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Abstract

Ensembling combines the predictions made by individual component base models with the

goal of achieving a predictive accuracy that is better than that of any one of the constituent

member models. Diversity among the base models in terms of predictions is a crucial crite-

rion in ensembling. However, there are practical instances when the available base models

produce highly correlated predictions, because they may have been developed within the

same research group or may have been built from the same underlying algorithm. We inves-

tigated, via a case study on Fusarium head blight (FHB) on wheat in the U.S., whether

ensembles of simple yet highly correlated models for predicting the risk of FHB epidemics,

all generated from logistic regression, provided any benefit to predictive performance,

despite relatively low levels of base model diversity. Three ensembling methods were

explored: soft voting, weighted averaging of smaller subsets of the base models, and penal-

ized regression as a stacking algorithm. Soft voting and weighted model averages were

generally better at classification than the base models, though not universally so. The per-

formances of stacked regressions were superior to those of the other two ensembling meth-

ods we analyzed in this study. Ensembling simple yet correlated models is computationally

feasible and is therefore worth pursuing for models of epidemic risk.

Author summary

Ensembling takes a set of predictions from individual models and combines them such

that the performance of the ensemble is ideally better than that of any one of the constitu-

ent models. Ensembling requires diversity among the individual models in terms of their

predictions. However, models developed within the same research group may in fact be

interrelated, and high levels of correlation among their predictions could theoretically

negate any ensembling benefit. We examined, using a case study on predicting epidemics

of Fusarium head blight of wheat, whether ensembling could still be beneficial when the

individual models were simple but highly correlated. Even in this situation ensembling led
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to improvements in prediction without a high computational cost and was therefore prof-

itable even when the diversity in model predictions was low.

Introduction

When making important decisions, we naturally seek different opinions. Translated to predic-

tion, this means consulting different models, each of which makes predictions with a level of

uncertainty, inasmuch that any model only approximates the truth. Combining, or ensem-

bling, the predictions made by several individual models can lead to a prediction that is overall

better and more stable (less variable) than those given by any one of the component models

[1,2]. That is, ensembling uses multiple models to reduce the risk of incorrect predictions and

improve forecasts [3]. Model ensembling has been investigated since the 1970s [1], but has

seen deeper exploration in infectious disease epidemiology only recently [4–6] and is just

beginning to appear in botanical epidemiology [7–9], a field that has a tradition of statistically

selecting one ‘optimal’ model.

The individual models (base learners) in an ensemble ideally should exhibit low correla-

tions when their predictions are compared [1,10], as this enables the higher-level ensembling

algorithm (the meta-learner) to find a combination of those predictions that improves upon

the prediction made by any one base learner model. Put another way, ensembling requires the

base learners to make different errors on the observations [10]. In effect, the risk of accepting a

poor prediction made by a model for a given observation is reduced. The assumption is that

base learners are skillful in different ways, performing better on some observations than on

others. If the base learners are highly correlated (i.e., make very similar predictions on the

same observations) then the theory suggests that the benefits of ensembling are negated.

However, model building is an interdependent process. Disease models can be influenced

by common theory underlying processes driving disease development, groups working on the

same or similar diseases may share code and ideas, and models worked on within a single

research group may evolve progressively over time as modifications and improvements are

incorporated. Hence, models coming from a single group tend to be related within and across

model generations [11,12]; and correlations among models from different research groups can

develop as researchers weigh or include results from others. The interrelatedness among mod-

els over the period of their development can be called a model genealogy [12]. Model simplic-

ity imposes some diversity by inciting a level of error in the predictions, but the correlations

among the predictions work against diversity among the base learners. In this paper, we

explored whether any benefit can be derived from ensembling simple yet highly correlated

models for predicting the risk of a plant disease epidemic.

For the case study, we fit ensembles of simple logistic regression models used to predict the

risk of epidemics (and non-epidemics) of Fusarium head blight (FHB) in U.S. wheat. The dis-

ease level in wheat fields is classified as epidemic or non-epidemic based on the magnitude of

the predicted risk probability. Our research group has been working on these types of models

over the past 17 years [7,13–16]. The logistic regression models are now at the third genera-

tion, several of which have not yet been published and will become part of this paper. FHB is a

fungal disease caused by members of the Fusarium graminearum species complex [17] and is

one of the most economically concerning diseases of wheat globally; not only because of yield

reduction but especially because of the production of mammalian toxins such as deoxynivale-

nol in the wheat grain [18]. Applying a protectant fungicide during wheat flowering (anthesis)

is one of the main ways of controlling the disease, thereby reducing the risk of mycotoxin
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contamination [19]. The fungicide application is however not needed every year or in all loca-

tions [20]. The risk of disease, and hence the need for fungicide, is high only when environ-

mental (mainly weather) conditions are favorable [16]. Our models attempt to predict when

and where those favorable conditions translate into disease epidemics.

The models are the basis of daily updated risk maps covering over 30 U.S. States during the

wheat growing season (http://www.wheatscab.psu.edu/). The spatiotemporal scale and rapid

update cycle at which the models are run, and at which results are projected, are the main rea-

sons we have focused on the logistic regression algorithm, because of low computational cost

and scalability [3]. An ensembling algorithm would have to meet these criteria as well. Other

important criteria were model simplicity and interpretability to respect and serve the needs of

a wheat-producer-oriented clientele [21]. Profit margins are slim in U.S. wheat production.

When grain prices are low, spending money on a fungicide without realizing a return on the

investment (improved yield or grain quality) could mean a net loss for the grower. Accuracy in

predicting epidemics is a given; a false positive prediction means that a grower could unneces-

sarily spray a field with fungicide, whereas a false negative could mean, besides yield reduc-

tions, price discounts or complete grain rejection due to unacceptably high levels of mycotoxin

contamination [22].

The two main methods for combining base learners fall under weighting and meta-learning

[1]. Stacking, a popular approach within meta-learning, is typically used to combine models

built using different algorithms (or inducers, in the language of [1]; an inducer is the algorithm

that is used to construct the model and the fitted model is the predictor or classifier, in this

case the FHB epidemic model). With the FHB case study, all base learner models were derived

from the same algorithm (logistic regression). Ensembling models stemming from the same

inducer would upon first inspection violate the diversity principle discussed above. However,

diversity among models can be generated in other ways. One popular approach is feature set

partitioning [1]. The original set of available predictor variables is divided into several smaller

(possibly overlapping) subsets, each of which is then used to train a model. The benefits of fea-

ture set partitioning are a decrease in computational complexity; as the models are smaller,

higher interpretability is possible. Feature set partitioning therefore fits within our operational

criteria for large-scale deployment of FHB predictive models. The FHB logistic regression

models consisted of no more than four weather-based predictor variables [15] out of a full set

of about 300 candidate weather-based predictor variables, though some overlap in the use of

predictors by models was allowed (i.e., soft boundaries on the partitioned feature space).

