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ABSTRACT Syntrophic interactions between organohalide-respiring and fermenta-
tive microorganisms are critical for effective bioremediation of halogenated com-
pounds. This work investigated the effect of ammonium concentration (up to 4 g li-
ter�1 NH4

�-N) on trichloroethene-reducing Dehalococcoides mccartyi and
Geobacteraceae in microbial communities fed lactate and methanol. We found that
production of ethene by D. mccartyi occurred in mineral medium containing �2 g li-
ter�1 NH4

�-N and in landfill leachate. For the partial reduction of trichloroethene
(TCE) to cis-dichloroethene (cis-DCE) at �1 g liter�1 NH4

�-N, organohalide-respiring
dynamics shifted from D. mccartyi and Geobacteraceae to mainly D. mccartyi. An in-
creasing concentration of ammonium was coupled to lower metabolic rates, longer
lag times, and lower gene abundances for all microbial processes studied. The meth-
anol fermentation pathway to acetate and H2 was conserved, regardless of the am-
monium concentration provided. However, lactate fermentation shifted from propi-
onic to acetogenic at concentrations of �2 g liter�1 NH4

�-N. Our study findings
strongly support a tolerance of D. mccartyi to high ammonium concentrations, high-
lighting the feasibility of organohalide respiration in ammonium-contaminated sub-
surface environments.

IMPORTANCE Contamination with ammonium and chlorinated solvents has been
reported in numerous subsurface environments, and these chemicals bring signifi-
cant challenges for in situ bioremediation. Dehalococcoides mccartyi is able to reduce
the chlorinated solvent trichloroethene to the nontoxic end product ethene. Fer-
mentative bacteria are of central importance for organohalide respiration and biore-
mediation to provide D. mccartyi with H2, their electron donor, acetate, their carbon
source, and other micronutrients. In this study, we found that high concentrations of
ammonium negatively correlated with rates of trichloroethene reductive dehaloge-
nation and fermentation. However, detoxification of trichloroethene to nontoxic
ethene occurred even at ammonium concentrations typical of those found in animal
waste (up to 2 g liter�1 NH4

�-N). To date, hundreds of subsurface environments
have been bioremediated through the unique metabolic capability of D. mccartyi.
These findings extend our knowledge of D. mccartyi and provide insight for biore-
mediation of sites contaminated with chlorinated solvents and ammonium.
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The organohalide-respiring bacterium Dehalococcoides mccartyi ultimately catalyzes
the reduction of the chlorinated solvents perchloroethene (PCE) and trichlo-

roethene (TCE) to nontoxic ethene through cis-dichloroethene (cis-DCE) and vinyl
chloride (VC) (1, 2). Bioremediation of subsurface environments using D. mccartyi has
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been an invaluable treatment technology, with hundreds of applications at contami-
nated sites (3). A significant challenge for in situ bioremediation arises when chlorinated
ethenes are present in mixtures with other pollutants. PCE and TCE cooccur with other
halogenated organic solvents (4). The presence of halogenated organics has been
shown to impede chlorinated ethene reductive dehalogenation (5–8). Nitrogen (N)-
containing compounds are also cocontaminants in PCE- and TCE-impacted groundwa-
ter, land, and landfills (9–12). Contamination with ammonium-N stems from numerous
sources, including sewage and water main leakage, septic tanks, industrial spillages,
river or channel infiltration, fertilizers, agricultural runoff, and landfill leachate (9–11). (In
this report, the term “ammonium” comprises NH4

� and NH3 species; where appropri-
ate, the chemical formulas are used to distinguish the species.) To date, 135 U.S.
National Priorities List hazardous waste sites (compiled by the Agency for Toxic
Substances and Disease Registry of the U.S. Centers for Disease Control and Prevention)
are polluted with high concentrations of ammonium-N (13).

