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Optimization of OPEFB 
lignocellulose transformation 
process through ionic liquid  [TEA]
[HSO4] based pretreatment
Muhammad Nurdin1*, Haznan Abimanyu2, Hadijah Putriani1, L. O. M. Idal Setiawan1, 
Maulidiyah Maulidiyah1, Dwiprayogo Wibowo3, Ansharullah Ansharullah4, Muh. Natsir1, 
La Ode Agus Salim1, Zul Arham5 & Faizal Mustapa6

Research on the transformation of Oil Palm Empty Fruit Bunches (OPEFB) through pretreatment 
process using ionic liquid triethylammonium hydrogen sulphate (IL  [TEA][HSO4]) was completed. The 
stages of the transformation process carried out were the synthesis of IL with the one-spot method, 
optimization of IL composition and pretreatment temperature, and IL recovery. The success of the IL 
synthesis stage was analyzed by FTIR, H-NMR and TGA. Based on the results obtained, it showed that 
IL  [TEA][HSO4] was successfully synthesized. This was indicated by the presence of IR absorption at 
1/λ = 2814.97  cm−1, 1401.07  cm−1, 1233.30  cm−1 and 847.92  cm−1 which were functional groups for NH, 
 CH3, CN and  SO2, respectively. These results were supported by H-NMR data at δ (ppm) = 1.217–1.236 
(N–CH2–CH3), 3.005–3.023 (–H), 3.427–3.445 (N–H+) and 3.867  (N+H3). The TGA results showed that 
the melting point and decomposition temperature of the IL were 49 °C and 274.3 °C, respectively. 
Based on pretreatment optimization, it showed that the best IL composition for cellulose production 
was 85 wt%. Meanwhile, temperature optimization showed that the best temperature was 120 °C. 
In these two optimum conditions, the cellulose content was obtained at 45.84 wt%. Testing of IL 
 [TEA][HSO4] recovery performance for reuse has shown promising results. During the pretreatment 
process, IL  [TEA][HSO4] recovery effectively increased the cellulose content of OPEFB to 29.13 wt% 
and decreased the lignin content to 32.57%. The success of the recovery process is indicated by the 
increasing density properties of IL  [TEA][HSO4]. This increase occurs when using a temperature of 
80–100 °C. The overall conditions obtained from this work suggest that IL  [TEA][HSO4] was effective 
during the transformation process of OPEFB into cellulose. This shows the potential of IL  [TEA][HSO4] 
in the future in the renewable energy sector.

The transformation of OPEFB waste as a raw material for renewable energy sources, especially in bioethanol 
production, has still been the concern of many researchers. In general, the biomass transformation process 
consists of several important stages such as pretreatment and  fermentation1–3. Although the cellulose content in 
OPEFB was reported to be high, ranging from ± 27–50%, the presence of lignin and hemicellulose was a problem 
in the transformation process. This problem is the main focus of the pretreatment  process4–6. The lignin and 
hemicellulose contents in OPEFB were reported to range from 18–35% and 24–35%, respectively. In addition 
to inhibiting the catalysts action, the content of lignin and hemicellulose also interferes with the activity of cel-
lulose enzymes in converting glucose into bioethanol. Lignin and hemicellulose will protect cellulose through 
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the mechanism of forming a dense surface structure, so that the catalyst and cellulose enzymes do not work 
optimally. An illustration that explains this situation can be seen in Fig. 1.

In overcoming the pretreatment problem of OPEFB, many pretreatment methods have reported their per-
formance. Pretreatment is an important step in opening or stretching the lignocellulose structure. Pretreatment 
can be done either physically, chemically or a combination of the both. Physical methods such as uncatalyzed 
steam-explosion7,8, liquid hot water (LHW)9,10, mechanical  communication11, and high energy  radiation12. Mean-
while, Chemical methods such as catalyzed steam-explosion13, acid  pretreatment14,15, alkaline  pretreatment16,17, 
ammonia fiber/freeze explosion (AFEX)18,19,  organosolv20,21, and pH-controlled liquid hot  water10. To improve 
pretreatment results, a combination of these two methods is often carried out such as the combination of the 
hydrothermal method with sulfuric acid. Although this method can improve the purity of cellulose and enzyme 
performance during the bioethanol production process, however these methods have also an impact on the 
high use of hazardous chemical solvents during the pretreatment process which can cause new environmental 
 problems22. Another impact that has also been reported is how pretreatment such as physical pretreatment can 
affect the properties of  cellulose23. Based on these problems, OPEFB pretreatment was mostly directed at the 
Ionic Liquid (IL) based pretreatment system. This system is reported to be an environmentally friendly biomass 
pretreatment system with a low amount of solvent.

