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Abstract: This study analyzes the effects of acetaminophen (APAP) as a contaminant on physiological
characteristics of lettuce plants (Lactuca sativa L.). Experiments were provided in an experimental
greenhouse with semi-controlled conditions. The effect of different amounts of contaminant was
evaluated by using regression analysis. Plants were grown in five concentrations of APAP: 0 µM,
5 µM, 50 µM, 500 µM, and 5 mM for 14 days in two variants, acute and chronic. The obtained
results show that the monitored parameters were demonstrably influenced by the experimental
variant. Plants are more sensitive to chronic contamination compared to acute. Significant (p < 0.05)
deviation in photosynthesis and fluorescence was observed compared to the control in different
variants. The highest doses of APAP reduced the intensity of photosynthesis by a maximum of more
than 31% compared to the control. A reduction of 18% was observed for the fluorescence parameters.
Pronounced correlation was described between chlorophyll fluorescence parameters and yield mainly
under APAP conditions. The amount of chlorophyll was influenced by exposure to APAP.
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1. Introduction

With the growth of the human population and the development of the pharmaceutical industry,
natural resources are becoming more contaminated, which in turn affect the entire food chain. These are,
for example, the pollution of drinking water, agricultural land, and food by pharmaceuticals [1].
According to the European Commission (Green Deal), a significant amount of total chemical production
can have harmful effects on the environment. Global drug production and subsequent water
contamination can pose a threat to human health, as many of these substances and their subsequent
metabolites can affect not only us [2,3], but also ecosystem dynamics [4]. Contamination of the
aquatic environment with pharmaceutical compounds occurs mainly as a result of pharmaceutical
production, waste policy of hospital facilities, inefficient waste disposal, or normal consumer use [5].
Examples of real contamination were already described across Europe [6–8]. Today’s commonly used
water purification processes cannot effectively remove pharmaceutical residues, and it is therefore
necessary to focus on this issue [9,10]. Acetaminophen (APAP) is one of the world’s most widely used
drugs (non-opioid analgesic and antipyretic agents) available without a prescription [11]. Studies on
the use of sewage sludge for fertilizing fields and crops have been the subject of research for several
decades [12,13]. The presence of drugs has been demonstrated in sewage sludge several times [14–16].
Commonly detectable concentrations of APAP in the environment and in water after treatment with
water treatment plants range from 1–6 µg/L and up to 10 µg/L, respectively [17].
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While the effect of pharmaceutical residues is known in animals’ metabolism [18,19], in the case
of plants, the toxicological significance is less studied. Xenobiotic substances can be accumulated in
plants in various ways and potentially contaminate the food chain [20–22]. As part of the study of the
effect of drugs and their metabolites, the primary metabolism, electron transport, was studied in plants.
Experiments with wheat (Triticum aestivum L.) resulted in changes in photosynthetic pigments and
inhibition of seedling growth [23]. An investigation of APAP and the diclofenac effect on Allium cepa,
Lactuca sativa, Pisum sativum, Solanum lycopersicum, and Zea mays plants was provided, and in maize
plants, for example, a 40% decrease in the reduction in quantum yields of photosystem II was measured
at a dose of 10 mg/L of both chemicals [24]. In the metabolism of horseradish (Armoracia rusticana
L.) under APAP stress plants subsequently received and degraded it as similar xenobiotics [25].
This statement can be taken as supporting fact for concerns about the possible presence of APAP and its
metabolites in plants and products for human consumption. Due to the possible incorporation of APAP
into the structures of the plant body, we set the following goal for this experiment: The aim of this
experiment was to study the effect of increasing concentrations of APAP on primary metabolism and
chlorophyll fluorescence as relevant characteristics of the state of juvenile lettuce plants (Lactuca sativa L.)
(plant condition). The impact of stress effect depends on the amount and severity of the stressor.
Low stress levels might not affect the efficiency of photosystem II (PSII) in a direct way but can cause
side symptoms of stress such as stomatal closure, for example, in the case of drought stress, which leads
to decreasing CO2 assimilation and later ATP metabolism defects. It implies the need for thorough and
comprehensive research [26]. The idea that chlorophyll fluorescence could be quenchable by stress
was already mentioned [27] in connection with decreasing PSII quantum yield and electron transport
rates due to drought stress in Phaseolus vulgaris plants.