The objective was to investigate three model ensembling techniques (soft voting, weighted

averaging, and stacking) for their ability to improve model performance relative to that of base

learners, under the condition that the base learners were simple models all induced from the

same algorithm and with the further property of high correlations among their predicted prob-

abilities. Throughout the paper we refer to the models as base learners (within the context of

ensembling) or as individual logistic regression models. Applying the methods to the FHB case

study showed that although the individual logistic regression models had correlated predicted

probabilities, they could be successfully ensembled, with penalized stacking providing the

most benefit.

Results

Fitted probabilities and classifications for individual (base learner) models

The 39 logistic regression models were positively correlated, and in many cases highly so, in

terms of their cross-validated (cv) probabilities of epidemics across the observations. The Pear-

son correlation between these probabilities for any pair of models was 0.782, on average. The
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minimum such correlation was 0.577 and the maximum was 0.996. There were clearly groups

of models with very similar cv probabilities (correlations above 0.9, for instance) and other

groups with less agreement in their predictions (correlations below 0.7); see S1 Fig. There was

a distribution in the cv probabilities of epidemics returned by the 39 models for any given

observation (illustrated for a sample of observations in S2 Fig). On a single observation basis,

less variability in the predicted probabilities was seen with observations from wheat varieties in

the moderately susceptible and the moderately resistant classes; these two resistance classes

generally show lower levels of disease severity in the field (than the other two classes) and

hence lower frequencies of observed epidemics. This variability in predicted probabilities

translated to some diversity in model classification of epidemics and non-epidemics after the

conversion of probabilities to a predicted class membership. Some observations were perfectly

classified by all logistic regression models, others were misclassified by every single model, and

other observations were correctly classified to varying degrees of success (as shown in S3 Fig).

None of the 39 models were identical in terms of the classifications they returned over the

entire set of observations.

Brier scores

Models were highly correlated in terms of their Brier scores (Bm,i) calculated on the cv proba-

bilities of epidemics returned by each modelm (m = 1, . . .,39) for each observation i (S4 Fig).

Taking any pair of logistic regression modelsm andm� (m 6¼m�), the average Pearson correla-

tion between Bm,i and Bm� ;i was 0.867; the minimum and maximum pairwise correlations were

0.683 and 0.997, respectively. The mean Brier scores of the models, �Bm, varied from a mini-

mum of 0.160 to a maximum of 0.183 (average of 0.171, standard error of the mean = 0.00078)

with model M3 the obvious outlier (�B3 = 0.183; see S5 Fig). For context, a perfect �Bm score is 0,

and the worst possible �Bm score is 1. The outlier model M3 was not included in the ensembles.

Model genealogy

A ‘family tree’ dendrogram based on the model Brier scores captured the genealogical evolu-

tion of the logistic regression models (Fig 1). Four groups of models were identified. The two

earliest-developed models M1 and M2 [13] clustered together. All but three of the 2nd genera-

tion models [7,15] were grouped together. The 3rd generation models were more scattered,

being found in all four groups, reflecting a greater diversity in this generation of models.

Model ensembles

Soft voting simply averaged the unweighted cv probabilities of epidemics across all the base

learners. The weighted model averaging approach made use of the family dendrogram (Fig 1)

to partition the base learners into four groups. Selecting one model per partition led to a subset

of four models, whose (mean Brier score) weighted cv probabilities were then averaged. This

process was repeated for a random selection of 10 subsets, out of the total number of possible

permutations given the partitions, resulting in 10 model-averaged modelsMx, x = 1, . . ., 10.

The third ensembling approach (stacking) fit meta-learner penalized logistic regressions to the

cv probabilities of epidemics returned by each of the 38 base learners (with epidemic status as

the binary response). The fitted meta-learner models were used to predict the probability of

epidemics.

The presentation that follows is conditional on using the cut-points that maximized the

Youden Index (YI = Se + Sp – 1, where Se is sensitivity and Sp is specificity; Table 1) for the

respective models. That is, the cut-point was estimated separately for each model. Fig 2A
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shows a trade-off between Sp and Se, which we have observed before [15], apparent not only

with the base learners but with theMx models as well. Note that this Se–Sp trade-off is different

from that observed by varying the cut-point on the probabilities returned by a single model.

The stacked regression model with a ridge penalty favored Sp over Se, whereas using a lasso

penalty favored Se over Sp. Elastic-net Se and Sp were in between those of the other two penal-

ized models. Fig 2 also shows one other metric pair representing cut-point-dependent metrics,

namely markedness (MKD = positive predictive value + negative predictive value - 1) versus

informedness (IFD [23]; same as YI algebraically, but derived from different principles), one

pair of ranking (cut-point independent) metrics [the area under the precision-recall curve

(PR-AUC) versus the area under the ROC curve (ROC-AUC)] and one pair of information-

theoretic or entropy-based metrics [the modified confusion entropy (MCEN) versus the nor-

malized expected mutual information (IMN)]. The MCEN metric is a measure of classifica-

tion-generated uncertainty (lower is a better score) and IMN ranges from 0 (a model is

completely incapable of predicting epidemics) to 1 (a model predicts epidemics perfectly). The

plots in Fig 2 indicate a degree of separation, at least visually, between the 38 base learners and

the different ensembles.

Soft voting. A soft vote generally led to an ensemble with improved performance. For

example, the soft vote ensemble was better than all but two of the base learners in terms of

ROC-AUC (Fig 2C). However, improvement was also qualified by the metric on which

Fig 1. Hierarchical clustering of the logistic regression models. Clustering of models based on the Brier scores using the Manhattan

distance metric estimated from a 999 x 38 data matrix of Bm,i values. Grouping was done using the ‘complete’ agglomeration method on the

distance matrix. Labels are colored by model generation: green, 1st generation; orange, 2nd generation; purple, 3rd generation. Four groups of

models are indicated by the branch colors.

https://doi.org/10.1371/journal.pcbi.1008831.g001
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performance was based. Soft voting improved Se over that of most of the base learners, but at

the expense of Sp.

Model averaging. TheMx models also showed improved performance metrics over the

base learners. As with soft voting, those improvements were not universal in all cases (Fig 2).