IL pretreatment is a new system for the development of the OPEFB pretreatment method. This method is 
more environmentally friendly, effectively destroys lignin and hemicellulose bonds without damaging the glucose 
structure, effectively reduces cellulose crystallinity, low volatility and vapor pressure, and can be  recycled24,25. 
In addition, IL has special properties such as wider fluid temperatures, high thermal stability, and negligible 
vapor  pressure26. Certainly, these essential properties are needed in the lignocellulose biomass transformation. 
IL has been reported for biomass pretreatment among others 1-buthyl-3-methylpyridinium chloride,  [Bmpy]
[Cl]27; 1-ethyl-3-methylimidazolium acetate,  [Emim][OAc]28; 1-ethyl-3-methylimidazolium diethyl phosphate, 
 [Emim][DEPO4]29; 1,3-dimethylimidazolium methyl sulfate,  [Dmim][MeSO4]29; 1-N-ethylimidazolium chloride, 
 [C2mim][Cl]; 1-N-buthylimidazolium chloride, [C4mim][Cl]; 1-butyl-3-methylimidazolium chloride,  [BMIM]
[Cl]30,31, 1-allyl-3-methylimidazolium chloride, [Amim][Cl]; N-methyl-N-methylimidazolium dimethyl phos-
phate, [Mmim][DMP], 1-butyl-3-methylimidazolium bis (trifluoromethylsulfony),  [BMIM][NTf2]32–34 and 
1-butyl-3-methylimidazolium acetate,  [BMIM][OAc]31. However, some ILs show shortcomings for biomass 
pretreatment applications. For example, [Emim][OAc] application requires high cost, low thermal stability, low 

Figure 1.  (A) Protection of cellulose by lignin and hemicellulose, (B) mechanism of IL  [TEA][HSO4] synthesis 
reaction, and (C) mechanism of the IL during pretreatment of OPEFB.
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humidity tolerance, and in dissolving cellulose requires a low moisture content, this is in contrast to the high 
moisture content of the biomass.

As an alternative to the deficiency of IL, it is important to choose the type of anion. In this regard, the syn-
thesis and application of triethylammonium hydrogen sulphate  [TEA][HSO4] as IL for the pretreatment process 
resulted in lower production  costs30. In addition, the length of the alkyl chain in ammonium plays an important 
role in the effectiveness of biomass pretreatment. Besides price, another important consideration of the broad 
application of IL  [TEA][HSO4] to pretreatment processes is recovery and  recycling24. Based on this, we specifi-
cally reported IL  [TEA][HSO4] activity for the transformation of OPEFB. The IL synthesis stage was carried out 
using the one-pot method by combining triethylammonium and sulfuric acid. In the pretreatment stage, we 
optimized the performance of IL  [TEA][HSO4] based on concentration and temperature. The recycling process 
is carried out in several stages, including filtering, mixing solvents, washing and separating. The purpose of our 
recycling process is to optimize the use of IL  [TEA][HSO4].

Although our concern in this work is the transformation of OPEFB for bioethanol production, however, in 
the development of other renewable technologies, the pretreatment results obtained can be expanded in appli-
cation such as for the manufacture of activated carbon and carbon nanotubes. Two areas of study have been 
reported  by35. In addition, the results of OPEFB pretreatment can be used as ingredients to decompose food 
waste previously reported  by36.

In general, the use of various types of IL in the bioethanol production stage shows good performance. The use 
of IL is effective in increasing the enzymatic hydrolysis of cellulose to glucose. Imidazolium-based IL is reported 
to increase porosity and specific surface area accessible to enzymes during hydrolysis and fermentation. The use of 
this type of IL resulted in a glucose content of 97.7%37. Another IL type that has been reported is pyrrolidonium 
based IL. Its use causes the enzymatic hydrolysis process to effectively produce a glucose content of 91.81%38. The 
application of amino acid-based IL was also reported to be effective in producing a glucose content of 87.7%39. 
Based on these results it is known that the application of IL in bioethanol production is influenced by the use of 
the IL composition and temperature during the pretreatment process.