Based on these literature data, the objectives of the work were to determine whether paracetamol
concentrations affect the primary metabolism of juvenile lettuce plants and whether the plants respond
differently to a single application or to the chronic effects of APAP.

2. Materials and Methods

2.1. Plant Material and Experimental Conditions

The seeds of Lactuca sativa L. var. capitata “Král Máje 1” were obtained from SEMO a.s.
The plants were pre-grown in a hydroponic system in rockwool planting blocks. The experiment
was provided in partially controlled greenhouse conditions at the Czech University of Life Sciences
Prague, Czech Republic. The greenhouse is located at GPS: 50.129976, 14.373707. The experiments took
place on two dates in spring and autumn 2019. The experiment was conducted under semi-controlled
conditions (natural light conditions, air temperature 25 ± 2/20 ± 2 ◦C day/night, relative air humidity
65% min and 85% max). The light regime was natural without shading the greenhouse (14/10 h).
The experimental plants were grown in containers with a volume of 5 dm3 in the garden substrate
(AGRO CS: pH 5.0–6.5, nutrient content 100 mg N/L, 44 mg P/L, 124 mg K/L).

The experiment was based on two basic variants: a single application of APAP (acute toxicity) and
chronic (multiple) exposure; see Table 1. The amount of irrigation water was 320 mL of SDV (sterilized
distilled water) with the appropriate amount of APAP every other day. Acetaminophen (APAP), chem.:
N-acetyl-para-aminophenol (reference standard) with a guaranteed purity of 99.9%, was purchased
from Sigma-Aldrich® (Sigma-Aldrich, Steinheim am Albuch, Germany). The dissolution of the APAP
in SDV was performed using an ultrasonic homogenizer. The following concentrations of APAP—0
(control), 5 µM, 50 µM, 500 µM, and 5 mM solutions—were used during the experiment.



Life 2020, 10, 0303 3 of 14

Table 1. Concentration schema.

Control Control

5 µM acute 5 µM chronic
50 µM acute 50 µM chronic
500 µM acute 500 µM chronic
5 mM acute 5 mM chronic

2.2. Plant Analyses

Measurements of the physiological characteristics were performed at intervals of 0 h, 24 h, 72 h,
168 h, 240 h, and 360 h after the first application of acetaminophen (APAP). The pigment content in the
leaves was measured photometrically with an Evolution 2000 UV-Vis (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) by the Porra method [28]. The rate of photosynthesis (Pn) was measured on the
upper surface of the leaves (the middle part of the leaf blade) in situ using the portable gas exchange
system LCpro+ (ADC BioScientific Ltd., Hoddesdon, UK). Pn was measured under adjusted light and
temperature conditions. The irradiance was 650 µmol/m2/s of photosynthetically active radiation (PAR)
and the temperature in the chamber was 25 ◦C. The minimum chlorophyll (Chl) a fluorescence (F0) and
the maximum Chl a fluorescence (Fm) were also measured in situ with the portable fluorometer OSI 1
FL (ADC BioScientific Ltd., Hoddesdon, UK) with 1 second excitation pulse (660 nm) and saturation
intensity of 3000 µmol/m2/s after 20 min of dark adaptation of the leaves. The maximum quantum
efficiency of photosystem II (Fv/Fm) was calculated as Fv/Fm (Fv = Fm − F0). Chlorophyll fluorescence
is a common physiological parameter for studying plant stress in physiology research [29–31].

2.3. Data Analysis

The data were analyzed with the use of the Statistica 12 software (StatSoft Ltd., Tulsa, OK, USA).
The variability of the measured characteristics between the studied plots was tested by a one-way
ANOVA model (α = 0.05) and a Fisher LSD test. The impact of APAP on physiological parameters was
analyzed with the regression method, using polynomial functions. For the statistical analysis of the
results five replicates were used.

3. Results and Discussion

The effect of the acute and chronic effects of paracetamol on the content of photosynthetically
active pigments, the rate of photosynthesis, and the chlorophyll fluorescence of juvenile lettuce
plants was observed. Stress factors cause numerous changes in several physiological characteristics,
e.g., gas exchange, photosynthetic content of active pigments, dry matter formation, plant growth,
etc. [25,32]. Chlorophyll fluorescence is considered a useful tool for stress response determination [33].
There is a possibility that PSII can be damaged by stress, which can escalate to lower electron transfer
and prolonged time before reaching maximum fluorescence intensity [34]. The rate of photosynthesis
is also considered a relevant parameter while analyzing levels of stress in plants [35].