TheMx models generally performed better in terms of Se than for Sp relative to the base learn-

ers (Fig 2A). The Se–Sp trade-off and a linear relationship between MKD and IFD were

observed characteristics, also seen with the base learners. Seven of the 10Mx models had a

Table 1. Definitions of terms associated with the confusion matrix and descriptions of binary classification metrics.

Symbol Description and other names Formula

Confusion matrix terms

TP True positive count

FP False positive count

TN True negative count

FN False negative count

N Total number of observations TP + TN + FP + FN

AP All actual positives TP + FN

AN All actual negatives TN + FP

PP All predicted positives FP + TP

PN All predicted negatives FN + TN

TPn Normalized true positives TP/N

FPn Normalized false positives FP/N

TNn Normalized true negatives TN/N

FNn Normalized false negatives FN/N

Sensitivity-specificity-type metrics

Se Sensitivity = true positive rate = recall TP/AP

Sp Specificity = true negative rate = inverse recall TN/AN

IFD Informedness = Youden index Se + Sp– 1

PPV-NPV-type metrics

PPV Positive predictive value = precision TP/(TP + FP)

NPV Negative predictive value = inverse precision TN/(TN + FN)

MKD Markedness PPV + NPV– 1

Precision-recall-type metrics

PRCN Precision = PPV TP/(TP + FP)

Recall Recall TP/AP

Information-theoretic-type metrics

Definitions
PrD1 Prior probability of a positive realization TPn + FNn

PrD0 Prior probability of negative realization 1—PrD1

PrT1 Probability of a positive prediction TPn + FPn

PrT0 Probability of a negative prediction FNn + TNn

HD Entropy of a realization = H(D) −(PrD1×ln(PrD1)+PrD0×ln(PrD0))

HT Entropy of a prediction = H(T) −(PrT1×ln(PrT1)+PrT0×ln(PrT0))

HDT Joint entropy = H(D, T) −(TPn×ln(TPn)+FPn×ln(FPn)+FNn×ln(FNn)+TNn×ln(TNn))

IM Expected mutual information = IM(D, T) HD + HT–HDT

Metrics
IMN Normalized expected mutual information IM/HD

MCEN Modified confusion entropy 2ðFNþFPÞlog2ððN� TNÞðN� TPÞÞ
3NþðFNþFPÞ �

4ðFNlog2ðFNÞþFPlog2ðFPÞÞ
3NþðFNþFPÞ

https://doi.org/10.1371/journal.pcbi.1008831.t001
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higher ROC-AUC than any of the base learners, and 34 of the 39 individual models had a

lower ROC-AUC than the worst performingMx model. From the information-theoretic per-

spective, the IMN score (higher is better) averaged over theMx models was 0.123 in contrast to

an average score of 0.095 over the base learners.

Stacking. The stacked models were superior to any other model analyzed in the current

study based on multiple performance metrics (Fig 2). The average ROC-AUC computed over

the three stacked models was 12.7% higher than the mean ROC-AUC over the individual logis-

tic regression models, 7.8% higher than that of the soft vote model, and 6.9% higher than the

mean ROC-AUC over theMx models. In terms of PR-AUC, the performance gains due to

stacking were found to be even greater, with 24%, 14% and 12% gains over the base learners,

soft vote andMx models, respectively. The trends seen in the plot of PR-AUC versus

ROC-AUC (Fig 2C) were also seen qualitatively in the MKD vs IFD graph (Fig 2B), which is

Fig 2. Performance of 38 base learner logistic models (identified by the generation of model building), and several ensembles. The ensembles are: a simple soft-vote

model average across all base learner models; 10 weighted averages (Mx) of four base learner models (where the sets of four were randomly chosen from the larger set of all

possible permutations of selecting one model each from the four groups indicated in Fig 1, weights based on Brier scores); stacked regression models (with lasso, ridge or

elastic-net penalizations) fitted to the cross-validated probabilities of epidemics from all base learner models. A. specificity (Sp) versus sensitivity (Se); B. markedness

(MKD) versus informedness (IFD); C. area under the precision-recall curve (PR-AUC) versus the area under the receiver operating characteristic curve (ROC-AUC); D.

modified confusion entropy (MCEN) versus the normalized expected mutual information (IMN). The dashed line in each panel is a linear regression through the data and

serves as a referential aid. Metrics are defined in Table 1.

https://doi.org/10.1371/journal.pcbi.1008831.g002
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likely due to the high correlations of MKD and IFD with PR-AUC and ROC-AUC (S6 Fig).

Stacked models with the lasso and elastic-net penalizations were nearly identical in ROC-AUC

and PR-AUC performance measures (Fig 2C). There was a clear separation of the stacked

regressions from all other models when evaluated on the composite IFD metric (which com-

bines Se and Sp). However, looking at Se and Sp individually, the stacked regressions appeared

to favor Sp over Se with the result that the Se of the stacked models were worse than that of the

soft vote, severalMx models and some of the base learners.

Some finer points are worth mentioning. Although the MKD and IFD performance mea-

sures were linearly associated, the empirical results suggested a lower boundary to the relation-

ship (Fig 2B), in that a small downward vertical shift in the regression line will place all points

above it. With the information-theoretic metrics, IMN ranked the stacked models higher than

any other model, unlike the MCEN metric (Fig 2D) where some other ensembles and a few

base learners were ranked higher.

Discussion

Model ensembling has been researched since the 1970s [1] yet has only recently been explored

in some depth in disease epidemiology [4–6], including botanical epidemiology [7–9], although

in the latter field there is some historical precedence for simple (non-statistical) combinations

of usually no more than two forecasting models [24]. Ensembles typically combine models built

using different algorithms, as this increases the diversity among the individual learners [1]. In

this paper we showed that ensembling is still beneficial even when the individual learners are

induced from the same algorithm (logistic regression) and the predicted probabilities are, in

many cases, positively and highly correlated. Diversity in the predicted probabilities among the

individual learners was therefore sufficient in this case study for ensembling to have an advan-

tage and was generated by having the base learners trained on different subsets of the predictor

feature space. Penalized stacking approaches, which addressed the correlations among the base

learners, yielded the most benefit to ensembling in this situation.