Experimental methods
Apparatus and materials. Starting materials for synthesizing IL  [TEA][HSO4] are  H2SO4 97%, ethanol 
97%, triethylamine and potassium carbonate were purchased from Sigma Aldrich and the apparatus used from 
Iwaki Pyrex. The characterization was measured by Dr. Haznan Abimanyu in Research Center for Chemistry, 
Indonesian Institute of Sciences by using FTIR (Nicolet FT-IR iS10, USA). The 1H-NMR was recorded on a 
Bruker 500 MHz spectrometer. Chemical shifts (δ) are reported in ppm with the  D2O peak at 8.0 ppm and TGA 
(SDT-2960, USA) was analyzed to observe temperature rate towards % weight loss of IL  [TEA][HSO4]. Other 
apparatus are vacuum oven (Manufacturers GT-BM12), magnetic stirrer (DLAB Classic MS-H-S), rotary evapo-
rator (DLAB Led RE100-S).

Synthesis of IL  [TEA][HSO4]. Synthesis of IL  [TEA][HSO4] has been conducted by referring to the 
method reported  by40. In summary, 75.9 g (750 mmol) of triethylamine was inserted into a three-neck flask and 
stirred by using a magnetic stirrer under cold conditions. Under stirring, it slowly added 5 M  H2SO4 97% and 
ethanol solution (1:5 w/w) for 24 h. After that, the ethanol solution was removed using a vacuum evaporator for 
2 h and dried in a vacuum oven at 40 °C for 8 h. Finally, the IL  [TEA][HSO4] was analyzed using FTIR, 1H-NMR 
and TGA.

Preparation of OPEFB pulp. The pretreatment process in this work begins with the preparation of pulp 
from the OPEFB. OPEFB raw materials obtained from PTPN-VII (Lampung-Indonesia) were milled and sepa-
rated using a 30 mesh sieve. The separated pulp was dried in the oven for 24 h until the moisture content was 
below 10 wt%. Furthermore, the lignocellulose content, moisture and ash content of the pulp were analyzed 
using standard procedures from the National Renewable Energy Laboratory (NREL).

OPEFB biomass pretreatment. The IL  [TEA][HSO4] based OPEFB pretreatment process was carried 
out by studying two variations, including the IL composition and temperature. The IL compositions (wt%) stud-
ied were 80%, 85% and 91%. The determination of this composition refers to Eq. (1), where this composition is 
the ratio between IL  [TEA][HSO4] and deionized water, HACH 272-56 (IL  [TEA][HSO4] :  H2O). Meanwhile, 
the temperature variations (oC) studied were 30, 50, 80, 100, 120 and 150. In summary, IL  [TEA][HSO4] and 
 H2O were weighed as much as 8.0 g and 2.0 g, respectively. Both are put into the Schott bottle slowly and then 
homogenized. After that, the OPEFB pulp was weighed as much as 2.0 g and put into the Schott bottle. This 
composition was homogenized with a magnetic stirrer for 17 h at 80 °C using hot medium silicone oil. Further-
more, the filtrate is separated using a vacuum pump with the addition of methanol, while the resulting residue 
is prepared for analysis of the amount of lignocellulose after transformation. The same treatment was also used 
for the variation in the composition of 85% and 91%. The fundamental difference of this composition is the mass 
of IL  [TEA][HSO4] used. The masses of IL [TEA]  [HSO4] used for the 85% and 91% compositions were 10.0 g 
and 20.0 g, respectively. Meanwhile, the  H2O mass and OPEFB pulp were kept constant. Every treatment, both 
composition and temperature variations, we do in duplicate.