3.1. Acute Exposure to APAP

It can be seen from the Table 2 that significant differences were found between the individual
concentrations of APAP in the solutions and applications. Significant differences in the content of total
chlorophyll and carotenoids in the leaves were found, for example, in the second highest concentration
of APAP (500 µM/L) in the chronic action. This difference is evident between acute and chronic effects,
but also within individual concentrations. The content of chlorophylls and carotenoids in the leaves of
the control plants was inconclusively lowest in comparison with the treated variants (3.495 nM/cm2

and 0.581 nM/cm2). Due to the delivery of APAP to the solution, there was an inconclusive increase
in the content of pigments in the leaves during the acute action of said xenobiotic. At the highest
concentration of APAP in solution, the amount of chlorophyll in the leaves increased by 8.12% and
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carotenoids by 21.51% compared to the control plants. In the case of chronic treatment, a statistically
significant increase in the content of photosynthetically active pigments was found in the variant with
a concentration of APAP of 500 µM by 27.46% (chlorophyll) and 41.8% (carotenoids).

Table 2. Content of photosynthetically active pigments (nM/cm2); arithmetic mean± standard deviation.

Suma of Chlorophyll Carotenoids

5 µM acute 3.498 ± 0.334 0.643 ± 0.067
chronic 3.543 ± 0.317 0.669 ± 0.063

50 µM acute 3.439 ± 0.343 * 0.667 ± 0.063
chronic 3.849 ± 0.308 0.739 ± 0.057 *

500 µM acute 3.665 ± 0.320 0.692 ± 0.061
chronic 4.455 ± 0.320 * 0.824 ± 0.059 *

5 mM
acute 3.779 ± 0.375 0.706 ± 0.067 *

chronic 4.057 ± 0.338 * 0.790 ± 0.061 *

Control
acute 3.495 ± 0.367 * 0.581 ± 0.073 *

chronic 3.495 ± 0.367 * 0.581 ± 0.073 *

* Indicates significant differences (p < 0.05) compared to the control variant; ns = not significant.

Our results show that increasing concentrations of APAP also increase the content of total
chlorophyll, which was confirmed, for example, in [36]. The authors studied the effect of diclofenac on
tomatoes. On the other hand, the conclusions of, e.g., [37], in the case of Lemna minor and Phaseolus
vulgaris [38], suggest that the effect of APAP on plant photosynthetic processes may be species
dependent. In accordance with the work of [35], and increased content of chlorophyll b appears
to be an adaptive mechanism to the toxic effects of diclofenac. According to [39], an increase in
chlorophyll content may be related to a decrease in the enzymatic activities of nicotinamide adenine
dinucleotide phosphatedependent Chl (ide) b reductase and ferredoxin-dependent hydroxymethyl
Chl(ide) reductase, but further studies are needed to clarify this mechanism. For the study of
biosynthetic pathways and enzymatic activity, the content of carotenoids in the leaves increased with
increasing concentration of APAP in solution. The results correspond to the conclusions presented,
for example, in Lemna minor and Lemna gibba [40] after diclofenac treatment. In accordance with the
conclusions in [40,41], it can be stated that increased levels of carotenoids in leaves is a response of
plants to xenobiotics and thus provide protection against oxidative damage. Another role of carotenoids
is the protection of reaction centers and the antenna complex against oxidative stress.