Averaging simple models can lead to improved predictive performance [9], in general, but

assumes that all models are independent (in their predictions) and equally plausible [25]. In

practice, model independence (in terms of algorithmic construction, predictions, or both) is

difficult to achieve. There was no single ‘optimal’ model among the 39 logistic regression mod-

els (base learners) given their predicted probabilities of epidemics, classification errors and

performance metrics. The equal plausibility assumption may be reasonable for these base

learners, but they clearly were related as shown by the positive correlations in their cv probabil-

ities and Brier scores. As the correlations among base learner predictions increase, so does the

overall prediction error in the ensemble which reduces the benefit gained from averaging (see

Eq 5 in [26]). However, the fact that soft voting outperformed many of the base learners for

the FHB data indicated that diversity was sufficient among the base learners to make this sim-

ple form of ensembling an effective strategy.

Ensembles seek to optimize predictive performance by capitalizing on reduced dependency

and maximized diversity between models [27]; it is therefore best to understand how the base

learners are related, particularly in how they are similarly wrong [11]. Our approach was to use

hierarchical clustering on the dissimilarity matrix based on the Brier scores for 38 logistic

regression models (eliminating one 1st generation model because it was too often wrong).

Models with similar Brier scores clustered together, indicating that they had the tendency to

make the same errors. We postulated that little would have been gained from combining mod-

els within the same cluster, as model averaging performs best when done over dissimilar mod-

els [28]. In what amounts to essentially a subsampling and reweighting from the full set of
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logistic regression models [29], the dendrogram was split into groups under the assumption

that models in the same group were too similar but models in different groups were less likely

to be so. Choosing models across groups led to several base learner combinations that when

averaged (weighted by the mean Brier scores of the models) resulted in better predictive per-

formance than many (but not all) of the individual base learners, even though the combina-

tions involved only four models each. These weighted averages of four models generally

performed better than the soft voting (simple averaging) of all 38 base learners.

Larger performance gains were clearly realized with stacked regression [30] in contrast to

both soft voting and weighted model averaging of small subsets of the base learners, despite

the similarities among the 38 models. The meta-learner aspect of stacked regression finds the

best weighted combination of the base learner predictions. We did initially use standard logis-

tic regression as the meta-learner, only to obtain parameter estimates that were unstable as evi-

denced by unacceptably large standard errors. Penalized logistic regression (Eq 5) led to more

stable meta-learner models [31] by shrinking the estimated parameters (ridge), setting some

coefficient estimates to zero (lasso) or by mixing the ridge and lasso penalizations (elastic-net).

There is the risk of overfitting both the base learners and the meta-learner [5]. However, this

risk was reduced by having simple base learners, and by using nested cross-validation and

penalization in training the meta-learner.

Predictive performance is only one goal in epidemiological forecasting; model interpreta-

tion is also important. With FHB, for example, understanding how disease develops or

responds to environmental conditions is of fundamental epidemiological value, and although

progress has been made in many aspects [32–34], much still has to be elucidated in a holistic

framework [35]. Improved predictive performance due to ensembling is very encouraging, but

it could be argued that meta-learning stills lags in being fully interpretable [36]. In the mean-

time, we may have to rely on interpretations of base learner models, but this may change given

the progress being made in the interpretation of machine learning models [37,38]; and perfor-

mance should not lose sight of its interpretive counterpart [39].

Our study was limited to one algorithmic form of base learner (logistic regression) heavily

dependent on weather-derived predictors (albeit from different time windows) although vari-

ables for cultivar resistance to FHB and maize residue were included as baseline agronomic

factors. Other FHB models have made use of other crop-related practices such as tillage and

crop rotation [40] which reduce the amount of maize residue available as an inoculum source

and hence as a risk factor of disease development. A data fusion approach [10] would develop

base learners using specific types of data input sources, for example only weather data (as we

have focused on) or built only with agronomically-relevant data, each model predicting the

same target. These base models would then be ensembled. Learners can of course be induced

by algorithms other than logistic regression [7,16]. Other approaches could include expanding

the logistic regression models to include polynomial terms or generalizing to additive logistic

regression in which the coefficients are no longer constants but functions themselves [15].

These were not pursued in the current study because the focus was on algorithms with low

computational complexity and which were scalable, given the long-term goal of deploying

FHB forecast models at a large spatiotemporal scale (multi-state). Moreover, rules other than

Manhattan distance could be investigated in creating the dissimilarity matrix on which the

family dendrogram of individual base learner models was predicated, as this affects the group-

ings upon which theMx ensembles were drawn. Other ways of weighting the individual base

learners in theMx models could also be examined.

We limited our study to one type of response, a binary operational definition of FHB epi-

demics. Our models were also restricted to wheat production in the U.S. and even in that, do

not cover the western States where FHB is much less common [41] and where field
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observations were not available. Other responses have been modeled in the FHB system,

including grain contamination with the mycotoxins deoxynivalenol and zearalenone at harvest

[40,42], indices of disease level or of mycotoxin concentration [34,43], ordinal representations

of disease levels [44], and disease incidence directly [45]. These responses are clearly on differ-

ent scales and represent different disease aspects (symptoms or toxin concentration, for exam-

ple), and therefore ensembling across these models would be more challenging unless their

disparate responses were somehow expressed in a common unit. Several empirical and theo-

retical approaches in botanical epidemiology for converting between disease response variables

would be worth evaluating [46–48]. The disunity could be overcome by a common platform to

foster collaboration among FHB (or other botanical epidemiological) working groups [5,6]

and would further model development from different perspectives, which we believe will

enhance ensembling efforts.

We close with some advisory words distilled for applied researchers, as ensemble methods

and stacked generalization are not yet mainstream because of the associated computational

complexity [38]. New software environments (e.g., the R sl3 package) will be helpful in auto-

mating or abstracting the fitting of ensembles. While the features of such tools are certainly

appreciated, the onus is still on researchers to understand the characteristics of their data and

representative models, and one must weigh whether an ensembling approach will help meet

one’s objectives. The approach we have demonstrated is generalizable to any set of base learn-

ers (mechanistic, simulation, empirical, or mixture thereof) that exhibit highly correlated pre-

dictions on the same response variable. The generated set of base learner models are plausible

descriptors of the response, but do not all make the same predictions (i.e., they make different

errors) on the observations. If the base learners are highly correlated in terms of their predic-

tions, one should recognize that relatively simplistic ensembling methods such as soft voting

may not always lead to an ensemble that is better than the best-performing base learner. With

many correlated models, a strategy of “overproduce and choose” may be pursued [49], which

recognizes that it may be more parsimonious to only add models to an ensemble if they con-

tribute meaningfully (however one defines it) to improving the ensemble. This is in essence

what we did in conjunction with weighted model averaging, using a dendrogram approach to

“prune” the ensemble on the full set of models to much smaller subsets without loss of predic-

tive performance. Finally, one is free to use any algorithm in stacking the base learners, but lin-

ear models work well as the meta-learner [50]. If the base learners are highly correlated then it

is judicious to use a penalized meta-learner in building the stacked ensemble model [31].