(1)%IL[TEA][HSO4] =
massofIL[TEA][HSO4],wt

totalmass([TEA][HSO4]+H2O),wt
× 100%
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IL  [TEA][HSO4] recovery. The recovery process is carried out on IL  [TEA][HSO4] waste originating from 
the OPEFB pretreatment process. In summary, the IL  [TEA][HSO4] waste was filtered on a vacuum filter with 
the addition of a methanol solution. To obtain IL  [TEA][HSO4], the solution mixture consisting of IL  [TEA]
[HSO4]-methanol is separated again on a rotary evaporator with a heating temperature of < 80 °C, then followed 
by washing IL  [TEA][HSO4] using aquadest and centrifugation for 15 min at 4 °C at 1000 rpm. This process aims 
to separate IL  [TEA][HSO4] and dissolved lignin during the OPEFB pretreatment process. Washing IL  [TEA]
[HSO4] was carried out 2–3 times using 40 mL aquadest. IL  [TEA][HSO4] which was still mixed with water was 
separated using a rotary evaporator at 100 °C.

Cellulose and hemicellulose analysis by HPLC. A total of 0.30 g of dry sample measuring < 1 mm was 
put into the test tube, 3 mL of 72%  H2SO4 was added, then the first stage was hydrolyzed for 1 h using an incuba-
tor at 30 °C. While homogenized every 15 min using vortex. The hydrosylate was transferred to a Schott bottle 
containing 87 mL of DI water. Subsequently, the sample was hydrolyzed in a second stage for 1 h in a vacuum 
autoclave at a temperature of 121 °C. Cooled to room temperature, filtered with a bunchner filter and 0.45 μm 
filter paper. The filtrate is collected and neutralized with  CaCO3 to a neutral pH, then filtered with a 0.2 μm pore 
size filter using a syringe, and stored in autosamplervial HPLC. Furthermore, the cellulose and hemicellulose 
contents were analyzed using HPLC with an aminex HPX 87H column (300 × 7.8 mm) at a temperature of 65 °C 
with a mobile phase of 5 mM  H2SO4 and a flow rate of 0.6 mL  min−2 and a refractory index detector (waters 
2414 T: 40 °C). Cellulose content is calculated by the equation:

Note:
CGS: [glucose].
HS: Sample peak height.
Hstd: Standart peak height.
CstdG: [glucose standart].
WS: Dry sample weight.
While hemicellulose levels are calculated by the equation:

Note:
CXS: [xylose].
HS: Sample peak height.
Hstd: Standart peak height.
CstdX: [xylose standart].
WS: Dry sample weight.

Lignin analysis by UV–Vis. 0.45 μm filter paper is weighed, and used to filter the sample through a vac-
uum filter system. The filter paper and the residue stuck on it are dried and weighed. Then the residue is ignited 
at 575 °C for 3 h using a furnace, and followed by weighing the weight of the ash obtained. As for the filtered 
filtrate, 0.03 mL was taken and put into a test tube containing 2.70 mL 4%  H2SO4. Furthermore, the absorption 
was measured using a UV–Vis spectrophotometer at a wavelength of 205 nm. The dissolved and insoluble lignin 
levels are calculated using the equation:

Note:

(2)CGS =
Hs

Hstd
× CstdG

(3)%Glucose =
CGSx87ml/100

Ws
× 100%

(4)%Celullose = %glucose × 0.9

(5)CXS =
Hs

Hstd
× CstdX

(6)%Xylose =
CXS × 87ml/100

Ws
× 100%

(7)%Hemicellulose = %xylose × 0.88

(8)% AIL =
WKS −WK − A

WS
× 100%

(9)% ASL =

(

Abs × df /110
)

× (87/1000)

WS
× 100%

(10)Levels of lignin total = %AIL+%ASL
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%AIL: Acid insoluble lignin.
%ASL: Acid soluble lignin.
WKS: Weight of filter paper and samples after drying.
W: Weight of filter paper.
A: Ash weight.
Abs: Absorbance.
df: The dilution factor.
Ws: Dry sample weight (without moisture content).

Results and discussion
FTIR, H-NMR and TGA analysis. The success in the synthesis process of IL  [TEA][HSO4] was studied 
based on the results of FTIR, H-NMR and TGA analysis with literature comparisons. Figure 2 is the result of 
FTIR analysis of IL  [TEA][HSO4] (red line) and its components include TEA (blue line),  H2SO4 (green line) 
and  H2O (purple line). Based on the IR spectra, we observed the appearance of new spectra at wave numbers 
of 2814.97  cm−1, 1401.07  cm−1, 1233.30  cm−1 and 847.92  cm−1. The results of the literature study show that the 
values of the wave numbers refer to the NH,  CH3, CN and  SO2 groups,  respectively41. In addition, the success 
of the IL  [TEA][HSO4] synthesis process was confirmed by the shift in the absorption peak for wave number 
1438  cm−1 to 1474.93  cm−1 which characterized the  CH2 functional group, as well as the shift in wave number 
1048.18  cm−1 to 1063.00  cm−1 which characterizes the SO functional group.