Figure 1 shows the negative effect of paracetamol on the rate of photosynthesis of juvenile lettuce
plants, where in the case of plants treated with paracetamol the rate of photosynthesis ranged from
5.49 to 4.54 µM CO2/cm2/s. While in the control plants the range of photosynthesis values was 5.49 to
6.64 µM CO2/cm2/s, in control plants, the rate of photosynthesis was significantly increased over time
from 72 h to 336 h. The increase was 14.48%. A similar trend can also be observed in lettuce plants
grown in the lowest concentration of paracetamol (5 µM). In these plants, the rate of photosynthesis was
from 5.49 to 6.61 µM CO2/cm2/s. Compared to the control plants, there was an inconclusive reduction
of photosynthesis rate by 0.45% in the final phase of the experiment. Our results show that low
concentrations of APAP do not inhibit (or negligibly inhibit) the rate of photosynthesis. Similar results
after the application of low concentrations of APAP were observed in duckweed (Lemna minor) [42].
This effect is probably related to the fact that these low concentrations of APAP do not have a destructive
effect on the photosynthetic apparatus of plants. This is mainly due to the low negative effect on gas
exchange parameters, including ribulose-1,6-bisphosphate carboxylase/oxygenase (RUBISCO) enzyme
activity, the number of vents, and electron transfer within PSII.
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With increasing concentrations of paracetamol, the inhibitory effect of its higher concentrations on
the rate of photosynthesis was demonstrated. As can be seen from Figure 1, the highest concentration
of paracetamol significantly reduced the rate of photosynthesis of plants in comparison not only with
control plants, but also with other treated variants. In plants treated with the highest concentration of
paracetamol, the rate of photosynthesis was significantly reduced to 4.93 µM CO2/cm2/s within 24 h of
application. Thereafter, photosynthesis increased inconclusively, but from 168 h from APAP application
until the end of the experiment, a decrease in photosynthesis from 4.73 to 4.54 µM CO2/cm2/s was noted.
In the case of a concentration of 500µM, the rate of photosynthesis from 24 h to 168 h was stable and a
significant decrease in its value was found in the measurement terms of 240 h to 4.74 µM CO2/cm2/s and
336 h to 4.64 µM CO2/cm2/s. These results indicate that high concentrations of APAP have an inhibitory
effect on the rate of photosynthesis. Similar results after the application of APAP were confirmed
in bean plants (Phaseolus vulgaris L.) [43]. The reduction in the intensity of photosynthesis rates is
firmly associated with changes in the content of photosynthetically active pigments, namely with an
increased content of carotenoids. In addition, the increased peroxisome activity is mainly due to the
strong activation of the photorespiratory pathway associated with the inhibition of photosynthesis. It
can therefore be assumed that similar phenomena occurred in our experiments [44].

In contrast, the rate of photosynthesis increased in this time period in plants treated with
concentrations of 50 µM from 4.86 µM CO2/cm2/s to 5.15 µM CO2/cm2/s (240 h) and 5.11 µM CO2/cm2/s
(336 h), as shown in Figure 1. The highest final value of the decrease in photosynthesis intensity
was observed in the variant treated with the highest concentration of APAP (5 mM) when there was
a decrease in photosynthesis intensity by 31.62% in comparison with the control. Changes in the
rate of photosynthesis and related parameters due to contamination of the external environment had
already been observed [45–48]. Thus, the reduction in the rate of photosynthesis is probably due to the
phytotoxicity of APAP, as a similar reaction was observed with diclofenac. Furthermore, it is possible
that inhibition of photosynthesis appears to be related to reduced activity of PSII reaction centers.

Furthermore, the chlorophyll fluorescence parameters were measured. Individual parameters
are listed in Table 3, which shows that the paracetamol-treated plants show a statistically significant
reduction in the values of the chlorophyll fluorescence parameters compared to the control plants.
Electron transport within PSII is sensitive to changes of external environment e.g., contamination
with hazardous substance or other stresses [49]. The reduction in photosynthetic processes that are
associated with both photosystems is manifested, for example, in drought stress, salinity, heat stress,
xenobiotics, and herbicidal stress, but also in biogenic stressors. The effect on chlorophyll fluorescence
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could also be related to the reduced rate of gas exchange [50]. In the case of the evaluation of the
Fv/Fm ratio, it can be stated that this parameter decreased statistically most significantly in the 5 mM
variant (0.765) compared to the control plants and, conversely, the lowest decrease was recorded in the
5 µM variant (0.788). It is generally reported in the literature as a non-stress value of the Fv/Fm ratio of
0.820. Therefore, the obtained results show that chlorophyll fluorescence is sensitive to environmental
contamination. This is in accordance with [29,51,52]. Based on the obtained results and in accordance
with the literature, it can be assumed that the limitation of fluorescence is due to changes in the
properties of P700, which reduces the quantum yield (Fv/Fm). This phenomenon was not only found
for drugs, but also, for example, for irradiation [53]. The effect of APAP on fluorescence characteristics
is probably also related to its possible toxicity, especially at higher concentrations, as is the case with
diclofenac [42].

