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Hydrophobic-Polar model is a simplified representation of Protein Structure Prediction (PSP) problem. However, even with the
HP model, the PSP problem remains NP-complete. This work proposes a systematic and problem specific design for operators of
the evolutionary program which hybrids with local search hill climbing, to efficiently explore the search space of PSP and thereby
obtain an optimum conformation. The proposed algorithm achieves this by incorporating the following novel features: (i) new
initialization method which generates only valid individuals with (rather than random) better fitness values; (ii) use of probability-
based selection operators that limit the local convergence; (iii) use of secondary structure based mutation operator that makes the
structure more closely to the laboratory determined structure; and (iv) incorporating all the above-mentioned features developed a
complete two-tier framework. The developed framework builds the protein conformation on the square and triangular lattice. The
test has been performed using benchmark sequences, and a comparative evaluation is donewith various state-of-the-art algorithms.
Moreover, in addition to hypothetical test sequences, we have tested protein sequences deposited in protein database repository.
It has been observed that the proposed framework has shown superior performance regarding accuracy (fitness value) and speed
(number of generations needed to attain the final conformation). The concepts used to enhance the performance are generic and
can be used with any other population-based search algorithm such as genetic algorithm, ant colony optimization, and immune
algorithm.

1. Introduction

The Protein Structure Prediction (PSP) problem is one of the
major problems in the field of computational biology. The
prediction of the native conformation of protein structure
from its amino acid sequence is called PSP problem [1–4].
The solution to the PSP problem helps in understanding the
molecular foundation of proteins in regulating life [5]. In wet
lab, Nuclear Magnetic Resonance (NMR), X-ray crystallog-
raphy (XC), and Cryoelectron microscopy are the methods
used to solve the PSP problem [6]. Due to complexities and
limitations of experimental methods, there is a huge gap in
the number of reported protein sequences and their structure,

and yet only 1% of structures are known for the reported
protein sequences [7]. This calls for a computational solution
to the PSP problem.

Computationally, the PSP problem is addressed by com-
parative modelling, threading, and ab initio approaches
[8]. The first two approaches depend on known reference
structure (template) to solve the PSP problem. Thus, the
successes of these methods are limited by the template
availability. The third approach predicts the native structure
of the protein from its sequence; it is termed as ab initio.
This method is devoid of a template and is better than
the template-based methods [9]. One of the earliest ab
initio approaches uses molecular mechanics to model protein
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structure.Thismethod is based on simulating forces involved
at the atomic level of amino acids such as covalent bonds,
ionic bonds, hydrogen bonding, van der Waals interactions,
and hydrophobic interactions. These molecular mechanics
are applied in CHARMM, AMBER, and ECEPP [10, 11]
energy functions and are found superior in modelling the
fine conformation of proteins. But these energy functions are
expensive in terms of both complexity and computational
resources, making it infeasible even for the smallest protein
sequence [12]. Besides, there are methods available based on
interactions between specific pairs of amino acids with lower
complexities such as Miyazawa-Jernigan (MJ) model [13–15]
and Berrera energy model (BM model). Both these models
use 20 x 20 energy matrix, and MJ uses effective contacts
between all amino acid pairs, whereas BM uses van derWaals
radii of alpha carbon and side-chain heavy atoms. Although
these methods have reduced the computational complexity,
a great amount of computing time is still required, which
makes it computationally intractable for such elaborated
energy function [16].

In 1985, Ken Dill [17] proposed a new computational
perspective to lessen the modelling complexity and accel-
erate structure prediction to fill the sequence-structure gap,
namely, the Hydrophobic-Polar (HP) model. Contrary to
molecular mechanics and other modelling methods, the HP
model considers hydrophobic interaction as the primary
force involved in the folding process and yet was able to
depict the natural folding patterns [18]. This is the most
widely accepted approach to solve the PSP problem [19–21].
Although the HP model has reduced the computation time
and complexity, it still falls under the category of theNP-com-
plete problem [22]. In order to address NP-hardness, numer-
ous researchers have worked with various population-based
search algorithms such as Monte Carlo [23–25], genetic algo-
rithm [19, 26–30], evolutionary programming [31], ant colony
optimization [32–34], immune algorithm [35], constraint
based chain growth algorithm [36], and hybrid of local search
and evolutionary algorithms commonly calledmemetic algo-
rithm [37–41]. The details on these algorithms and their
performance are available in various review papers [18, 42].