In the subsurface, D. mccartyi coexists alongside other terminal electron acceptor-
respiring, fermenting, acetogenic, and homoacetogenic bacteria and also methano-
genic archaea (14–18). Organohalide respiration and its syntrophic or competing
microbial processes are usually studied in enrichment cultures derived from ground-
water, soil, or sediment (see Table 1 in Delgado et al. [14]). These syntrophic, more
simplified microbial communities containing D. mccartyi are also utilized for bioaug-
mentation applications at contaminated sites (3). Fermentative bacteria are of central
importance for organohalide respiration to provide D. mccartyi with H2, their electron
donor, acetate, their carbon source (2), specific amino acids (19), and vitamin B12 (20),
and to alleviate CO toxicity (21). While D. mccartyi is a prerequisite for obtaining
reductive dehalogenation to ethene, its mere presence in an environment does not
ensure this outcome (3, 14, 22). It is well recognized that the success of in situ
bioremediation is in part dependent on the composition and activity of the microbial
community (23). Hence, unfavorable environmental conditions, toxicity, or inhibition
impact directly (e.g., organohalide-respiring populations) or indirectly (e.g., fermenta-
tive or acetogenic bacteria) the transformation of chlorinated ethenes.

Ammonium is the preferred N source for growth of D. mccartyi (24) and is commonly
provided as NH4Cl in the growth medium (5.6 mM or 0.08 g liter�1 NH4

�-N). At high
concentrations, however, ammonium generally exerts inhibitory effects on microbial
activity (25, 26). Ammonia (NH3) readily diffuses into cells, where it becomes proton-
ated, forming ammonium (NH4

�) (27). Depletion of H� from conversion of NH3 to NH4
�

disrupts the proton motive force and energy acquisition required for growth (27–29)
and can increase the intracellular pH and alter the cell redox potential (28). Persistence
of ammonium-N is expected in the anoxic zones of groundwater where PCE and TCE
are found. Typical ammonium-N concentrations in groundwater are in the milligram
per liter range, whereas landfill leachates and animal waste stream concentrations are
as high as 1 and 10 g liter�1, respectively (10, 30–33).

To date, studies delineating the effects of ammonium concentration on D. mccartyi
and organohalide respiration in pure cultures or in mixed microbial communities have
not been available. The key role of D. mccartyi in bioremediation demands a compre-
hensive understanding of the factors affecting syntrophic organohalide-respiring and
fermenting microbial communities. Evidence from biohydrogen production has shown
that some fermentative bacteria are able to resist inhibition to ammonium concentra-
tions as high as 8 g liter�1 (25, 34, 35). However, the ammonium concentration
contributed to lower rates of fermentation and longer lag times (34). In our study, we
evaluated the effect of ammonium concentration on organohalide-respiring mixed
microbial communities containing D. mccartyi and Geobacteraceae in batch experi-
ments. We utilized quantitative tracking of products of TCE reductive dehalogenation,
fermentation, homoacetogenesis, and methanogenesis in conjunction with the relative
abundance of key genes within the microbial communities. We found that ammonium
concentrations up to 2 g liter�1 ammonium-N did not impair ethene formation by
D. mccartyi but significantly reduced dehalogenation and fermentation rates. Concen-
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trations of �2 g liter�1 ammonium-N induced shifts in the lactate fermentation
pathway from propionic to acetogenic. These findings underscore the importance of
syntrophic microbial relations for organohalide respiration and extend our knowledge
of D. mccartyi-containing communities in environments cocontaminated with chlori-
nated ethenes and ammonium.