Figure 3A is an H-NMR spectra of IL [TEA][HSO4]. Based on the literature approach, there are similarities 
in the chemical shift values, δ (ppm) with those reported  by40,41 at δ = 1.217–1.236 (N–CH2–CH3), 3.005–3.023 
(–H), 3.427–3.445 (N–H+) and 3.867  (N+H3). The similarity in chemical shift values characterizes the success of 
the IL  [TEA][HSO4] synthesis process based on the one-spot method. Another chemical shift data that confirms 
the success of the synthesis process occurs at δ = 1.106  (CH2–N). Figure 3B shows the results of the TGA analysis 
of IL  [TEA][HSO4]. These results provide an overview of the physical properties of IL  [TEA][HSO4] based on 
temperature. As a first step, we analyzed it under ambient temperature at 37 °C. Then there was a decrease in the 
percentage by weight from 37 to 100 °C which indicates that the solvent components have evaporated such as 
 H2O and ethanol. From 100 to 210 °C illustrates the role of IL  [TEA][HSO4] which is stable at high temperatures, 
this condition can be used as a variable in the pretreatment process. Another result we got was that IL  [TEA]
[HSO4] was decomposed at a temperature of 274.3 °C to 500 °C.

OPEFB pretreatment using IL  [TEA][HSO4]. In the OPEFB pretreatment process using IL  [TEA]
[HSO4], we optimized 2 important parameters, namely composition and temperature. Optimization of the com-
position is important because it is related to the amount of IL  [TEA][HSO4] used and the increase in the amount 
of cellulose. In this work, the selection of the lowest percentage of IL  [TEA][HSO4] composition of 80% was car-
ried out with the consideration that the performance of IL  [TEA][HSO4] will be affected by the number of water 
molecules. This effect is seen when the percentage of water molecules is smaller or greater than 20%, where the 
IL  [TEA][HSO4] activity  decreases24. So that every composition we propose always keeps the water percentage 
at 20%.

Figure 2.  IR spectra of IL  [TEA][HSO4] constituents.
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The mechanism of action of IL  [TEA][HSO4] in OPEFB pretreatment can be seen in Fig. 1C. In the OPEFB 
pretreatment, IL  [TEA][HSO4] will break down the hydrogen bonds of cellulose both intra and intermolecules, 
thereby facilitating the process of dissolving cellulose. As with other IL applications, cations and anions from IL 
 [TEA][HSO4] play an important role in cellulose dissolution. Especially for the  [HSO4]− anion, this ion acts as 
a hydrogen bond acceptor for cellulose dissolution. When the OPEFB lignocellulose component was dissolved 
in IL  [TEA][HSO4], the tissue inside the cell wall will be disturbed thereby reducing the recalcitrant nature of 
the OPEFB biomass. Cellulose which regenerates after pretreatment tends to be more amorphous in its macro 
structure making it easier for enzyme hydrolysis.

Figure 4 shows the optimization results of the IL  [TEA][HSO4] composition for OPEFB transformation. 
We have observed the success of the OPEFB transformation through an increase in cellulose content. When 
comparing the data on lignocellulose content before pretreatment (Table 1), we found that there was a change 
in the percentage content of lignocellulose in both cellulose, hemicellulose and lignin in each IL  [TEA][HSO4] 
composition tested. This shows that there is a mass effect of IL  [TEA][HSO4] on the pretreatment of OPEFB.