Population diversity and selective pressure are two impor-
tant parameters which control the performance of the afore-
mentioned algorithms. But it has been observed that more
often only one parameter is considered to reduce computing
time of the PSP problem. As the PSP problem presents a
rugged search space with more opportunity to get trapped
in the local solution, undertaking of population diversity
and selective pressure may result in better conformation
with less computation (in few generations). Hence, this work
integrates both these factors (i.e., population diversity and
selective pressure) through a hybrid approach (evolutionary
programming coupled with hill-climbing local search algo-
rithm) for addressing PSP problem.

2. Material and Method

2.1. Hydrophobic-Polar Model. In the HPmodel, amino acids
are classified into twomajor groups, namely, hydrophobic (H)
and polar (P) [17].The protein folding happens in an aqueous

environment (cytoplasm), and the hydrophobic amino acids
of the protein repel water, and this creates the driving force for
folding. The hydrophobic amino acids arrange themselves to
form a central hydrophobic core, and the polar amino acids
are left on the surface to interact with water molecules. This
can be explained by the oil-water behaviour [3], and the HP
model mimics this.

The HP approach decomposed the PSP problem into
three subproblems; first, defining a model to represent the
protein structure referred to as conformation, second, defin-
ing the energy quantification based on amino acid properties
that evaluate themodelled conformation, and, third, develop-
ing a search algorithm that can efficiently optimize confor-
mation from a huge modelled space. In 1989 Lau and Dill
proposed a lattice statisticalmechanicsmodel [3] used to rep-
resent the protein conformation commonly known as the lat-
ticemodel or low-resolutionmodel. In the latticemodel, each
amino acid is represented as a node of the lattice and two con-
secutive amino acids are connected through the lattice edge.

The modelled conformations are quantified using hydro-
phobic interaction (H-H contact) present in the lattice dia-
gram. The hydrophobic interaction is defined by the topo-
logical distribution of hydrophobic amino acid; two H amino
acids contribute to one unit of free energy value if H residues
are adjacent (at the least distance) on lattice but noncon-
secutive in a protein sequence. The free energy value is
negative of H-H contacts number. Concerning H-H contact,
PSP is defined as maximization problem whereas with the
free energy it is minimization problem. Formally, the Pro-
tein Structure Prediction problem over HP model is defined
as a triple (𝑆, 𝑓,Ω), where 𝑆 is a given search space (collec-
tion of different possible conformations), 𝑓 is the objective
function (in terms of hydrophobic contact or free energy
value), which should be maximized or minimized, and Ω is
the set of constraints that have to be fulfilled to obtain feasible
solutions. The goal is to find a globally optimal solution,
which is the solution 𝑆𝑥 with the largest or smallest objective
value under the condition that all constraints are fulfilled.
Triple (𝑆, 𝑓,Ω) is defined as follows:

𝑆: it is a set of lattice conformations for given HP
sequences.
𝑓: it is an objective function to be maximized for
hydrophobic contact or minimize the free energy
value; here PSP is defined in terms of free energy value
as

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = ∑
𝑖,𝑗:𝑖+1<𝑗

𝑐𝑖𝑗 ⋅ 𝑒𝑖𝑗 (1)

where
𝑐𝑖𝑗

=
{
{
{

1, 𝑖𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑎𝑡 𝑖 𝑎𝑛𝑑 𝑗 𝑓𝑜𝑟𝑚 𝐻 −𝐻 𝑐𝑜𝑛𝑡𝑎𝑐𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑒𝑖𝑗 =
{
{
{

−1 𝑖𝑓 𝑠𝑖 = 𝑠𝑗 = 𝐻
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)
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6 0 -1 16 3 0

7 -1 -1 17 3 -1

8 -1 0 18 3 -2

9 -1 1 19 2 -2

10 0 1 20 2 -1

(c)

Figure 1: (a) Movement direction on XY axis for square lattice and (b) example conformation for 3H2P2(HP)H2P2(HP)H2PH, where
encoding sequence is FDDBUBUUFUFDFDFDDBU and corresponding genotype (chromosome) is given in (c) amino acid position which
is represented as “AAP” in the given sequence.

Ω: it is a set of the following constraints that need to be
satisfied when modelling the PSP on a lattice:

(i) Self-avoiding walk (SAW): each amino acid must
occupy only one lattice point, which no other amino acid can
share.

(ii) Adjacent amino acids of the primary sequence must
be at the unit distance.