Materials and methods

Observational data

The data matrix consisted of 999 assessments of FHB in wheat, where the observations were

made in research plots across multiple U.S. states. Plots received no fungicide treatment for

disease control, and standard agronomic practices were followed for the area in which plots

were located. FHB field severity (S), often called FHB index or disease index [51], was rated at

wheat Feeke’s growth stage 11.1 [52] which is when the kernels are milky ripe. S is the mean

percent of the wheat spike (head) surface area with symptoms. The research plots were in 17

U.S. states (AR, DE, IL, IN, KS, KY, MD, MI, MN, MO, ND, NE, NY, OH, PA, SD, WI) and

had been established by the Integrated Management Coordinated Project of the U.S. Wheat &

Barley Scab Initiative. In general, there is only a narrow window for assessing disease, about 18

to 21 days after wheat anthesis; by 7 to 14 days later, the plant senesces, and disease symptoms

are no longer clearly discernable from natural senescence. Plot data were available in 32 years

from 1982 to 2015; not all 17 states were represented in each of those years. Besides S, other
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plot-level data recorded were wheat type (i.e., wheat market class) [spring (265 observations)

or winter (734 observations)]; cultivar resistance class [representing different FHB susceptibil-

ity levels: very susceptible (135 observations), susceptible (412 observations), moderately sus-

ceptible (213 observations), and moderately resistant (239 observations)]; anthesis date (visible

flowering, anthers extruded on at least 50% of the spikes in a plot); and the presence (348

observations) or absence (647 observations) of maize residue within plots or immediately next

to the plots (4 observations missing such data). Maize residue is relevant because maize is a

host on which the pathogen Fusarium graminearum can survive and grow between and within

seasons [53]. Inoculum (spores) of the pathogen is produced on both wheat and maize.

The response variable

As with all our past work, the continuous variable S (on a 0 to 100 percentage scale) was

dichotomized to a binary classification variable y, where

yi ¼
0 if Si < 10

1 if Si � 10

(

ð1Þ

for the ith observation. That is, yi were realizations of the random variable Yi representing

whether the ith observation was of high or (relatively) low disease severity, operationally viewed

as a major or non-major FHB epidemic (hereafter referred to as epidemic and non-epidemic

for convenience). This operational definition based on S translates to economically important

thresholds for mycotoxin contamination [47] and yield reduction [54], and serves as the basis

for risk predictions in the U.S. National FHB Prediction Tool.

Models (described below) attempt to predict the expected value of Yi (i.e., E(Yi)) which

equaled the probability pi that the ith observation was of an epidemic. Our model framework

was standard logistic regression, so that

g½EðYiÞ� ¼ mþ b1X1i þ � � � þ bhXhi ð2Þ

where μ was the overall intercept, the βj were regression coefficients associated with each of the

h predictors in the model, and g(.) was the logit link function, log(pi/(1−pi)), so that Eq 2 was

linear with respect to the predictors on the logit scale.

Scalar predictors

The logistic regression models we had published to date [7,15,16] had varied in the categorical

(agronomic) predictors they included. All typically included a predictor for the level of suscep-

tibility to FHB but may not have included predictors for wheat type (spring or winter wheat)

or for the presence (absence) of maize residue (a potential source of the pathogen). The follow-

ing categorical (factor) predictors were used in all of the logistic regression models in the cur-

rent article: (i) rs, with four levels representing cultivar susceptibility to FHB (very susceptible,

susceptible, moderately susceptible, moderately resistant, where the definition of susceptibility

was based on locally-adapted standard susceptible and resistant checks, i.e., reference culti-

vars); and (ii) wc, a three-level variable reflecting wheat agronomic practices with respect to

maize residue (spring wheat, winter wheat with maize residue, winter wheat in the absence of

maize residue).

Weather-based predictors

Our 1st and 2nd generation FHB epidemic classifiers [7,13,15] were driven by variables summa-

rizing temperature and moisture (relative humidity or vapor pressure deficit) in windows no
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more than 15 days either side of anthesis, for a few key reasons. Modeling had to be cognizant

of the fact that fungicide applications must be made at anthesis or no more than five days after

anthesis to control the disease effectively [55], as infections of the spike by the fungus occur

primarily during flowering [56]. As FHB epidemics are weather-driven, it was logical to sum-

marize meteorological conditions close to anthesis (Fig 3). Among other things, many of the F.

graminearum spores infecting wheat at anthesis may be produced in a relatively short period

before anthesis [32]. Spore production and dispersal, and infection of spikes are all functions

of environmental conditions, especially moisture and temperature in certain ranges [57,58].

More extensive statistical queries showed that the strongest associations between weather sum-

maries and FHB occurred in short windows surrounding anthesis [59], thereby reinforcing

earlier intuitions.

Third generation models

Functional regressions on weather series from 120 days pre-anthesis to 30 days post-anthesis

[14,16] further showed that signals associated with FHB epidemics could be found as early as

Fig 3. Schematic of wheat growth phases and key stages in the life cycle of Fusarium graminearum which causes Fusarium head blight. Wheat growth and

development as well as pathogen survival, reproduction, dispersal, and infection are all affected by weather. Spores must land on the wheat spike (head) sometime between

flowering and early grain fill, which is the period of greatest host susceptibility (but is also of limited duration) for infection. Successful infection and colonization of the

spike is associated with mycotoxin accumulation in the grain.

https://doi.org/10.1371/journal.pcbi.1008831.g003
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40 to 60 days pre-anthesis; yet at the same time confirming that the strongest signals were at or

around flowering. After examining the functional regression results, 92 novel weather-based

candidate predictor variables were postulated, summarizing hourly or daily conditions during

periods statistically associated with epidemics. This latter set of functional-regression-inspired

predictor variables had not been used in any of the 1st or 2nd generation models [7,13,15], and

furthermore were not restricted to the 15-day windows on either side of anthesis as had been

the case in the earlier models.

Weather-derived variables tend to be highly correlated [15], partly due to them being

defined over similar time periods relative to anthesis and also due to inter-relationships (e.g.,

both relative humidity and vapor pressure deficit are calculated from air temperature and the

dewpoint). High correlations among predictor variables can be problematic for standard logis-

tic regression (e.g., high variance associated with estimated parameters).

