization and exploration the
cytofkit analysis results. It is integrated into cytofkit package and also a stand-alone online application.

doi:10.1371/journal.pcbi.1005112.g004
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Fig 5. Comparison of dimensionality reductionmethods. PCA, ISOMAP and t-SNE are performed on the CD14−CD19− PBMCs dataset
and the CD4+ T cell dataset, respectively. In each panel, Cells are plotted using the first two dimensions of the dimensionality-transformed
data and color coded by gated populations. (a) Plot of manually gated CD4+, CD8+, γδT, CD3+CD56+ NKT and CD3−CD56+ NK cell
populations from the CD14−CD19− PBMCs dataset using PCA, ISOMAP, and t-SNE. (b) Plot of manually gated naïve
(CD45RA+CCR7+CD45RO-), TH1 (IFN-γ+), TH17 (IL-17A+) and TFH (CXCR5hiPD-1hi) cell populations from the CD4+ T cell dataset using
PCA, ISOMAP, and t-SNE.

doi:10.1371/journal.pcbi.1005112.g005

Fig 6. Comparison of clustering methods. Each panel represents one clustering results mapped on the t-SNE plot; from left to right they
are (a) ClusterX, (b) DensVM and (c) PhenoGraph. Clusters were annotated by different colors and with cluster ID at the center of the
cluster.

doi:10.1371/journal.pcbi.1005112.g006
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effector population and CD4 late effector population (Fig 7(b)). PhenoGraph detected the
ClusterX annotated CD8 effector population and the NKT population as one population
(Fig 7(c)). It should be noted that these manually annotated cell populations need to be further
validated experimentally. Without experimental validation, we could not determine if clusters
10, 12 and 15 in ClusterX represent truly distinct cell populations or are a result of over-frag-
mentation. Despite these small differences, all three methods were able to define cellular het-
erogeneity with a higher efficiency and resolution than manual gating, and we suggest users to
try multiple clustering methods for their own data analysis. The clustering results for the CD4+

T cell dataset can be seen in S2 Fig.

Assess ISOMAP, diffusion map and t-SNE for inferring inter-cluster
relationship
To investigate the performance of ISOMAP, diffusion map and t-SNE for mapping potential
relationships between cell subsets, we sub-sampled 10000 cells from the CD14−CD19− PBMCs
dataset and repeated ISOMAP, diffusion map and t-SNE analysis three times. Fig 8 shows that
the relative geometric locations of ClusterX clusters on a t-SNE map are a poor measure of
between cluster similarities. This is manifested by the evident shift of the relative positions of
cell clusters on the t-SNE maps of three subsamples. For example, cluster 11 and cluster 3 were
close to each other in subsample 1 and subsample 3 but far apart in subsample 2. Similar
changes were also observed on the positional relationships between cluster 11 and 10, or cluster
13 and 6. In contrast, ISOMAP and diffusion map were both able to consistently reproduce the
structure of cluster relationship and the relative locations of these clusters remain consistent in
all three subsamples.

To remove the density heterogeneity among cell subsets, we down-sampled 500 cells from
each cluster using method ceil. Then we plotted the cell subsets using the first two components
calculated by ISOMAP and diffusion map (Fig 9). The two methods both give a U-shape like
structure of the relationship of cell subsets. On one arm of the U-shape are CD4+ and naïve
CD8+ T cells, which do not exhibit cytotoxic capabilities, as evidenced by the lack of Perforin
expression (Fig 9(b)). On the opposite arm are γδ Vd+, γδ Vd−, CD8 Eff, NKT and NK cells,

Table 1. Precision, recall and F-measure of each clusteringmethod by comparing cluster results to manually gated populations of CD4+, CD8+,
γδT, NK and NKT cells from the CD14−CD19− PBMCs dataset.

Gated Population Counts Clusters Cluster Cell Counts True Positive Precesion Recall F-measure Average F-measure

ClusterX CD4 4097 1,2,3,5,10 4265 4029 0.94 0.98 0.96 0.894

CD8 1897 6,8,12 1881 1702 0.9 0.9 0.9

NK 958 9,13 950 934 0.98 0.97 0.97

NKT 1302 7,15 1019 840 0.82 0.65 0.73

Vd2 1034 4,11,14 1173 1001 0.85 0.97 0.91

DensVM CD4 4097 1,2,3,4 4108 3898 0.95 0.95 0.95 0.886

CD8 1897 5,7,10 1992 1710 0.86 0.9 0.88

NK 958 8,11 973 947 0.97 0.99 0.98

NKT 1302 6,13 1037 863 0.83 0.66 0.74

Vd2 1034 9,12 1178 977 0.83 0.94 0.88

PhenoGraph CD4 4097 1,2,3,5,10 4254 4034 0.95 0.98 0.96 0.854

CD8 1897 6,8 1375 1269 0.92 0.67 0.78

NK 958 9,12 953 936 0.98 0.98 0.98

NKT 1302 7,13 1546 917 0.59 0.7 0.64

Vd2 1034 4,11,14 1160 998 0.86 0.97 0.91

doi:10.1371/journal.pcbi.1005112.t001

cytofkit

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005112 September 23, 2016 11 / 17



which were located in order along the second component. We found a continuous increase in
the expression of Perforin and GranzymeB along the second component indicating a progres-
sion of increased cytotoxic capabilities of these subsets (Fig 9(c)). On another dataset which we
previously published, ISOMAP was able to display three hypothesized progression paths of
CD4+ T cells spanning across blood and tonsils [17]. To summarize, although t-SNE better dis-
criminates cells of distinct phenotypes, we highlight the limitation of t-SNE and suggest using
ISOMAP or diffusion map for inferring relatedness between subsets.