2.2. Protein Structure Encoding. In this work, protein con-
formations are modelled using the nonisomorphic encoding
proposed by Hoque et al. [43]. This encoding avoids the gen-
eration of isomorphic conformation; hence, the search space
is free from degeneracy problem, where it consists of two
different encodings corresponding to similar conformation.
In such cases, if one conformation is kept at the center of the
axis and the other rotating around it, in one quadrangle both
structures will overlap. The existence of such conformation
increases the use of the computational resources as they
correspond to the similar structure and alsomakes the search
space stagnate. A conformation C of n residues can be
expressed in the form of movement direction such as C ∈
{F,B,U,D}(n-1) and C ∈ {F,B,U,D, FU,BU,BD, FD}(n-1) for
two-dimension square and triangular lattice, respectively. F,
B, U, D, FU, BU, BD, and FD are the movement direction
to be followed on the Cartesian coordinate corresponding
to forward, backward, up, down, forward-up, backward-up,
backward-down, and forward-down direction. In the Carte-
sian coordinate these directional movements represent the
single step move of (1, 0), (-1, 0), (0, 1), (0, -1), (1, 1), (-1, 1),
(-1, -1), and (1, -1) respectively (Figure 1).

Also, nonisomorphic encoding ensures the 1:1 map-
ping for conformation and the encoded sequence. Hence,
it performs the bijective mapping between genotype and
phenotype.

3. Proposed Algorithm

The proposed framework has a two-tier architecture, where
first layer dealswith the generation of the initial conformation
and second layer improves the initial conformation by apply-
ing evolutionary operator mutation and selection. Besides
exploitation and exploration of search space, we have con-
sidered the hybrid of local search with the evolutionary
programming (MA(EP+HC)). The layout of the proposed
framework is presented in Figure 2.

First Tier. The first tier deals with the sequence conversion
and initial population generation. As shown in Figure 3,
protein sequence is submitted in its “Fasta format” [44]. The
input is converted into corresponding HP string by assigning
the following subgroups H ∈ {A,G, I, L,M, F,P,W,V}
and P ∈ {R,N,D,C,E,Q,H,K, S,T,Y} [45]. Further, HP
sequence is used as input to generate the initial conforma-
tions.The initial conformations were obtained using the pro-
posed initialization method developed by the hill-climbing
algorithm to attain the valid conformationwithminimal time
and computation.

3.1. Hill Climbing. The hill-climbing (HC) algorithm is an
iterative process to attain a solution to the NP-complete
problem. It starts with one possible solution and iteratively
improves it by satisfying the constraint of the problem. For
instance, if 70% of current population converge to the same
free energy value before reaching the termination condition,
in such a case, HC employs diversity by random initialization
whereas if the population space is too diverse, then the
HC employs local search process to improvise the solu-
tion.

In this work, HC controls the trade-off between conver-
gence and divergence of the population to avoid the trap of
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Figure 2: Layout of the proposed framework MA(EP+HC).

(1) Hill-climbing controller (𝑐𝑢𝑟𝑃, 𝐸∗, 𝑜𝑝𝑅);
Input: current population curP, 𝐸∗, Emax free energy
and opR operator selection probability
Output: newP new population

(2) If Eavg>70% of Emax and Emax<95% of 𝐸∗ then
(3) Generate random individual and replace identical

energy value conformation \\ increase the diver-
sity of the population

(4) else
(5) until termination condition;
(6) Perform mutation;
(7) Evaluate new conformation;
(8) If new conformation better then target confor-

mation then
(9) Replace target conformation with new confor-

mation
(10) End
(11) End
(12) Return the newP

Algorithm 1: The pseudocode for hill-climbing controller.

protein structure in the local optima. The pseudo code for
used HC is given in Algorithm 1.

3.2. Evolutionary Programming. The evolutionary program-
ming adopted in this research work is based on the first evo-
lutionary program (EP) developed by L.J. Fogel (1962) [46].
“EP is derived from the simulation of adaptive behaviour in
evolution.” This differs from other evolutionary algorithms
such asGA,GP, andES by following evolutionary behavioural
model. The workflow of EP followed in the proposed work is
presented in Algorithm 2. EP utilizes four main components
of EAs: initialization, mutation, evaluation, and selection.

Each of these components with reference to the PSP problem
is discussed as follows.

3.2.1. Population Initialization. The population initialization
is the first step in all types of evolutionary algorithms as
well as for stochastic search methods. For the PSP prob-
lem, protein conformation is individual, and a collection of
conformations forms the population. The initial population
generation is a random process, where initial conformations
are generated; then they are subjected to confirmwhether the
generated conformation is valid or not.