RESULTS AND DISCUSSION

We evaluated the effect of ammonium concentration (expressed as NH4
�-N) on TCE

reductive dehalogenation in microbial communities fed the fermentable substrates
lactate and methanol. In this report, the term “ammonium” comprises NH4

� and NH3

species; where appropriate, the chemical formulas are used to distinguish the species.
Results of time course batch experiments in mineral medium containing up to 2 g
liter�1 NH4

�-N are presented in Fig. 1 (left). By days 5 and 8, 0.6 mmol liter�1 TCE was
transformed to VC in the presence of 0.5 and 1 g liter�1 NH4

�-N, respectively (Fig. 1B
and C, left). Complete dehalogenation to ethene was achieved by day 19 at 0.5 g liter�1

NH4
�-N (Fig. 1B, left), a concentration 6 times higher than in controls. VC, the deha-

logenation product exclusively linked to D. mccartyi (2), was generated when ammo-
nium was present at 2 g liter�1 NH4

�-N (Fig. 1D, left) and also at 4 g liter�1 NH4
�-N (see

Fig. S1A and B in the supplemental material) within 100 days in the experiments. This

FIG 1 Reductive dehalogenation (left), fermentation (middle), and methanogenesis (right) in the presence of
0.08 (control) (A), 0.5 (B), 1 (C), or 2 g liter�1 NH4

�-N (D). In panels C and D, the arrows accentuate the second
addition of 6 mM lactate. The data are average results and standard deviations from triplicate cultures. The
adjacent graphs are on the same time scale. Note the differences in the time scales between the graphs with
different ammonium concentrations.
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activity is quite important given that these ammonium concentrations are typical of
high-strength animal waste (30, 36, 37).

The maximum rates of dehalogenation observed in all cultures are shown in Fig. 2.
The rates were negatively correlated with increasing ammonium concentration (Fig. 2).
The correlation was determined to be statistically significant (Pearson r � �0.860;
Spearman � � �0.972; � � 0.01 confidence level). The most prominent inhibitory effect
was seen at 2 g liter�1 NH4

�-N, where the rates of dehalogenation were 7 times lower
than for controls (Fig. 2), resulting in prolonged time frames before generation of
ethene.

Figure 3 compiles the dehalogenation activity in landfill leachate containing 0.6 g
liter�1 NH4

�-N and 0.9 g liter�1 total N. Landfills are prime examples of environments
containing high ammonium levels and a variety of pollutants, including TCE and other
chlorinated substances (31, 38–40). Our goal was to assess whether dehalogenation
could be sustained in a landfill leachate sample with an ammonium concentration
similar to what was tested in mineral medium experiments. In landfill leachate, by-
products of TCE reduction were absent without the addition of the TCE-respiring
microbial culture (Fig. 3) and with abiotic controls. In ZARA-10-inoculated leachate,
ethene was the main product of TCE dehalogenation after 100 days (Fig. 3), albeit
dehalogenation rates were lower than in defined mineral medium. The lower rates were
expected and likely a consequence of the absence of added minerals, nutrients, and
vitamins and the presence of cocontaminants and other electron acceptors in the
landfill leachate.

We investigated closely the fate of the fermentable substrates, lactate and metha-
nol, to determine the effects of ammonium concentration on fermentation pathways
and to establish correlations between fermentation and reductive dehalogenation. The
concentrations of organic fatty acids (lactic, acetic, and propionic) and methanol are

FIG 2 Effect of ammonium concentration on the maximum rate of reductive dehalogenation. The
maximum rates were determined between two consecutive sampling points. The data are average
results and standard deviations from triplicate cultures. The negative correlations between ammo-
nium concentration and rate of dehalogenation were statistically significant at the � � 0.01 level (2
tailed; n � 12; Pearson correlation coefficient, r � �0.860; Spearman correlation coefficient, � �
�0.972).

FIG 3 TCE reductive dehalogenation in anaerobic landfill leachate containing 0.6 g liter�1 NH4
�-N

and 0.9 g liter�1 total N. The empty diamonds are TCE concentrations in uninoculated controls. The
data are average results and standard deviations from triplicate cultures.

Delgado et al.