For the above reasons, the novel proposed set of 92 variables was screened before being con-

sidered for logistic regression models. First, predictors were checked for low to negligible sepa-

ration of epidemics and non-epidemics (via distributional plots of the predictor variable by

epidemic class), which culled eight variables from further consideration. The remaining 84

variables did not exhibit extreme collinearity [60]. The 84 variables were then grouped accord-

ing to whether they represented conditions in the pre-anthesis period (49 variables), the post-

anthesis period (18 variables), or any period relative to anthesis (17 variables), which reflected

efforts to model epidemics as a function of the pre-anthesis window only, the post-anthesis

window only, or with windows crossing anthesis (i.e., pre-to-post anthesis) [15]. Post and pre-

to-post anthesis models may provide predictions too late for fungicide application decisions to

be made, but are useful for other FHB management strategies related to grain harvesting, mar-

keting, and the supply chain [22,61].

The three groups of predictor variables were independently screened by two machine-

learning algorithms: lasso regression and the relative influence measure from a boosted regres-

sion tree [62] fit to the yi. Lasso regression performs variable selection by setting the coeffi-

cients of ‘unimportant’ variables to zero, a form of regularization. The relative influence

measure from boosted regression estimates the importance of a variable to prediction. The

lasso λ parameter was tuned via 10-fold cross-validation (described later) using binomial devi-

ance as the loss measure. Boosted regression trees were tuned by a grid search over tree depth

(2 or 3), the number of trees (1,000 to 3,500), and the shrinkage parameter (0.005 to 0.015),

while the minimum terminal node size and bag fraction were held at 10 and 0.75, respectively.

The eighteen (out of 49) pre-anthesis variables selected by the lasso were input into the boosted

regressions. As lasso aggressively culled the post-anthesis and pre-to-post anthesis variables to

three each, the two latter sets of predictor variables (18 and 17, respectively) were input directly

into boosted regression without the lasso pre-selection step as was done with the pre-anthesis

variables. The variables were sorted by their relative influence scores returned by the tuned

boosted regressions done independently on each of the three sets (i.e., 18 pre-anthesis vari-

ables, 18 post-anthesis variables and 17 pre-to-post anthesis variables). This latter total set of

53 variables represented a greater diversity in terms of weather conditions, summary measure

and windows relative to anthesis (S1 Table) than was present in the models up to 2014.

Feature set partitioning. Within the pre-, post- and pre-to-post anthesis groups, the rela-

tive influence-sorted variables were split into subsets of two or three variables each, starting

with the variable with the highest relative influence and working down the list, conditional on

(i) the subset not having two variables summarizing the same type of weather (e.g., two tem-

perature variables), and (ii) any two variables within a subset not having a pairwise Pearson

correlation above 0.9. Subsets of one variable were not considered here, and larger subsets

were less likely to meet the two conditions stipulated above. The two lasso post-anthesis and
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pre-to-post anthesis subsets of three variables each were also retained. The 24 subsets so cre-

ated via the machine-learning screenings were used as the input weather-based variables for a

new generation of logistic regression models; these are considered along with the previously

developed models for forecasting FHB (Fig 4).

Model genealogy

For the current article we analyzed 39 logistic regression models, which consisted of: three

first-generation models [13]; 12 second-generation models [7,15], and 24 third-generation

models, four of which were described previously [16] and the rest described in S2 Table. These

39 models made use of 77 different weather-based predictor variables, in which six, eight, and

25 models had one, two, and three weather-based predictors, respectively.

Fig 4. Schematic of the analytical steps. The observational data (orange sphere) are linked to weather-based predictors, the full set of the latter (feature space) having

been partitioned into smaller subsets of one to three variables each (blue spheres). The datasets (orange-blue sphere combinations) are used to train logistic regression

models (base learners). The base learners are then ensembled using one of three methods. Whereas the soft vote and stacking methods ensemble all base learners, the

weighted model average uses a smaller subset of the base learners chosen to capitalize on diversity within the subset. All models are then evaluated using metrics which fall

into three broad categories. Cut-point based metrics are calculated after conversion of the fitted probabilities to a classification. Area under the curve (AUC) metrics

summarize performance over all possible cut-points and do not rely on any single such point. Information-theoretic metrics are based on concepts such as entropy.

https://doi.org/10.1371/journal.pcbi.1008831.g004
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Model fitting and evaluation

There were 273 observations of FHB epidemics (as defined by Eq 1) out of 999 total observa-

tions. Ten-fold cross-validation (cv) was used to obtain estimates of model performance. For

the cv procedure, the full dataset was divided randomly into 10 (approximately) equal-sized

samples (folds). Holding out each fold in turn, models were trained on the data in the remain-

ing nine folds, and the fitted models then used to obtain the predicted probabilities on the

held-out fold. Fitted probabilities were obtained for each of the observations by iterating

through this algorithm with each fold serving as a test set.

The cv probabilities were converted to predicted classifications using the respective pre-

dicted-probability cut-point that maximized the Youden Index (YI; sensitivity + specificity

– 1) for each modelm (cm) to arrive at classifications [63]. Cut-points were estimated indepen-

dently for each model, given the cv probabilities (hence them subscript on c).
Performance metrics. A plethora of metrics exists for evaluating the performance of

binary classification models, with no clear consensus [64]. We concentrated on a set of perfor-

mance metrics that included some traditional ones used in machine learning, as well as a few

others that were recently proposed or discussed (Table 1). Here cut-point-based means that

the confusion matrix (and metrics summarizing it) depend on the cut-point used for convert-

ing the estimated probabilities to a class membership. Powers [23] presented informedness

(IFD) and markedness (MKD). From our viewpoint, they were attractive measures because

taken together they summarize the confusion matrix in both the column-wise (IFD) and row-

wise (MKD) directions. In binary classification (as done here), IFD is the same (algebraically)

as both YI (= J statistic) and the axiomatically derived Kmeasure [65]. Two information-theo-

retic metrics we included were the normalized expected mutual information (IMN), which is

equivalent to McFadden’s R2 [66]; and the recently proposed modified confusion entropy

(MCEN; [67]). The priors for IMN were taken as the proportion of epidemics and non-epi-

demics in the full dataset. Higher values of IMN (because of the normalization) indicate better

classification performance, whereas lower values of the entropy-based MCEN are indicative of

better classification. The final two metrics, which are from the family of ranking measures

[64], were the area under the receiver operating characteristic curve (ROC-AUC), and the area

under the precision-recall curve (PR-AUC), which are of course independent of cut-point.