For HP lattice-based PSP, conformation is valid if it
follows the noncyclic move (self-avoiding walk). If not, it
is discarded, and a new conformation is regenerated. This
process inherently makes the generation of individuals com-
putationally expensive. To overcome this limitation, which
significantly slows down the search algorithm, we proposed
a new initialization approach with the use of pointers, so that
it ensures the generation of only SAW conformation and also
provides the process to be significantly faster than random
initialization.

Proposed initialization method is grounded on the fact
that while folding, protein follows some specific folding path-
ways called folding rule. These folding rules are defined
as follows: (a) Each amino acid searches for compatible
neighbours and (b) each amino acid maintains its memory
fromprevious interactions to prefer neighbour, thus resulting
in a hydrophobic core. In the proposed method, sequence
movement directions were obtained using random num-
ber generator function rand() which generates the number
between 0 to 3 for square lattice four directional moves such
that 0, 1, 2, and 3 refer to forward (F), up (U), backward
(B), and down (D) move. Similar is the case with the
triangular lattice, where forward-up (FU), backward-up (BU),
forward-down (FD), and backward-down (BD) were selected
by random numbers 6, 7, 8, and 9, respectively.

However, the residue movements were chosen based on
the randomnumber, but movement selection process is ruled
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Input: HP sequence, Population size N
Output: Confbest// best protein conformation

(1) Initialize the generation counter, 𝑡 = 0;
(2) Create initial Population, 𝑃(0) // 𝑃(0) is set of N confor-

mation;
(3) for each individual, 𝑐𝑜𝑛𝑓𝑖(𝑡) ∈ 𝑃(𝑡) do //individual is

protein conformation
(4) Evaluate the fitness, 𝑓(𝑐𝑜𝑛𝑓𝑖(𝑡));
(5) end
(6) while termination condition(s) not true do
(7) for each individual, 𝑐𝑜𝑛𝑓𝑖(𝑡) ∈ 𝑃(𝑡) do
(8) Create an offspring 𝑐𝑜𝑛𝑓󸀠𝑖 (𝑡), //by applying the

mutation operator;
(9) Evaluate the fitness, 𝑓(𝑐𝑜𝑛𝑓󸀠𝑖 (𝑡));
(10) Add 𝑐𝑜𝑛𝑓󸀠𝑖 (𝑡) to the set of offspring, 𝑃󸀠(𝑡);
(11) end
(12) Select the new population, 𝑃(𝑡 + 1), from 𝑃(𝑡) ∪

𝑃󸀠(𝑡), by applying a selection operator;
(13) 𝑡 = 𝑡 + 1;
(14) end
(15) Return (𝐶𝑜𝑛𝑓𝑏𝑒𝑠𝑡(𝑃(𝑡 + 1)))

Algorithm 2: The pseudocode for evolutionary programming.

by the hill-climbing (HC) algorithm, in contrast to random
initializing. It is implemented using an array of pointer to list
the availability of the lattice position.

The pointer holds the position of the lattice and, based
on the availability of position, it is assigned its value; such
that if the position is filled, then it updates the value as 1,
whereas the available position has the value of 0. Further,
the proposed method used fixed position for the first two
amino acids with the first at the center of the lattice at
position of (0, 0) and second at the first forward move at
(1, 0); then it follows for loop to generate the l-2 random
number for the remaining residues. Concerning the random
number and position move, associated coordinate value was
assigned and stored in the array of a pointer which was
used to intimate that the selected moves were SAW move
or not. If not then it specifies the position x where the
cycle appears. Further, it generates the l-2-x random number
for the remaining residues and completes the conformation.
A detailed comparison of the proposed method with the
existing random initialization is presented in the Results and
Discussion section. The entire process is represented as a
flowchart (Figure 3).

Second Tier.The second tier of the proposed framework deals
with the refinement of the initial conformation. Improvement
of initial conformation has been attained with the hybrid
of evolutionary programming (EP) and hill-climbing local
search algorithm. EP works through initialization, mutation,
evaluation, and selection operators of evolutionary algo-
rithms [42, 47]. The success of EP is controlled by two main
evolutionary operators: mutation and selection.