Volume 1 Issue 2 e00053-16 msphere.asm.org 4

msphere.asm.org


shown in Fig. 1 (middle). Lactate was more rapidly depleted than methanol under all
experimental conditions. Increasing the ammonium concentration prolonged the lag
time before the onset of fermentation and lowered the fermentation rates for both
substrates. In controls, lactate became nondetectable by day 1, while methanol was not
consumed during this time (Fig. 1A, middle). The successive fermentations allowed us
to determine the stoichiometry of the two substrates. Based on the measurements from
Fig. 1 (middle), 0.61 � 0.09 mM propionate and 0.43 � 0.07 mM acetate were produced
from 1 mol of lactate. Thus, lactate-fermenting bacteria were following the stoichiom-
etry shown in equation 1 (ΔG°= � �4.58 kJ/e� equiv):

3CH3CH2OCOO� → 2CH3CH2COO� � CH3CO O� � HCO3
� � H� (1)

Lactate fermentation through this stoichiometry occurred not only in controls (0.08
g liter�1 NH4

�-N) but also at 0.5 and 1 g liter�1 NH4
�-N. In fact, at 0.5 and 1 g liter�1

NH4
�-N, addition of excess ammonium allowed us to confirm and better examine this

stoichiometric pathway due to the lower fermentation rates and an obvious plateau in
acetate production on days 2 to 4 and 4 to 6, respectively (Fig. 1B and C, middle).
Lactate fermentation in mixed organohalide-respiring communities has also been
described to follow equation 2 (ΔG°= � �0.33 kJ/e� equiv), with acetate and H2 as
fermentation products (41–44):

CH3CH2OCOO� � 2H2O → CH3COO� � HCO3
� � 2H2 � H� (2)

While feasible, the thermodynamics of equation 2 clearly show that fermentation to
acetate and H2 is less favorable. This is consistent with the observations from our study
(Fig. 1A to C, middle) and past studies on organohalide-respiring and fermenting
cultures (44–46). At 2 g liter�1 NH4

�-N (Fig. 1D, middle), on the other hand, a striking
result occurred for lactate fermentation. Addition of ammonium at this concentration
led to a shift in the lactate fermentation pathway from that defined by equation 1
(propionic fermentation) to that of equation 2 (acetogenic fermentation). The net
increase in propionate at 2 g liter�1 NH4

�-N was 0.4 mM, compared to 3.54 � 0.64 mM
at 0.08, 0.5, and 1 g liter�1 NH4

�-N. Additional testing described in Text S1 and
illustrated in Fig. S1 and S2 in the supplemental material confirmed that this
ammonium-induced pathway summarized in equation 2 is conserved at concentrations
of �2 g liter�1 NH4

�-N. When 6 mM lactate was supplemented for a second time in the
cultures with 2 g liter�1 NH4

�-N, a net production of 3.12 mM propionate was detected
(Fig. 1D). Ammonium was measured in order to rule out the possibility that the recovery
of lactate fermentation activity was not due to a decrease in ammonium concentration
potentially from microbial ammonium oxidation. Initial (2,003 � 6 mg liter�1) and final
(1,965 � 35 mg liter�1) concentrations confirmed no substantial ammonium consump-
tion in these microbial communities.

Regardless of the initial ammonium concentration, considerable decreases in meth-
anol concentrations occurred only after lactate was completely consumed (Fig. 1A to D,
middle). For this reason, we were able to clearly separate acetate produced from lactate
and acetate generated from methanol. Based on the measurements from Fig. 1
(middle), the observed bacterial methanol fermentation stoichiometry is shown in
equation 3 (ΔG°= � �3.11 kJ/e� equiv):

2 CH3OH → CH3COO� � 2 H2 (3)

H2 was measured using a gas chromatography-thermal conductivity detector (GC-
TCD) system; however, H2 did not accumulate to detectable levels during the experi-
ments, indicating concomitant production and consumption. Consistent between the
cultures with increasing ammonium concentrations, 75% � 0.06% of the electron
equivalents from methanol were channeled toward acetate production (this distribu-
tion was also reported in PCE-respiring fill-and-draw bioreactors fed with methanol
[47]). In our work, addition of lactate at 0.08 to 1 g liter�1 NH4

�-N led to limited
amounts of H2 when lactate and methanol were fed concomitantly. A careful exami-
nation of fermentation and TCE reductive dehalogenation revealed that dehalogena-
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tion was mostly associated with methanol fermentation (see Fig. S3 in the supplemen-
tal material).