Table 3. Maximum quantum efficiency of photosystem II (Fv/Fm) (arithmetic mean ± standard
deviation).

Fv/Fm Fv/F0 Fm/F0

5 µM acute 0.788 ± 0.025 * 4.508 ± 0.542 * 5.747 ± 0.670 *
chronic 0.783 ± 0.030 * 4.079 ± 0.599 * 5.208 ± 0.667 *

50 µM acute 0,786 ± 0.029 * 4.182 ± 0.599 * 5.197 ± 0.649 *
chronic 0.779 ± 0.033 * 3.970 ± 0.684 * 5.397 ± 0.748 *

500 µM acute 0.776 ± 0.036 * 4.369 ± 0.558 * 5.208 ± 0.661 *
chronic 0.769 ± 0.039 * 4.060 ± 0.686 * 5.553 ± 0.649 *

5 mM
acute 0.765 ± 0.041 * 4.179 ± 0.588 * 5.458 ± 0.665 *

chronic 0.745 ± 0.057 * 3.921 ± 0.655 * 5.266 ± 0.676 *

control
acute 0.826 ± 0.015 4.814 ± 0.452 5.815 ± 0.452

chronic 0.826 ± 0.015 4.814 ± 0.452 5.815 ± 0.452

* Indicates significant differences (p < 0.05) compared to the control variant; ns = not significant.

A similar trend can also be found in the case of the Fv/F0 ratio, where the control plants had a
ratio of 4.814, and in the plants treated with 5 µM APAP 4.508 and 5 mM 4.179. In contrast, the Fm/F0

ratio showed the lowest reduction compared to control plants in the 5 µM APAP variant (5.747) and,
conversely, the largest reduction in the 50 µM concentration (5.197). Compared to the Fv/Fm ratio, it is a
more appropriate indicator of the measured effect of stress on plants to use the Fv/F0 ratio. The results
show a difference in this fluorescence parameter due to the different concentration of APAP in the
substrate. The above conclusion is confirmed in [54,55].

Thus, it can be assumed that higher concentrations of APAP lead to photosystem II (PSII) being
inactivated. This inactivation leads to an increase in the basic fluorescence of chlorophyll, which is
reflected in the Fv/F0 ratio. The decrease in the baseline fluorescence ratio by the action of a stressor
is probably related to the action of oxidative stress induced by reactive oxygen species, which cause
damage to the PSII reaction centers and an increase in non-photochemical quenching (NPQ) and a
release of thermal energy.

Figure 2 shows the relationship between paracetamol concentration, the duration of exposure,
and the Fv/Fm ratio. It follows that in the case of control plants, this characteristic was not significantly
affected by the length of the experiment, when the lowest value of the Fv/Fm ratio found at the beginning
and end of the experiment was 0.822 and the highest was 168 h after the start of the experiment
(0.839). In the case of plants grown at the lowest concentration of paracetamol (5 µM), the value of
the Fv/Fm ratio significantly decreased compared to the control during second day after application
(24 h) of APAP (0.792) until the end of the experiment (0.755). This trend can be observed in all
variants treated with APAP. A significant reduction in Fv/Fm ratio values was found between the
5 µM APAP and 50 µM APAP variants, with an Fv/Fm ratio interval for this variant from 0.754 (336 h)
to 0.822 (beginning of experiment). In the case of the two high concentrations of paracetamol in
solution, statistically significant differences to lower concentrations were already found, but also
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between each other. While at a concentration of 500 µM the lowest Fv/Fm value was found 336 h after
application at 0.723, at a concentration of 5 mM it was 0.714. Immediately at the beginning of the
experiment (24 h after application), the Fv/Fm ratio was 0.784 (500 µM) and 0.779 (5 mM); see Figure 2.
Therefore, the obtained results show that chlorophyll fluorescence can be sensitive to environmental
contamination. This is in accordance with the work mentioned above [29,51,52]. Pigments that are
part of the photosynthesis process can reflect levels of sensitivity to stress conditions. In some cases,
the amount of chlorophyll in plants can be highly volatile during stress response [56,57], because the
content of photosynthetically active pigments is generally considered to be an indicator of a stress
response. Changes in the pigment content can subsequently lead to a reduction in the ability to capture
light, and thus affect photosynthesis and electron transfer within photosystem I (PSI) and photosystems
II (PSII).
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3.2. Chronic Exposure to APAP