The optimum pretreatment process occurred at the use of 85% composition (Fig. 4B), where in this composi-
tion there was an increase in cellulose content to 45.84% and a decrease in lignin and hemicellulose content to 
32.80% and 5.87%, respectively. The same trend also occurred for the composition of 80% and 91%. However, 
the two compositions showed that the pretreatment rate of OPEFB to increase the cellulose content tended to be 

Figure 3.  The H-NMR spectra (A) and thermal analysis (B) of IL  [TEA][HSO4].
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slower. At the 80% composition (Fig. 4A) the cellulose content only increased to 32.80%, while at 91% composi-
tion (Fig. 4C) the cellulose content only increased to 40.13%. The decrease in the amount of lignin and hemicel-
lulose from this work tends to be lower than the work reported  by30,42. This problem is very likely to occur due 
to the type of lignoselullosic biomass  used43. We used OPEFB with very different lignocellulosic content, which 
suggests that the IL performance results could also be different. In addition, we suspect that the prepared OPEFB 
pulp (size =  ± 30 mesh) contributed to this result. The particle size, moisture content and type of biomass used 
can affect the pretreatment  process44.

Furthermore, we pay serious attention to the use of the composition 91%. In this composition, the mass of 
IL  [TEA][HSO4] is greater than that of 80% and 85%. The mass used in the composition of 91% is 20 g which 

Figure 4.  Optimization of the composition of IL  [TEA][HSO4] for OPEFB pretreatment: (A) 80%, (B) 85% and 
(C) 91%.

Table 1.  Lignocellulose content of OPEFB before pretreatment.

OPEFB

Content (%)

Before pretreatment After pretreatment

Cellulose 27.40 ± 0.01 45.84 ± 0.1

Hemicellulose 12.87 ± 0.01 5.87 ± 0.1

Lignin 34.61 ± 0.01 32.8 ± 0.1

Ash 3.02 ± 0.00 4.76 ± 0.1

Moisture content 2.80 ± 0.01 2.92 ± 0.1
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correlates with the increasing number of  [TEA]+ cation and  [HSO4]− anion. So that the OPEFB pretreatment 
conditions will present stronger acidic or alkaline properties. If we look again at Fig. 4C, we will find that the 
composition of 91% effectively reduces the lignin and hemicellulose content of OPEFB. This condition can be 
considered when pretreatment of OPEFB using IL  [TEA][HSO4]. The reason behind this is the difference in cel-
lulose content after pretreatment is not much different. Partial loss of cellulose can be due to the increased acidity 
of IL  [TEA][HSO4]. In general, the acidic properties are reported to be related to the solubility of  cellulose45. 
Another approach used to explain the solubility of cellulose during IL-based pretreatment is the type, geometry 
and size of anions, and the number of cations added. Cations are reported to interfere with oxygen atoms from 
glycosidic and hydroxyl through disperse forces and hydrogen bonding at the axial position of the cellulose 
 fibers46.

Figure 5 is the result of temperature optimization during OPEFB pretreatment using IL  [TEA][HSO4]. Tem-
perature optimization is another important step during the pretreatment process. The stubborn nature of lignin 
during the pretreatment process which can be transformed into other forms of lignin will greatly inhibit the 
performance of IL  [TEA][HSO4]. It is necessary to release lignin so that the fermentation process is optimal. So 
this problem makes pretreatment conditions such as temperature as one of the variables that have an impact on 
lignin solubility. Several literatures report the use of variable pretreatment temperatures, as reported  by40. This 
basis is what we use to study the effect of temperature (50, 80, 100, 120 and 150 °C) on IL performance in the 
OPEFB transformation.

On temperature optimization, our focus is on the total cellulose content. The general trend resulting from 
temperature optimization is that when the total amount of cellulose increases, there will be a decrease in the total 
amount of lignin and hemicellulose, and vice versa. This tendency was shown at the pretreatment temperature 
of 120 °C. We then report these results as the optimum temperature for pretreatment of OPEFB using IL  [TEA]
[HSO4]. These results corroborate the work of the IL [TEA]  [HSO4] application for biomass pretreatment, as 
reported  by42,47. At this temperature, the total percentage for cellulose increase was 62.58%. As for the release of 
lignin and hemicellulose were 48.65% and 31.32%, respectively.

On the other side of Fig. 5, we observe how an increase in temperature causes a decrease in the total cellu-
lose content and an increase in the total lignin content. This tendency occurs at a pretreatment temperature of 
150 °C. In addition to the tendency for the deterioration of cellulose structure when the temperature increases, 
specifically for lignin it can be explained that there are non-lignin components that combine with lignin dur-
ing pretreatment using IL  [TEA][HSO4]. If we look at the data in Fig. 5, the non-lignin components are most 
likely cellulose and hemicellulose. Where at a temperature of 150 °C there was a significant decrease in both. 
This problem has also been previously reported  by40. Another factor that causes the hydrolysis of cellulose and 
hemicellulose is none other than the acidic nature of IL  [TEA][HSO4]. Both are hydrolyzed and then undergo a 
dehydration reaction to 5-HMF and furfural, and contribute to the condensation reaction.