Anaerobic digestion studies have documented that methanogens display a higher
sensitivity to high concentrations of ammonium than fermenters and acetogens (29,
48). Furthermore, methanogenic activity decreases with increasing ammonium concen-
tration (37, 49, 50). Methanogenesis exhibited the highest activity in our control study
(Fig. 1A, right). At 0.5, 1, and 2 g liter�1 NH4

�-N, total methane production was
diminished by 90%, 63%, and 41%, respectively, compared to controls. However, at 4 g
liter�1 NH4

�-N, methane concentrations similar to those in controls were observed
after 46 days of incubation (see Fig. S1A in the supplemental material). Methane
production was mostly coupled to methanol fermentation, as was reductive dehalo-
genation, and reached a plateau by day 4 in the controls (see Fig. S3 for better
resolution of these reactions). The cultures containing 0.5 to 2 g liter�1 NH4

�-N
exhibited a lag time of 10 days or longer before methane production was detected
(Fig. 1B to D, right). Interestingly, the trends in methanogenesis under excess ammo-
nium conditions (�0.5 g liter�1 NH4

�-N) revealed an increase in methane produced as
a function of increasing ammonium concentration (Fig. 1B to D, right; see also Fig. S1A).
Methanogens have been shown to acclimate to ammonium concentrations as high as
3.5 g N liter�1 (49, 51), which concurs with the findings from our study for 2 to 4 g
liter�1 NH4

�-N.
Chemical analyses clearly unveiled an effect of ammonium concentration on reduc-

tive dehalogenation, fermentation, and methanogenesis. Ammonium-induced changes
were also reflected in the relative abundance of key microbial community members, as
measured by quantitative PCR (qPCR) (Fig. 4). Growth of D. mccartyi and Geobacter-
aceae, methanogenic Archaea, and homoacetogens (which possess formyltetrahydro-
folate synthase [FTHFS]) was highest in controls (Fig. 4). This was expected and in
agreement with ammonium noninhibitory conditions. The gene abundances of D. mc-
cartyi were lower when excess ammonium was provided (Fig. 4A). However, differences
in D. mccartyi gene concentrations between cultures with 2 g liter�1 NH4

�-N and the
other conditions also reflected incomplete consumption of TCE to ethene within the
experimental time frame. Remarkably, Geobacteraceae showed no growth relative to
time zero at 1 or 2 g liter�1 NH4

�-N. These data indicate that concentrations of �1 g
liter�1 NH4

�-N are highly inhibitory for Geobacteraceae and strongly suggest that
D. mccartyi populations are the main TCE–to–cis-DCE organohalide respirers at these
high ammonium concentrations.

FIG 4 Quantitative PCR enumerating the 16S rRNA gene copies of Dehalococcoides mccartyi,
Geobacteraceae, methanogenic Archaea, and homoacetogenic bacteria (FTHFS gene). The empty bars
are the gene abundance levels at time zero. The filled bars are the log gene copy numbers at the end
of the experiments: 0.08 g liter�1 NH4

�-N (control) at day 8; 0.5 g liter�1 NH4
�-N at day 19; 1 g liter�1

NH4
�-N at day 60; 2 g liter�1 NH4

�-N at day 100. The data are average results with standard
deviations from triplicate cultures.

Delgado et al.