The rate of photosynthesis of juvenile lettuce plants exposed to chronic paracetamol (excluding
control) ranged from 5.46 to 4.67 µM CO2/cm2/s, as shown in Figure 3. The lowest average rate of
photosynthesis was recorded for the 5 mM variant (4.67 µM CO2/cm2/s) compared to the control plants
(6.64 µM CO2/cm2/s). Inconclusive differences in the rate of photosynthesis were found between
the variants with 5 mM (4.93 µM CO2/cm2/s), 500 µM (4.93 µM CO2/cm2/s), and 50 µM (4.95 µM
CO2/cm2/s). These results indicate that high concentrations of APAP have an inhibitory effect on the
rate of photosynthesis, which is also in accordance with results of the experiments provided with
duckweed (Lemna minor) [34]. These changes in higher concentrations of hazardous substances in
the environment, including their long-term effect on the photosynthetic apparatus, lead to reduced
photosynthesis due to inhibition of photosynthesis by affecting leaf chloroplast structure, light energy
absorption, photosynthetic electron transport, stomatal conductivity, and Calvin cycle enzymatic
activity exposure to heavy metals. This is in accordance with other studies [58].

Figure 3 shows a significant increase in the rate of photosynthesis as a function of time in the
control plants, with a photosynthesis rate of 5.49 µM CO2/cm2/s at the beginning of the experiment and
6.64 µM CO2/cm2/s at the end of the experiment. Changes in the rate of photosynthesis as a function
of time were already observed [59]. In plants treated with 5 µM of APAP, the rate of photosynthesis
decreased compared to control plants from the second sampling (5.2 0 µM CO2/cm2/s) to the end
of the experiment (4.9 µM CO2/cm2/s). From 168 h to 336 h after the beginning of the experiment,
the decrease in photosynthesis was not statistically significant. In the case of plants treated with 50 µM,
500 µM, and 5 mM APAP, the trend of decreasing photosynthesis values was the same, with a decrease
in photosynthesis from the start of the experiment from 5.49 to 4.73 µM CO2/cm2/s for the 50 µM
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variant, and from 5.49 to 4.67 µM CO2/cm2/s for the 500 µM and 5 mM variants, as shown in Figure 3.
No significant differences were found between these (50 µM, 500 µM, 5 mM) variants.Life 2020, 10, x FOR PEER REVIEW 8 of 14 
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The chronic effect of paracetamol significantly influenced the values of chlorophyll fluorescence,
as shown in Table 3. It shows that all monitored parameters were significantly lower in plants treated
with paracetamol compared to the control plants. Chronic exposure to pollutants and xenobiotics
in comparison with the acute treatment significantly affects the level changes of electron transport,
i.e., chlorophyll fluorescence parameters. This conclusion was confirmed in our experiments and is in
line with [60], when the stress response is influenced by the duration of exposure to the stressor, but also
depending on the concentration and developmental stage, when juvenile plants are usually more
sensitive than older plants. Usually, the higher the strength of the stressor, the more the appropriate
response of the plant increases. For the basic fluorescence parameter, the Fv/Fm ratio, this value
decreased by 9.81% (0.745) in the case of the highest paracetamol concentration (5 mM) compared to the
control. On the other hand, the lowest reduction (5.21%) was found for the paracetamol concentration
of 5 µM (0.783). The table also shows that in the case of the Fv/F0 ratio the trend is the same as the
previous measurement parameter, as the highest decrease in this indicator was recorded in the 5 mM
APAP variant (3.921) and the lowest in the 5 µM variant (4.079), while the average value of the Fv/F0

ratio of the control plants was 4.814. In the case of the Fm/F0 characteristic, it was found that the most
significant decrease compared to the control (5815) was determined at concentrations of 5 µM (5.208)
and 5 mM (5.266); see Table 3.

