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Abstract Glaucoma, a slow progressive neurodegenerative
disorder associated with death of retinal ganglion cells and
degeneration of their connected optic nerve fibers, has been
classically linked to high intraocular pressure. Regardless
of the primary risk factor, degeneration may continue,
resulting in further loss of neurons and subsequent
glaucomatous damage. During the past decade, scientists
and clinicians began to accept that, in addition or as an
alternative to fighting off the primary risk factor(s), there is
a need to protect the tissue from the ongoing spread of
damage—an approach collectively termed “neuroprotection.”
We found that the immune system, the body’s own defense
mechanism, plays a key role in the ability of the optic nerve
and the retina to withstand glaucomatous conditions. This
defense involves recruitment of both innate and adaptive
immune cells that together create a protective niche and
thereby halt disease progression. The spontaneous immune
response might not be sufficient, and therefore, we suggest
boosting it by immunization (with the appropriate antigen, at
specific timing and predetermined optimal dosing) which
may be developed into a suitable therapeutic vaccination to

treat glaucoma. This view of immune system involvement in
glaucoma will raise new challenges in glaucoma research,
changing the way in which clinicians perceive the disease
and the approach to therapy.
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Glaucoma is a major cause of blindness. It represents a
significant increasing public health problem, which affects
more than 67 million people, worldwide.

Initially described by Hippocrates as a cloudy blue (sea-
colored) pupil, glaucoma was accepted in the middle of the
nineteenth century as a disease resulting from elevated
intraocular pressure (IOP). Ever since, large, multicenter
clinical trials and several laboratory studies recognized
ocular hypertension as the most important factor in the
development of glaucoma. Consequently, IOP was a major
target for treating glaucoma, and thus, all the currently
available glaucoma therapies involve medical or surgical
procedures designed to lower IOP [1–5]. Although signif-
icantly successful in attenuation of progressive visual loss
among the treated patients [1–3, 6], it appeared that
reducing IOP did not fully arrest the disease in all cases.
Some patients continued to display glaucomatous damage
even after their IOP levels were controlled [7–9], while
others developed retinal degeneration in the absence of any
increase in IOP, a variant of the disease termed normal
tension glaucoma (NTG). It was thus realized that there is
more to glaucoma than just increased IOP.

Glaucoma is a complex multivariate disease, initiated by
several risk factors (with elevated IOP as only one of them).
Following the initial damage, the degenerating neurons
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create a hostile milieu, characterized by oxidative stress and
free radicals [10–12], excessive amounts of glutamate and
excitotoxicity [13, 14], increased calcium concentration,
deprivation of neurotrophins and growth factors, abnormal
accumulation of proteins, and apoptotic signals [15–20].
These factors contribute to the secondary damage, resulting
in further neuronal loss. The secondary damage ensuing
from this noxious environment is shared by many neuro-
degenerative diseases including Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis
[21]. This observation, together with other similarities
between glaucoma and common neurodegenerative disor-
ders, has led to the current view of glaucoma as a
neurodegenerative disease. Thus, major research efforts
are currently directed at attempts to prevent disease
progression and the secondary spread of damage by a
neuroprotective approach. Regardless of the primary risk
factor, glaucoma treatment is now focused on the degener-
ating neurons, rather than on other potential etiologies.
Thus, the field of glaucoma research is now moving
towards neuroprotection.

Despite the massive efforts, the clinical use of neuro-
protective agents in glaucoma is not yet a reality. Many
agents have been investigated for neuroprotective properties,
including free radical scavengers, antiexcitotoxic agents,
inhibitors of apoptosis, anti-inflammatory agents, neuro-
trophic factors, metal ion chelators, ion channel modulators,
and gene therapy. However, none of these agents has been
approved to date. Part of the delay in bringing a neuro-
protectant drug to clinical practice is due to the attempt to
deal with one single risk factor at a time. This challenge is
doomed to fail, as each of the risk factors contributes to the
neuronal spread of damage at different overlapping stages of
disease progression, and thus it is almost impossible to hit
the right target at the correct time. Instead of focusing
individually on a single risk factor, our group has demon-
strated during the past decade that harnessing the immune
system, the body’s own defense mechanism, can contribute
to minimizing the spread of damage that derives from the
multiple risk factors of glaucoma, and in this way, the
properly regulated immune response can restore central
nervous system (CNS) homeostasis.