Conclusion
In summary, we developed an integrated analysis pipeline for mass cytometry data, termed
cytofkit. Combining state-of-the-art methods and in-house developed algorithms, we aim to

Fig 7. Clusters annotation with heat map.Heat maps showmedian marker expression of clusters detected by (a) ClusterX, (b) DensVM
and (c) PhenoGraph respectively. Heat map row labels represent the cluster IDs and column labels show the marker names. Clusters are
annotated by its expression profile in (a).

doi:10.1371/journal.pcbi.1005112.g007
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provide a one-stop analysis toolkit for mass cytometry data with user-selectable options and
customizable framework. Cytofkit can take commands from a user friendly GUI and performs
analysis including pre-processing, cell subset detection, plots for visualization and annotation,
and inference of the relatedness between cell subsets. In the end, the analysis results can be fur-
ther explored in an interactive way using the specifically designed shiny APP. Our analytical
pipeline provides an automated mass cytometry data analysis toolset, which can be used by
bench scientists without any training.

Fig 8. Assessing ISOMAP, diffusion map and t-SNE for inference of subset relationship. Three subsamples are down-sampled from
the CD14−CD19− PBMCs dataset with equal cell number of 10000. From top to bottom row, the relationship of Cluster X clusters is
visualized by t-SNE, ISOMAP and diffusion map on each of the subsample. Cells are color-coded by ClusterX clusters, and cluster IDs are
added at the center of each cluster.

doi:10.1371/journal.pcbi.1005112.g008
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Availability and Future Directions
Cytofkit was implemented using R and has been published on Bioconductor (https://
bioconductor.org/packages/cytofkit/). It is also available on github (https://github.com/
JinmiaoChenLab/cytofkit). Detailed documentations and demos can be found in the vignettes
of the package, including cytofkit quick start (https://www.bioconductor.org/packages/release/
bioc/vignettes/cytofkit/inst/doc/cytofkit_example.html), cytofkit workflow (https://www.
bioconductor.org/packages/release/bioc/vignettes/cytofkit/inst/doc/cytofkit_workflow.html)
and cytofkit shinyAPP (https://www.bioconductor.org/packages/release/bioc/vignettes/
cytofkit/inst/doc/cytofkit_shinyAPP.html). Cytofkit is developed with a general framework,
which makes it easily extensible to add in new methods and also applicable to other multi-
parameter data types. We are continually working on new algorithms for inferring cellular pro-
gression as well as meta-clustering methods for comparative analysis between multiple batches
of data. New methods will be added into cytofkit to make it more useful for automatic mass
cytometry data analysis.

Supporting Information
S1 Dataset. Zip file containing cytofkit package source code, the CD14−CD19− PBMCs
dataset and the CD4+ T cell dataset.
(ZIP)

Fig 9. (a) ISOMAP and diffusionmap plots of the down-sampled subsets. Cells are color-coded by ClusterX clusters. Cluster IDs are
labeled at the center of each cluster (b) Plots of the expression level of marker Perforin using ISOMAP and diffusion map. Estimated
progression among annotated subsets γδ Vd+, γδ Vd−, CD8 Eff, NKT and NK are added on the plots. (c) The expression profiles of marker
Perforin andGranzymeB for cluster 11, 12, 13, 14 and 15 are visualized on the second component of ISOMAP and diffusion map (reversed
order). The regression line estimated using the generalized linear model (GLM) is added for each marker.

doi:10.1371/journal.pcbi.1005112.g009
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S1 File. Data description, data transformation methods, detailed description of ClusterX
and analysis procedure and codes.
(DOCX)

S2 File. Instruction on the usage of the cytofkit GUI and package.
(DOCX)

S3 File. Instruction on the usage of cytofkit shiny APP.
(DOCX)

S1 Fig. Gating strategy for CD14−CD19− PBMCs dataset. Five populations including
CD4+, CD8+, γδT, CD3+CD56+ NKT and CD3−CD56+ NK cells are manually gated from
the CD14−CD19− PBMCs dataset using FlowJo software.
(TIF)

S2 Fig. The comparison of clustering results for CD4+ T cell dataset. Each panel represents
one clustering results mapped on the t-SNE plot; from left to right they are (a) clustering results
of ClusterX, (b) clustering results of DensVM and (c) clustering results of PhenoGraph. Clus-
ters were annotated by different colors and with cluster ID at the center of the cluster.
(TIF)

S3 Fig. Illustration of density peak detection in ClusterX using R15 dataset. (a) Scatter plot
of the D15 dataset with 15 clusters, clusters are color labeled and cluster centers are labeled by
circles with crosses. (b) CFSFDP’s density peak detection method in which plots of delta
against rho are generated, and users manually set a threshold point to determine the density
peaks (c) ClusterX’s density peak detection method in which plots of sigma against the rank of
rho are generated, and true peak points have significantly higher values of sigma. (d) ClusterX
uses the generalized ESD to detect the density peaks automatically, wherein sigma is assumed
to have normal distribution and peaks are regarded as anomalies that have significantly higher
sigma values.
(TIF)

S4 Fig. Robustness of peak number with p-value selection in ClusterX. The number of den-
sity peaks is plotted over different α values within the range from 0.001 to 0.05 on the R15 data-
sets.
(TIF)

S5 Fig. Split-apply-combine implementation in ClusterX. In ClusterX, data are first split
row-wisely into chunks, the distance matrix is calculated in each chunk to be restricted in a
limited size; then apply the calculation function for each parameters in each chunk; Finally the
parameters are combined from all chunks for post processing.
(TIF)
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