Brier scores. The Brier score, a proper scoring rule [68], was used to summarize how

close a model’s cv probabilities were to the real (observed) class memberships. Upon fitting Eq

2, the cv probability for observation i in a held-out fold was given by

p̂i ¼
em þ b1X1i þ � � � þ bhXhi

1þ emþb1X1iþ���þbhXhi
ð3Þ

The Brier score for observation i for a single logistic model was estimated as Bi ¼ ðp̂i � yiÞ
2
,

where yi = 0 for a non-epidemic observation and yi = 1 for an epidemic observation. Scores

were calculated for the cv probabilities returned by each logistic regression modelm, so that

we have Bm,i,m = 1, . . ., 39, i = 1, . . ., 999. The mean Brier score for each modelm,

�Bm ¼ 1

999

P999

i¼1
Bm;i, was also calculated. The Bm,i and �Bm scores were used for understanding

the similarities and variability between and across models.

Model ensembles

Three different methods of ensembling the individual logistic regression models were investi-

gated: soft voting, weighted model averaging and stacking (Fig 4). Models are referenced by

their index (e.g.,m = 5) or their label (e.g., M5). Model M3 was not included in ensembling as
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it was an obvious outlier (poor model fit; see Results) compared with the other 38 models. M3

was a first-generation model originally developed with only 50 observations [13]. Dropping

M3 followed the principle of eliminating poor performers in a model genealogy [12].

Soft voting. For each observation i, the cv probabilities from the individual 38 logistic

regression models were simply averaged to obtain the soft vote probability

(p̂ðsvÞ;i ¼ 1

38

P38

m¼1
p̂m;i). This represented the reference approach to the ensembling methods

investigated in the current article, as no consideration was given to the differences in predictive

ability (across all observations) among the individual models [26]. The soft vote model classifi-

cation was then based on the cut-point (csv) for which YI was maximal given the p̂ðsvÞ;i.
Model averaging. A 38 × 38 dissimilarity matrix of the models was produced from the

Bm,i scores using the Manhattan distance metric, which is the absolute distance between two

vectors (L1 norm). The dissimilarity matrix was input into a hierarchical clustering algorithm

to give a ‘family tree’ of the models [27]. The resulting dendrogram was, upon inspection, cut

into four groups consisting of 15, 17, 3 and 3 models, respectively, reflecting their similarities

in terms of their Brier scores.

Let Glj represent the lth model (l = 1, . . ., gbj) in the jth group (j = 1, . . ., 4) from the cluster

analysis, where G•j refers to the model group. For example, for group 1, gb1 = 15 models in the

group and G51 is the 5th model in G•1. In the next stage, one logistic regression model was

taken from each G•j to give a setMx consisting of four individual logistic regression models.

For the model ensembles, it was assumed that the logistic regression models within a G•j were

too alike in terms of cv probabilities for the same observations (the basis for the dendrogram),

but that models from G•j and G•k (j 6¼ k) were less likely to be as closely related. Given four G•j

of size 15, 17, 3 and 3, there were 2,295 possible uniqueMx sets; we chose 10 of them at ran-

dom, (i.e., x = 1, . . ., 10).

For eachMx, the cv probabilities of epidemics of the four constituent base learner models

were combined using a weighted average, where the weights wm0(Mx) were estimated from the

mean Brier scores, �Bm0 , of the four individual models (m0 = 1, . . .4;m0 being a subset ofm):

wm0 Mxð Þ ¼
expð� 0:5 �Bm0 Þ

P4

m0¼1
expð� 0:5 �Bm0 Þ

ð4Þ

The weighted combined cv probability of an epidemic was taken as the model-averaged

probability returned for eachMx for any given observation i. After obtaining the estimated

probabilities for aMx model, the cut-point which maximized YI (cMx ) was used to generate the

confusion matrix from which the associated performance metrics were then calculated.

Stacking. The base learner models were the 38 simple logistic regression models. The

stacking algorithm we used, in general terms, was as follows. The cv probabilities of the 38

base learners were collected into a I × Lmatrix. In the present context I = 999 (the number of

observations) and L = 38. The I × Lmatrix was augmented with a column representing the

responses (0s and 1s representing non-epidemics and epidemics, respectively; i.e, yi). In stack-

ing terminology, this augmented matrix is called the Level 1 data. The Level 1 data were then

used to train a meta-learning algorithm, in which the yi were modeled as a function of the cv

probabilities of epidemics returned by the 38 base learners:

g½EðYiÞ� ¼ yþ d1p̂1i þ � � � þ d38p̂38i ð5Þ

where g(.) was the logit link function (as in Eq 2), θ was the overall intercept, and the δ were

the coefficients for the predicted cv probabilities (p̂) for the 38 base learners. We used penal-

ized logistic regression with ridge, lasso or elastic-net penalties as the meta-learner, thus stay-

ing within a logistic regression framework in estimating the δ coefficients. Penalization was
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used because of the high correlations among the base learner cv probabilities of epidemics, to

prevent overfitting and to improve the overall generalization accuracy [31]. The elastic-

net alpha tuning parameter was set to 0.5, so that correlated Level 1 predictors would be

selected or removed together. For all three forms of penalization, the lambda parameter con-

trolling the amount of penalization was tuned via k-fold cross-validation [69]. The trained

meta-learners were then used for prediction, where the inputs to the meta-learner were the cv

probabilities of epidemics for each observation returned by the base learners weighted by the δ
coefficients estimated for each of the three penalization methods.

In more detail, a nested cv procedure was used to avoid training and evaluating the meta-

learners on the same data [38], which can lead to so-called data leakage and potentially overop-

timistic estimates of model test performance [26,70]. Let X represent the data matrix consisting

of the response vector plus columns for the categorical and weather-based predictors used by

each of the base learners. In the algorithm that follows, we follow the terminology proposed by

Kuhn and Johnson [71], and use the terms “analysis” and “assessment” to describe the resam-

pling of data into subsets used for model development and tuning (analysis), and for measur-

ing model performance (assessment). These terms are analogous to traditional training and

testing partitioning but occur within a resampling framework such as cross-validation. The

pseudocode is as follows:

1. Split X into 10 cv folds (ko; ko = 1, . . ., 10), where each ko consisted of an analysis partition

(90% of the data, about 899 observations) and an assessment partition (the remaining 10%

of the data, about 100 observations). This constituted the outer resample (hence the o sub-

script on k). For each ko:

a. Train the base learners on the analysis partition.

b. Use the trained base learners to obtain cv probabilities of epidemics on the assessment

partition. These outer resample probabilities will be used as the input variables to the

trained meta-learner (Step 3.b).