Changes in Fv/Fm values as a function of time and paracetamol concentration are shown in Figure 4.
In both cases of chronic and acute treatment, it can be stated that the control variants have the highest
values of selected physiological characteristics compared to plants treated with APAP. The results show
a decrease in this fluorescence parameter due to the different concentration of APAP in the substrate.
The above conclusions are consistent with [61,62]. Related issues are reported in [63], who studied the
effect of heavy metals on the alga Halophila ovalis. It can be stated that the longer the exposure time and
the concentration of xenobiotics, the higher the appropriate response of plants is to this fact. In the
case of lettuce plants, an increase of F0 while Fm remains stable has also been shown; therefore, there is
an overall decrease in the Fv/Fm ratio and quantum yield. The increase in the F0 indicator is probably
related to the action of APAP (and hazardous metals) on the PSII reaction center [64] or reducing
energy transfer within light-harvesting pigments. Significant differences can be found between higher
concentrations of paracetamol with each other and also in comparison to low concentrations. In the
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case of the lowest concentration (5 µM) of APAP the Fv/F0 ratio decreased significantly 24 h (0.792)
and kept decreasing until the end of the experiment after 336 h (0.745). Figure 4 further shows that all
concentrations, in comparison with the control plants, reduced Fv/Fm values during the time period.
Fv/Fm in plants grown in the highest concentration (5 mM) of APAP reached 0.674, which is more
than an 18% decrease in comparison to the control plants. An analogous experiment with maize
(Zea mays) observed a decrease in the Fv/Fm ratio of up to 40% [24]. A decrease in the Fv/Fm in willow
plants (Salix babylonica L.) influenced by phenol contamination was close to our results [65]. A similar
statement was made by [63], who studied the effect of heavy metals on chlorophyll fluorescence in
Halophila ovalis. Based on the obtained results, it can be stated that the reduction of the quantum
fluorescence yield and the Fv/Fm ratio is related to changes in the ultrastructure of the thylakoid
membrane, which would affect the electron transfer rate and further reduction of PSII photochemical
efficiency probably related to antenna pigment destruction.
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The results of the regression analysis show that there is a mean relationship between the rate
of photosynthesis and the concentration of paracetamol. The calculated regression coefficient at
the level of α = 0.05 and p = 0.00000 was 0.3920 and the equation y = 30.460 − 0.245c (y = Pn and
c = APAP). The low regression coefficient for changes in the rate of photosynthesis depending on
the action of the stressor may indicate that this parameter is not very sensitive to the detection of the
stress response, as also stated [66] in experiments with rice (Oryza sativa). Based on the regression
analysis, it can be concluded that there is no close dependence between chronic and acute drug action
on changes in the rate of photosynthesis. The calculated coefficient was 13.83%; therefore, it can be
stated that photosynthesis is affected polyfactorially. Polyfactorial effects on the rate of photosynthesis
are also confirmed by [67] in sugar beet plants during stress. In the case of the effect of different
paracetamol concentrations on chlorophyll fluorescence, it can be stated that the dependence between
APAP concentration and fluorescence is weak, as the coefficient is 0.2874. The proposed equation
would be in the form of y = 2.418 – 0.016c (y = fluorescence and c = APAP). Consistent with the rate of
photosynthesis, no close dependence was found between the chronic and acute effects of paracetamol
on chlorophyll fluorescence, as the calculated regression coefficient was 0.65. The relatively high
regression coefficient shows that the fluorescence parameters appear to be a suitable indicator of the
degree of stressor effect. This conclusion is also confirmed by [68] in barley (Hordeum vulgare) plants.
The relationship between the rate of photosynthesis and chlorophyll fluorescence can be expressed by
the equation y = 4.560 + 1.110 Fv/Fm, while based on the calculation of the regression coefficient it can be
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stated that this is not a close dependence, as the dependence is low (17.25%). The relationship between
photosynthesis and fluorescence is mentioned in [69] and describes deeper connections between them.

4. Conclusions

The results showed that the observed physiological characteristics were influenced by different
amounts of applied APAP. Excessive amounts of APAP caused significant decrease in the rate of
photosynthesis as well as chlorophyll a fluorescence, which shows a possible effect of the quantum
efficiency of photosystem II. Relevant deviation from the norm can be caused by a single application of
APAP in higher concentrations used in our experiment. With increasing APAP concentration, there was
an increase in carotenoid content. A negative effect of chronic APAP on chlorophyll fluorescence
characteristics and primary metabolism was observed. The chronic exposure of xenobiotics has a
demonstrably negative effect on the monitored parameters in comparison with the acute action.
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