3.2.2. Mutation Operators. For EP, mutation is the only
means to introduce variation in the population. Mathemat-
ically, mutation is defined as

𝑥󸀠𝑖 (𝑡) = 𝑥𝑖 (𝑡) + Δ𝑥𝑖 (𝑡) (3)

where 𝑥󸀠𝑖 (𝑡) is the offspring created from parent 𝑥𝑖(𝑡) by
introducing variation Δ𝑥𝑖(𝑡) to 𝑥𝑖(𝑡). For the PSP problem,
variation Δ𝑥𝑖(𝑡) is introduced using one of the three types of
mutation operators; helix, sheet, and corner/pull move over
(square/triangular lattice), with the objective of increasing
the H-H contact and secondary structural motif. The first
twomutation operators are inspired by the protein secondary
structure helix and sheets (Figure 4). The corner and pull
move mutation (Figure 5) was adopted from the work of
Hoque et al. [43]. The sequence patterns rule the selection
of these mutation operators. For example, if the substring
is P2HP2HP2, then it follows the downward directed helix
(Figure 4(a)). It is observed that this results in the formation
of the most compact mutation.

Similarly, the pattern HP2H2P2H follows the upward
directed helix (Figure 4(b)). Contrary to this, if sequences
have three or more repetitive residues, that follows sheet
conformation (Figure 4(c)).

3.2.3. Selection Operator. The primary objective of selection
operator is to select the best individual, makemultiple copies,
and discard the rest keeping the population size constant.The
selection is based on the relative fitness of individuals. Based
on the score assigned to each, the following selectionmethods
have been used.
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Figure 3: Expedition of first tier.

(a) (b) (c) (d) (e) (f) (g)

(h) (i)

Figure 4: Protein secondary structures mapping with modelled structure, (a) helix, and (b)-(c) equivalent helix pattern on square and
triangular lattice, respectively. (d) Sheet, (e) equivalent sheet for modelled conformation, (f) alpha-alpha motif, (g) equivalent motif for
modelled conformation, (h) beta-beta motif, and (i) equivalent motif for modelled conformation.
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(a) (b)

(c)

Figure 5: Set of mutation operators, namely, (a) corner, (b) pull, and (c) sample mutated conformation before with 5 H-H count (left) and
after mutation 7 H-H count (right).

Tournament Selection. It is used to facilitate the exploitation
feature of EP. It is performed on the 20% of the population
which have equal fitness value. Here, selected population is
grouped into a set of 𝑛𝑡𝑠 individuals where 𝑛𝑡𝑠 < 𝑛𝑠 (𝑛𝑠 is
the total number of individuals in the population, and 𝑛𝑡𝑠 is
20% of ns). Every individual of a set is subjected to similar
mutation, and the best performing is returned for further
optimization.

Rank-Based Selection. Here, the selection is based on the
relative ranking. Hence, the selection is independent of actual
fitness values, with the advantage that the best individual
will not dominate in the selection process. Nondeterministic

linear sampling selects an individual, 𝑥𝑖, such that 𝑖 ∼
∪(0, ∪(0, 𝑛𝑠 − 1)), where the conformations are sorted in
decreasing order of their fitness values. It ensured unbiased
selection and used over 75% of the population.

It is also assumed that the rank of the best individual is 0
and that of the worst individual is 𝑛𝑠 − 1. The linear ranking
assumes that the best individual creates 𝜆, offspring, and the
worst individual 𝜆󸀠, where 1 ≤ 𝜆 ≤ 2 and 𝜆󸀠 = 2 − 𝜆. The
selection probability of each individual is calculated as

𝜑𝑠 (𝑥𝑖 (𝑡)) =
1 − 𝑒−𝑓𝑟(𝑥𝑖(𝑡))

𝛽 (4)
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where 𝑓𝑟(𝑥𝑖) is the rank of 𝑥𝑖 (i.e., the conformation’s
position in the ordered sequence of individuals) and 𝛽 is the
normalization constant.

Elitism. Elitism refers to the process of ensuring that the
best individuals of the current population survive to the next
generation. This ensures retaining of the best conformation.
The probability of selection in this method is 5%.

Aging Operator. If particular conformation is elitist for
consecutive twenty-five generations and if they are not
enhancing the fitness values through evolutionary operators,
then they are called aged individuals. Further tournament
selection is performed among the aged individuals of equal
fitness. Based on the resultant value of this operator, it

will either be elitist or discarded. This helps in maintaining
the diversity and exclusion from getting trapped in local
minima.

3.2.4. Other Algorithmic Features Considered

Population Size. The larger the population size, the more
the diversity, thereby improving the exploration abilities of
the population. However, the higher the population size, the
more the computational complexity per generation. While
the execution time per generation increases, it may be the
case that fewer generations are needed to locate an acceptable
solution. The considered population size in this work is 200
as followed in many of the state-of-the-art works [47].