Volume 1 Issue 2 e00053-16 msphere.asm.org 6

msphere.asm.org


The concentrations of archaeal 16S rRNA genes, predominated by those of hydrog-
enotrophic methanogens, mirrored closely the total methane production data shown in
Fig. 1. In particular, at 2 g liter�1 NH4

�-N, the archaeal gene copies and methane
concentrations were highest when ammonium was present at inhibitory concentra-
tions (but still lower than in controls). Homoacetogens, assayed based on the gene for
FTHFS, decreased as a function of ammonium concentration (Fig. 4D). The interplay
between hydrogenotrophic methanogens, homoacetogens, and organohalide-
respiring D. mccartyi cells has been previously documented (52). It is possible that
inhibitory ammonium concentrations (�2 g liter�1 NH4

�-N in our study) allow more H2

to be channeled toward methanogenesis, to the detriment of homoacetogenesis.
While ammonium and chlorinated solvent contamination has been reported in

numerous environments (12, 38), research on organohalide metabolism in the presence
of ammonium is lacking. In cases where groundwater is nitrogen limited, a source of
ammonium is often added as a biostimulant to promote bioremediation or to over-
come a stall in reductive dehalogenation. The findings from our study provide evidence
for the effect of elevated ammonium concentrations on TCE organohalide respiration
by D. mccartyi and Geobacteraceae in fermentative syntrophic microbial communities.
Chemical analyses showed conserved metabolic functions (production of ethene from
TCE) for organohalide respiration in the presence of up to 2 g liter�1 NH4

�-N. However,
molecular biological analyses support a change in organohalide-respiring population
dynamics from D. mccartyi and Geobacteraceae to mainly D. mccartyi for the partial
reduction of TCE to cis-DCE. Increasing the concentration of ammonium was coupled
to lower metabolic rates, longer lag times, and lower gene abundances for all microbial
processes studied. Given the elevated free NH3 concentrations (up to 1.4 mM), these
observations infer that energy for growth was diverted from respiration and fermen-
tation to pumping out NH4

� from inside the cells to overcome toxicity. Overall, our
study provides evidence on the feasibility of organohalide respiration of chlorinated
ethenes in ammonium-contaminated environments while highlighting important ki-
netic and thermodynamic limitations to be considered for bioremediation applications.

MATERIALS AND METHODS
Experimental conditions. Reductive dehalogenation batch experiments were performed using mineral
medium and landfill leachate in 160-ml glass serum bottles. Reduced anaerobic mineral medium
buffered with 30 mM HCO3

� (pH 7.4) and amended with vitamins was prepared as previously described
(14, 53). NH4Cl was supplemented to obtain 0.08, 0.5, 1, and 2 g liter�1 NH4

�-N (6 to 143 mM NH4Cl). At
pH 7.4, free NH3 represented 0.1 to 1.4 mM of the total NH3/NH4

� concentration. NH4Cl was the only
source of N in these experiments.

Landfill leachate was procured from the Northwest Regional Landfill, Surprise, AZ. The landfill had
detectable levels of dichloroethenes, dichloroethanes, dichloropropanes, and VC (data provided by the
landfill facility). The collected leachate had 0.6 � 0.01 g liter�1 NH4

�-N, 0.9 � 0.02 g liter�1 total N,
4,300 � 30 mg liter�1 chemical oxygen demand, 4,400 � 110 mg liter�1 alkalinity as CaCO3, and a pH
of 8.2. Before using it in the study, the leachate was sparged with N2 gas for 15 min to promote anaerobic
conditions. HCO3

� at 5 mM was added as buffer, and the pH was adjusted to 7.5 by using a 2.25 M HCl
solution.

At the beginning of the experiments, each batch bottle received 90 ml medium or landfill leachate.
The initial concentration of TCE was at 0.6 mmol liter�1, sodium DL-lactate was at 6 mM, and methanol
was at 12 mM. Lactate at 6 mM was added for the second time on day 46 in the cultures with 1 and 2 g
liter�1 NH4