Any CNS insult, whether it is acute or chronic, involves
the activation of immune cells. Immune activation in the
“immune privileged” CNS has long been perceived as a key
factor contributing to the pathology and leading to the
further spread of damage and neuronal death. As a result,
research efforts were directed at attempts to diminish this
apparent obstacle to recovery by the use of steroids and
anti-inflammatory drugs. Although this approach was often
associated with some transient improvement, several of
these anti-inflammatory agents have not only fallen short in
resolving CNS neurodegenerative disorder, but were rather

detrimental [22]. These failures are not surprising and are
consistent with our results, demonstrating a protective role
of the regulated immune response following CNS insult.
Thus, it might not be helpful to globally diminish the
immune response and prevent the natural healing of the
brain. When mice are challenged with neurodegenerative
conditions or neuronal injury, such as those existing in
experimental glaucoma models (optic nerve crush, induced
glutamate toxicity, or increased IOP), reduced neuronal
survival is detected [23, 24] in immune deficient mice, such
as nude mice, or thymectomized animals. A similar
phenomenon is observed following administration of
steroids [25]. When the relevant immune cells/activity is
restored, the ability of the retina to cope with the damage
returns, further demonstrating the need for a spontaneous
physiological immune response that can protect the neurons
from the glaucomatous damage.

Following the discovery of the essential role of the immune
system in protecting the retinal neuronal cells, we wished to
understand which immune cells are involved in this process.
The immune system is mainly associated with the recognition
of pathogens. Any immune response to “self-antigens” was
traditionally considered detrimental and was reflexively seen
as an autoimmune disease. However, in the case of damage to
the CNS in general and to the retinal ganglion cells (RGC) in
particular, we have learned that T cells specific for certain
CNS-specific self-antigens can protect the injured neurons
from death; passive transfer of T cells specific to myelin basic
protein (MBP) reduces the loss of RGC after traumatic optic
nerve injury [26]. This concept of defensive immune
response directed towards specific self-antigens, residing in
the site of damage, was established by our group and was
termed “protective autoimmunity” [23].

Unfortunately, the spontaneous autoimmune response is
probably insufficient or insufficiently regulated to promote
significant CNS protection. This can account for most of
the failures of spontaneous recovery following acute and
chronic CNS insults. We, therefore, suggested boosting this
protective autoimmune response by either passive transfer
of self-reactive T cells or active immunization using self-
antigens [23, 26–31]. With either approach, the choice of
the antigen is critical; only self-antigens that are present at
the damage site will promote neuroprotection. Thus, in our
experiments, only the transfer of T cells reactive to myelin
components that are expressed at the damage site and not to
the irrelevant antigen, OVA, enhanced the survival levels of
RGC [29]. A similar phenomenon is evident in active
immunization; only the use of whole retinal homogenate,
rather than spinal cord homogenate, is effective in protecting
the degenerating retina [29]. Notably, these T cells are also
effective when directed to cryptic epitopes of MBP, as well
as toward other myelin-derived altered peptides [32, 33]. In
this way, we can offer neuroprotection without the risk of
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causing an autoimmune disease. One such excellent example
is the use of Copaxone (GA), a drug approved by the Food
and Drug Administration for treating multiple sclerosis; this
agent consists of a synthetic polymer that weakly stimulates
a wide range of self-reactive T cells. Vaccination with GA
significantly reduces RGC loss, by controlling the milieu of
the nerve and retina, making it less hostile to neuronal
survival and allowing RGC to better withstand the stress [27,
34–37]. Thus, Copaxone provides ideal protection without
the risk of promoting an autoimmune disease.