Fitness Function. The fitness function is defined as follows:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓 = ∑
𝑖,𝑗:𝑖+1<𝑗;𝑠𝑖=𝑠𝑗=𝐻

𝑐𝑖𝑗 𝑐𝑖𝑗 =
{
{
{

1, 𝑖𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑎𝑡 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑎𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑎𝑡𝑡𝑖𝑐𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(5)

It returns the number of H-H count present in the given con-
formation.

Stopping Condition.This is used to bind the number of gener-
ations allowed to execute for EA and execution time. Further,
convergence criterion is used to detect if the population has
converged. In the context of the PSP problem, convergence
is defined as a state when there is no increase in the fitness
value of conformation or the state when it ends in a similar
conformation.

The test HP sequences (Table 1) were taken from the study
of Garza-Fabre et al. [18]. Initially, conformations are built
using randomgeneration technique. Later, conformations are
built using proposed approach for the same test beds. The
implementations of both random initialization and proposed
initialization were carried out on the same machine. The
effect of the proposed approach ismeasured usingH-H count
value and the number of valid conformations generated.
The noncyclic conformations were called valid conformation
satisfying the SAW constraint of Dill’s HP model. The evalu-
ation would be equal to the level of the phenomenon (H-H
count) after the treatment (proposed initialization approach)
minus the level of the phenomenon (H-H count) before the
treatment (random initialization).

The executable code is implemented using Visual C++
on Microsoft Visual Studio 2012 where conformations are
visualized using OpenGL graphics. The complete program is
available at www.abinitio-hp-psp.com.

4. Results and Discussion

To evaluate the efficiency of the proposed initialization
approach, both proposed and random initialization programs
have been executed to generate 100 conformations for the
benchmark sequences [18] presented in Table 1. Both of

the initialization programs were implemented locally on the
same system. The results of initialization algorithms are
shown in Table 2. The comparative evaluation for random
versus proposed initialization approaches are as shown in
Table 2.

4.1. Based on Methodology. In random initialization method,
for each constituting residue of a given sequence, first, it
generates random numbers between 0 and 3. Numbers 0, 1,
2, and 3 represent the forward (F), back (B), up (U), and
down (D) movements on the 2D lattice, respectively, and are
used to encode the conformation. In this approach, first, it
assigns the move, i.e., position in the 2D space, and then the
conformation is subjected to the SAW evaluation.

Meanwhile, in the proposed approach, it assigns the
moves using 2D flag array. Size of array is the square value
of sequence length. Initially, all values of the array are set to
false, and once the coordinate is assigned, it turns to true.
Furthermore, for each assignment of movement, it checks
the array, and if it is occupied (array value is true), then it
cancels themovement and attemptswith other positions.This
has resulted in the reduction of time to generate the confor-
mations, as, instead of cancelling the complete assignment,
it checks the alternate position to fill out the conformation.
It has been observed that, with random initialization, most
of the conformation fails to satisfy the SAW constraint.
The values for a number of SAW(𝑁V) and non-SAW(𝑁𝑖)
conformations generated in one run are depicted in Table 2.

It has been observed that, with random initialization,
the number of SAW conformations is inversely proportional
to the length of the given sequences (Figure 6), whereas
the proposed initialization approach generates only valid
conformations(𝑁𝑘).

The proposed initialization approach has completely
removed the generation of invalid conformations, whereas

http://www.abinitio-hp-psp.com
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Table 1: Benchmark sequence to test on 2D square lattice [18].

Seq. No. Sequences Seq. length Max H-H
1 PH2PHP3HP2HP5H 18 -9
2 HPHP3H3P4H2P2H 18 -8
3 2H5P2H3PH3PHP 18 -4
4 HPH2P2HPH2PHP2H2PHPH 20 -9
5 3H2P2(HP)H2P2(HP)H2PH 20 -10
6 2H2P6(H2P)2H 24 -9
7 2PH2P3(2H4P)2H 25 -8
8 3P2H2P2H5P7H2P2H4P2H2PH2P 36 -14

Table 2: Results of initialization algorithm.