�-N. The bottles were incubated at 30°C in the dark on a platform shaker set at 125 rpm.
Microbial inoculum. The microbial inoculum capable of TCE dehalogenation was the enrichment

culture ZARA-10. ZARA-10 was developed from soil material with TCE as the chlorinated electron
acceptor and lactate and methanol as the electron donors and carbon sources (14). The relative
abundance of its microbial populations was previously determined using high-throughput sequencing
and real-time qPCR (14). ZARA-10 inoculum contains multiple strains of D. mccartyi with the identified
reductive dehalogenase genes tceA, vcrA, and bvcA and members of the Geobacteraceae family capable
of TCE–to–cis-DCE dehalogenation. It also contains fermenting and homoacetogenic genera Acetobac-
terium and Clostridium (comprising 50% of the microbial community) and hydrogenotrophic methano-
gens belonging to the families Methanobacteriales, Methanomicrobiales, and Methanococcocales (14).
Acetoclastic or mixotrophic methanogens are not present in ZARA-10 (14). The microbial composition of
ZARA-10 shares many similarities with other organohalide-respiring and fermenting cultures (14, 16, 53,
54) and environmental communities from contaminated sites (15–18). Ten-milliliter culture aliquots were
added to each bottle at time zero (10% [vol/vol]). For the leachate study, we also established uninocu-
lated controls and uninoculated abiotic controls. The abiotic controls were generated by autoclaving the
landfill leachate. All experimental conditions were tested in triplicate.
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Chemical analytical methods. TCE, cis-DCE, VC, ethene, and methane were analyzed from 200-�l
gas samples using a gas chromatograph instrument (GC-2010; Shimadzu, Columbia, MD) equipped with
a flame ionization detector (FID) and an Rt-QS-Bond capillary column (Restek, Bellefonte, PA). The GC
settings and analytical methods were as previously described (52). A GC equipped with a TCD was
employed to measure H2 in the headspace of the bottles, using the methodology and conditions
described by Parameswaran et al. (55). The detection limit for H2 was 0.32 mmol liter�1 (gas concen-
tration).

Lactate, methanol, acetate, and propionate were measured via high-performance liquid chromatog-
raphy (HPLC) from 1-ml liquid samples filtered through 0.2-�m syringe filters. The instrument used was
a Shimadzu LC-20AT equipped with an Aminex HPX-87H column (Bio-Rad, Hercules, CA). Detection of
chromatographic peaks was achieved using a photodiode array detector at 210 nm and a refractive index
detector. The eluent was 2.5 mM H2SO4 and the column temperature was kept constant at 50°C.
Five-point calibration curves were generated for all compounds during each run. The detection limits for
organic acids and methanol were �0.1 mM and 0.5 mM, respectively.

Concentrations of ammonium, total nitrogen, and chemical oxygen demand were determined using
Hach (Loveland, CO) analytical kits according to the manufacturer’s instructions.

Quantitative real-time PCR methods. DNA was extracted from triplicate pellets formed from 0.5-ml
culture aliquots sampled at the beginning and end of the experiments, as previously described (53).
Real-time qPCR analyses were run for the following targets: the Dehalococcoides 16S rRNA gene,
Geobacteraceae 16S rRNA gene, Archaea 16S rRNA gene, and the FTHFS gene of homoacetogens.
Triplicate reactions were set up for six-point standard curves and samples in 10-�l total volumes using
4 �l of 1/10-diluted DNA as the template. Pipetting was performed using an automated liquid handling
system (epMotion 5070; Eppendorf, USA). The standard curves were produced by serially diluting 10 ng
�l�1 plasmid DNA. The primers and probes, reagent concentrations, and thermocycler (Realplex 4S
thermocycler; Eppendorf, Hauppauge, NY) conditions used were those previously published (14, 56).

Statistical analyses. Two-tailed parametric (Pearson) and nonparametric (Spearman) correlations
were determined for reductive dehalogenation rates and ammonium concentrations. Statistical analyses
were performed using IBM SS Statistic 22 software.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSphere.00053-16.

Text S1, DOCX file, 0.02 MB.
Figure S1, DOCX file, 0.1 MB.
Figure S2, DOCX file, 0.02 MB.
Figure S3, DOCX file, 0.04 MB.
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