Once activated by self-reactive antigens, the protective
autoimmune T cells create a neuroprotective environment
that prevents/attenuates the secondary spread of damage by
changing the nature of the local innate immune response
(see Fig. 1). T cells provide or facilitate recruitment of
blood monocytes, which, upon arrival to the damaged area,
contribute to restoration of homeostasis by producing

immunoregulatory cytokines, and thereby allow production
of the growth factors, chemokines, and cytokines that
properly activate resident microglia. Such activated
microglia/macrophages can take up glutamate, remove
debris, and produce growth factors. In addition, instead of
contributing to the destructive ongoing inflammation, these
cells do not produce agents that are part of their cytotoxic
mechanism, such as TNF-α, which the eye, like the brain,
tolerates poorly [38–42]; rather, these “alternatively”
activated microglia/macrophages participate in the regula-
tion of the local inflammation and restoration of homeo-
stasis [43]. During the course of our studies, we have
learned that both innate and adaptive immune cells, when
properly regulated, can promote neuroprotection in the
degenerating RGC. Interestingly, the same T cells that can
lead to the development of an autoimmune disease can
protect neurons under pathological conditions. This sug-

Fig. 1 Therapeutic vaccination
for glaucoma: immune modula-
tion to cease spread of damage.
Following the initial insult, dy-
ing neurons create a hostile
environment that includes apo-
ptotic signals, free radicals and
oxidative stress, toxic levels of
glutamate, ionic imbalance, ab-
normal protein behavior, and
deprivation of growth factors
and neurotrophins. These factors
and others, at different overlap-
ping stages of disease progres-
sion, mediate further spread of
damage and secondary degener-
ation, leading to the loss of
neighboring, still healthy neu-
rons. As a therapeutic approach,
we suggest using an active or
passive therapeutic vaccination
that will lead to a regulated
autoimmune response. In this
way, autoimmune T cells, rec-
ognizing specific CNS antigens
residing at the damaged retina,
will participate in the recruit-
ment and activation of macro-
phages, leading to the regulation
of the local inflammation and
restoration of homeostasis
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gests the obvious question: how is the protective response
by autoimmune T cells enabled without the potential risk of
creating an autoimmune disease? We found that regulation
is an important factor in this equation involving protective
autoimmunity on one hand and autoimmune disease on the
other. Self-reactive T cells are constitutively controlled by
a subpopulation of regulatory T cells that are part of the
physiological immune network, maintaining the autoim-
mune response in a form that protects the eye rather than
hurting it. These T regulatory cells are themselves
amenable to regulation and control [44, 45].

Other than their role in CNS protection, immune cells are
also involved in cell renewal. Many factors affect adult
neurogenesis—the creation of new neurons. We suggest that
immune components are also involved in this process, as they
transmit a message from the local niche to the neural
progenitor cells (NPC). We have previously shown that
immune cells, recognizing self-CNS antigens, not only
promote protection, but also contribute to the maintenance
of neurogenesis in the adult hippocampus [46]. More recently,
we showed that not only immune cells, but also immune
receptors, are involved in the neurogenic process [47]. We
found that Toll-like receptors (TLR), which are innate
receptors recognizing extrinsic and intrinsic components,
are expressed on NPC and regulate adult hippocampal
neurogenesis. When examining the retina, we found that
TLR4 is a key player in regulating neurogenesis: TLR4-
deficient mice showed increased proliferation and neuronal
differentiation. This deficiency is not sufficient to extend
the postnatal neurogenesis period, but when combined
with growth factors, TLR4 deficiency contributes to the
resumption of neurogenesis [48]. The identification of
TLR4 as a regulator of neurogenesis may provide a
promising therapeutic direction for promoting neurogen-
esis in the adult eye under pathological conditions.

Concluding remarks

In the course of our studies, we learned that the immune
system is pivotal for CNS maintenance and for withstand-
ing neurodegenerative conditions. Immune deficiency or
immune suppression impairs the recovery process, whereas
boosting a self-specific immune response, by either passive
or active immunization, promotes recovery. In order to
optimally induce recovery, the immune response should be
a well-regulated autoimmune response in which the choice
of antigen, dosing, and regimen are critical. Both innate and
adaptive immune responses are involved in the neuro-
protective process. In addition to their roles in neuro-
protection, immune components are key regulators of
neurogenesis and, therefore, can serve as therapeutic targets
in the adult eye under pathological conditions.

We suggest recruiting the immune system, which is the
body’s own defense system, to fight off the various
degenerative conditions that evolve in glaucoma. This
immune recruitment can be boosted by systemic self-
specific vaccination, involving both innate and adaptive
cells, and eventually leading to improved recovery and
preservation of the retinal neuronal tissue.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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