S.ID L Random initialization Proposed
initialization

𝐻𝑅 𝑁V 𝑁𝑖 𝐻𝑘 𝑁𝑘
1 18 3 56 44 5 100
2 18 4 59 41 7 100
3 18 1 54 46 7 100
4 20 2 46 54 7 100
5 20 3 43 57 8 100
6 24 2 36 64 6 100
7 25 2 31 69 5 100
8 36 4 13 87 8 100
𝐻𝑅,𝐻𝑘: H-H count value obtained with random and proposed initialization
respectively; 𝑁V: number of valid conformations; 𝑁𝑖: number of invalid
conformations; 𝑁𝑘: number of conformations generated using proposed
initialization.
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Figure 6: Graph for the number of SAW (noncyclic) and Non-SAW
(cyclic) conformations generated using random (RI) and proposed
initialization (PI) method. “l” refers to the length of the sequence.

random approach fails to generate all valid conformations.
Moreover, as the sequence length increases, the number of
invalid conformations increases and valid structures decrease
with random initialization.This results inmultiple executions
of the initialization function to attain the defined number of
initial conformations, which serve as input for further appli-
cation of evolutionary operators, mutation, and crossover.

Contrary to this, the proposed initialization method has
generated only SAW conformations, resulting in a reduction
in uses of computational resources as well as time.

4.2. Based on Free Energy. Free energy (E∗) value is a
quantitative parameter that evaluates the predicted structure
for protein. According to thermodynamic law, a particle in
its native state has the lowest free energy. As stated in Section
one, for the PSP problem, the higher theH-H count, the lower
the energy value and, hence, the more optimal the structure.
Table 3 represents the lowest free energy value obtained
with a random and proposed algorithm implemented with
100 generations having 100 as the population size (100 x100
conformations).

In Table 3, E∗ is the lowest free energy value reported
in the state-of-the-art research work of Islam and Chetty
[47]. Figure 7 shows the free energy variation for each
tested sequence over the 100 generations through proposed
approach. This study has been done to find out if there is any
trend in the value of free energy to reach the optimum E∗. It
has been observed that as the generation count increases, the
gap between E∗ and the obtained E reduces, which results
in a significant drop in the required number of generations
needed to attain E∗.

Moreover, proposed approaches have nearly reached the
reported optimum values as shown in Figure 7. In this
study, the value of E∗ has been considered as 100% and
then evaluated with the results of proposed and random
initialization approach to evaluate how far or near it is with
the E∗ in percentage. This result is presented in Figure 8.

The EP outperforms ER in all the tested sequences
concerning free energy value. EP values are closer to the E∗ as
shown in Figure 8. On the other hand, the free energy values
obtainedwith the ER fails to reach 50% of the optimumvalue.
Hence, conformations generated using random generation
require more use of evolutionary operators to attain the
optimum conformation whereas conformation generated
using proposed initialization needs fewer operators. This
contributes to an immense drop in time to reach the optimum
conformation.

4.3. Number of Hydrophobic Residues and Free Energy Values.
This analysis has been done to find if there is any trend in
folding and free energy values depending on the number
of hydrophobic (H) residues. It has been observed that the
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Figure 7: Line graph for optimum free energy values E∗ and energy value obtained with the proposed initialization approach with 100
conformations in each generation for the benchmark sequences used in this study.



Advances in Bioinformatics 11

Table 3: Free energy value comparison of first tier.

S. ID E∗ ER EP E% = (E/E∗) ∗ 100 H% CR% CP%

ER% EP%

1 -9 -3 -5 33.3 55.6 57 33.4 55.6
2 -8 -4 -7 44.4 87.5 61 50 85.7
3 -4 -1 -3 25 175 33 25 75
4 -9 -2 -7 22.2 77.8 50 22.3 77.8
5 -9 -3 -8 33.3 88.9 50 33.4 88.9
6 -9 -2 -6 22.2 66.7 42 22.3 66.7
7 -8 -2 -5 25 62.5 36 25 64.3
8 -14 -4 -8 28.6 57 44 28.6 57.2
E∗: lowest free energy value from [35]; ER, EP: lowest free energy value obtained with random and proposed approach, respectively; E%: % of E value with
respect to optimum E∗ value;H% = (nh/𝐿)∗100 of H element in given sequence; nh: number of hydrophobic residues; CR%, CP%: convergences rate for H-H
contact with random and Knowledge based approach, respectively.
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Figure 8: Line graph to represent the closeness of free energy
value obtained with the random ER and proposed EP initialization
techniques with respect to reported free energy E∗ value [18].

higher the hydrophobic residue percentage, the lower the free
energy value as shown in Table 3. Sequences 1, 2, and 3 have
the same residue count of 18, but the percentage of H residue
is higher in 1 and 2 between 57 and 61% whereas in 3 it is
33%. This may result in the difference in the value of free
energy. The similar pattern has been found for sequences 3,
4, and 5 where each of these sequences has the same length
and nearly the same hydrophobic residue percentages, which
has resulted in identical free energy values of -9.This concept
can be used to predict the number of optimum hydrophobic
contacts for the novel protein sequences, and it can also
be helpful in determining the protein core formation and
distribution of residues in the 3D structure.