2. Within each ko:

a. Further split the analysis partition into five folds (ki(o); i = 1, . . ., 5). This was the inner

(nested) resample (hence the i subscript on k). Each ki(o) fold was likewise made up of an

analysis (about 719 observations) and an assessment partition (about 180 observations),

the total number of observations being equivalent to the number of observations in the

respective ko analysis fold. The inner analysis and assessment folds were used to train the

meta-learner. For each ki(o):

i. Fit each of the 38 base learners on the analysis partition data.

ii. Use the fitted models to obtain the predicted cv probabilities of epidemics on the

respective inner assessment data.

b. Assemble the cv probabilities from the five ki(o). These predicted probabilities (38 col-

umns, one for each base learner) on the inner assessment partitions plus the associated

response vector (i.e, the yi observations) constituted the Level 1 data. Each Level 1 matrix

was therefore ~899 rows (depending on the number of observations in ko from Step 1)

and 39 columns.

3. Because of the nesting, 10 versions of the meta-learner were trained. That is, for each ko:

a. Train the meta-learner (i.e., fit Eq 5). Determine the value of the tuning parameter via

10-fold cross-validation on the respective Level 1 data matrix.
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b. Use the trained meta-learner (fitted Eq 5) with the outer resample cv probabilities (Step

1.b) as the input to predict the probability of an epidemic for an observation.

4. Collect the predicted probabilities from Step 3.b (about 100 per ko). These are the predicted

cv probabilities of an epidemic returned by the meta-learner.

The cut-point which maximized YI given the probabilities returned in Step 4 was used to

generate the confusion matrix from which performance metrics were then estimated for the

penalized meta-learners, as done with the previous analyses (above).

Software and code

All analyses were done with R version 3.5.3 (2019-03-11). The λ penalization parameter for

lasso, ridge and elastic-net was tuned via 10-fold cross-validation using the cv.glmnet function

in the glmnet package (version 2.0–16) with binomial deviance as the loss measure. Training

and tuning of boosted regression trees were carried out using the caret package (version 6.0–

82) as a wrapper to the gbm function of the gbm package (version 2.1.5). The cross-validation

procedure was programmed using the train function in the caret package as a wrapper to the

generalized linear model (glm) function for fitting Eq 2. Hierarchical clustering was done with

the hclust function using the complete agglomeration method. The data and code for repro-

ducing the analyses are available via the Dryad Digital Repository: https://doi.org/10.5061/

dryad.fn2z34trv [72].

Supporting information

S1 Table. Weather-based predictors used in logistic regression models for the occurrence

of Fusarium head blight epidemics. D, dewpoint (˚C); P, barometric pressure (hPa); VPD,

vapor pressure deficit (kPa); RH, relative humidity (%); T, air temperature (˚C); TDD, temper-

ature-dewpoint depression (˚C); sd, standard deviation.

(DOCX)

S2 Table. Descriptions of logistic regression models used for predicting epidemics of

Fusarium head blight. pre, weather variables summarize conditions from pre-anthesis to

anthesis; post, weather variables summarize conditions from anthesis to post- anthesis;

pre-to-post, weather variables summarize conditions starting pre-flowering and ending

post-flowering. a 1st-generation models were described in De Wolf et. al. (2003), 2nd-genera-

tion models in Shah et. al. (2013, 2014). Four 3rd-generation models (M16-M19) were

described in Shah et. al. (2019), with the remaining 3rd-generation models being described in

the current study. The originally published version of model M3 did include a precipitation

variable. However, the precipitation variable was not included here, and none of the other

models in the Table use precipitation-derived variables. b See S1 Table.

(DOCX)

S1 Fig. Correlation matrix of the Pearson correlation between cross-validated fitted proba-

bilities of an epidemic for the 39 logistic regression models. The label colors indicate what

generation the model belongs to: green, 1st generation; orange, 2nd generation; purple, 3rd gen-

eration.

(TIF)

S2 Fig. Empirical distributions of the predicted probability of epidemics (based on cross-

validation) returned by the 39 logistic regression models for observations 251 to 275. Epi,

observation was an epidemic; Nonepi, observation was a non-epidemic. There is a separate

panel for each observation. Cultivar resistance levels to Fusarium head blight were VS, very
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susceptible; S, susceptible; MS, moderately susceptible; MR, moderately resistant. The chosen

observations were an arbitrary sample of 25 from the 999 to demonstrate the diversity of distri-

butional results for epidemic predictions. The vertical dashed line in each panel represents the

proportion of observations that were FHB epidemics in the data (0.27).

(TIF)

S3 Fig. Classification of observations 251 to 275 by 39 logistic regression models. Epi,

observation was an epidemic; Nonepi, observation was a non-epidemic. There is a separate

panel for each observation. The data points in each panel represent the epidemic classifications

by each of the logistic regression models, based on dichotomizing the predicted probability

(from cross validation) of an epidemic. For each model the cut-point for classification was that

for which the Youden Index was maximal. Correct, observation was correctly classified by the

model; FP, observation’s classification was a false positive; FN, observation’s classification was

a false negative. Cultivar resistance classes to Fusarium head blight were VS, very susceptible;

S, susceptible; MS, moderately susceptible; MR, moderately resistant. The observations are the

same arbitrary sample as in S2 Fig to show the diversity of results.

(TIF)

S4 Fig. Correlation matrix of the Pearson correlation between Brier scores for the 39 logis-

tic regression models. Brier scores were calculated for the predictions of epidemics based on

cross-validated fitted probabilities returned by the models for each observation. For each pair

of models, the Pearson correlation was calculated between the Brier scores for the 999 observa-

tions. The label colors indicate what generation the model belongs to: green, 1st generation;

orange, 2nd generation; purple, 3rd generation.

(TIF)

S5 Fig. The mean Brier score for the logistic regression models. For each of the 39 models,

the mean Brier scores were calculated over all observations in the dataset, based on the pre-

dicted probabilities of an epidemic (using the cross-validated fitted probabilities). The mean

Brier scores are sorted. The dashed line is at the overall mean of 0.171. Mean Brier scores

decrease with improving cross-validated fit to the data. The label and point colors indicate

what generation the model belongs to: green, 1st generation; orange, 2nd generation; purple,

3rd generation.

(TIF)

S6 Fig. Relationships and Pearson correlations between performance metrics using the

cut-point which maximized the Youden Index. Each graphics panel displays the results for

39 logistic regression models (S2 Table). Metric definitions are in Table 1.

(TIF)
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