IL  [TEA][HSO4] recovery. Although several previous studies reported the ability of IL  [TEA][HSO4] to be 
recovered and recycled, the different types of biomass make this process still interesting to study. Figure 6 shows 
how the IL  [TEA][HSO4] recovery process we did. The recovery process goes through the same steps as reported 
 by30 with the basic principle being a gradual washing by a solvent through the use of controlled temperatures. 
The temperatures we report in the recovery process are 80 °C and 100 °C. This temperature was not higher than 
the IL  [TEA][HSO4] recovery temperature reported  by40. Another application of IL  [TEA][HSO4] has also been 
reported using temperatures greater than 100 °C48. Another consideration in selecting the recovery temperature 
is based on the results of our TGA analysis. Where the analysis results show that the decomposition temperature 
of  IL[TEA][HSO4] is in the range 210 °C to 274.3 °C. So we assume that the choice of temperature of 100 °C does 
not change the properties of IL  [TEA][HSO4]. The indicator of the success of our recovery process is the increas-
ing density properties of IL  [TEA][HSO4].

In observing the performance of IL  [TEA][HSO4] recovery in the OPEFB pretreatment process, we then 
compared it with our synthesized IL  [TEA][HSO4]. The OPEFB pretreatment process uses IL  [TEA][HSO4] 

Figure 5.  Optimization of OPEFB pretreatment time using IL  [TEA][HSO4].
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recovery which we report based on the optimum conditions of synthesized IL  [TEA][HSO4]. The difference in 
the results of the two is shown in Fig. 7. Referring to the results obtained, the performance of IL  [TEA][HSO4] 
recovery was not optimal in increasing the total cellulose content and decreasing the total lignin content. We 
suspect that this is due to changes in the composition and properties of IL during OPEFB pretreatment. So that 
this is our priority in the future. However, when compared with data on lignocellulose content of OPEFB before 
pretreatment (Table 1) there was a change in the percentage of cellulose content from 27.40 to 29.13%. Likewise, 
the percentage of lignin content changed from 34.61 to 32.57%.

A comparison scenario of the OPEFB pretreatment process using IL and conventional methods is shown 
in Table 2. In addition to effectively releasing lignin and hemicellulose content, the application of ILs provides 
advantages, including low energy, short time and processing.

Conclusions
The ability of IL  [TEA][HSO4] to transform OPEFB through pretreatment process was investigated in this work. 
This transformation aims to increase the cellulose content by reducing the lignin and hemicellulose content. 
The positive impact of our work is to facilitate the enzymatic hydrolysis of cellulose to reducing sugars such as 
glucose. In addition, this work is an attempt to increase the usefulness of IL  [TEA][HSO4] in the pretreatment 
process. The optimization process shows that the selection of the IL composition and temperature are important 
factors in obtaining high cellulose content. The increase in cellulose content of OPEFB seen in the use of the IL 
 [TEA][HSO4] composition was 85% with a pretreatment temperature of 120 °C. During the recovery process, 
the temperature must be kept constant. Changes in temperature can cause the decomposition of IL. These results 
form our basis in developing the pretreatment process of OPEFB in the future.

Figure 6.  The recovery process of IL  [TEA][HSO4].

Figure 7.  Comparison of pretreatment results between the IL synthesis and recovery.

Table 2.  Comparison of OPEFB pretreatment processes.

Pretreatment methods Pretreatment stage Optimization process

Combination of physics and chemistry It is carried out in two steps: heating at high temperature and soak-
ing using an alkaline solution

Heating temperature, alkaline concentration, OPEFB: alkaline ratio, 
and immersion time

Chemical solutions Performed in two stages: deep immersion (i) alkaline solutions, and 
(ii) acid solutions

alkali and acid concentrations, immersion time for alkalis and acids, 
ratio of alkali/acid: OPEFB

ILs Done in one stage (simultaneous stage) ILs composition, temperature, pretreatment time, and reuse
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