4.4. Based on the Convergence Rate. The convergence rate
is another parameter to evaluate the performance of the
proposed approach. It is given in terms of percentage and
calculated using formula given in

𝐶𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 (%)

= 1 − (𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐸𝑥 − 𝐸∗)
𝐸∗ × 100.

(6)

The above formula is adopted from thework of Paul et al. [50].
They proposed the novel population initialization technique
for the traveling salesman problem using a genetic algo-
rithm and performed the characteristic performance evalu-
ation using (6). With regard to convergence, the proposed
approach outperforms the random initialization method as
shown in Table 3, where convergence rate for the proposed
algorithm in average is 71% whereas random approach
average convergence rate is 30%as the higher the convergence
rate is, the faster it is to reach the optimum conformation.The
maximum and minimum values for proposed convergence
are 88.9% for sequence 5 and 55.6% for sequence 1 and in case
of random initialization highest convergence value is 50%,
and lowest is 22.3% as shown in Table 3.

Thus, at least 55.6% of convergences have been obtained
with the initial population for solving the PSP problem,
with proposed initialization in the initial phase which con-
tributes to the reduction in the consumption of computa-
tional resources and computation time by early convergence
towards the optimum solution. Further, the average conver-
gence of proposed approach for other instances lies between
88.9% and 55.6% which indicates that the initial set of solu-
tions have an excellent collection of varying conformation.
This could help in the exploration of wide search space and
avoid the possibility of getting trapped in local solution.

4.5. Square Lattice Model. The proposed framework has
been evaluated with five state-of-the-art approaches, namely,
MMA [37], ACO [34], IA [35], GGA [18], and CMA [47].
The proposed framework is implemented with an initial
population of 100 conformations. These conformations are
generated using the first layer of the framework, where it
employs domain-specific knowledge to compute the H-core
in the initial conformation. Later, these conformations are
passed to the second tier where various mutation operations
are applied to improvise the fitness function values. The
proposed framework is run to achieve the reported optimum
fitness values, with a minimum of 50 runs and maximum of
500.

Every run is independent of each other and executed
on the same system. Results obtained with the proposed
framework and other EAs have been presented in Table 4.
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Table 4: Optimum energy value E∗ obtained with various search algorithms on 2D square lattice model.

S. ID MMA [37] ACO [34] IA [35] GGA [18] CMA [47] MA(EP+HC) Gc

1 -9 N/A -9 -9 N/A -9 98
2 -8 N/A -8 -8 N/A -8 361
3 -4 N/A -4 -4 N/A -7 54
4 -9 -9 -9 -9 N/A -9 342
5 -10 N/A -10 -10 N/A -9 400
6 N/A -9 -9 -9 -9 -9 249
7 -8 -8 -8 -8 -8 -8 301
8 -14 -14 -14 -14 -14 14 435
N/A: not used in the study; Gc: number of generations needed to attain the optimum value.

Figure 9 represents the conformation for sequences 5, 6, and
7.

Although most of the EAs show similar fitness values as
compared with the proposed framework values, the differ-
ence lies in the population size and the number of generations
used. CMA [47] uses a population size of 100, whereas, in
EDA [47], the population size is 5000, which is 50 times larger
than the CMA population size. The result shows that the
MA(EP+HC) performs consistently and achieves equivalent
fitness values in fewer generations and hence reduces the
computation time. Note that Table 4 includes a column for
generation count ofMA(EP+HC) algorithm, which is needed
to attain the optimum value. As this value is not available in
any related work, hence no comparison could be made based
on the generation count.

4.6. Triangular Lattice Model. For triangular lattice, this
study has been carried out using benchmark sequences taken
from the work of Islam and Chetty [47]. In this implementa-
tion, we have compared the performance of MA(EP+HC)
with HGA [48], ERS-GA [39], HHGA [39], TS [49], CMA
[47], and OSSGA [40] and results are summarized in Table 5.
It has been observed that the MA(EP+HC) has obtained the
lowest free energy (Table 5) for the test sequence in experi-
ment compared to the previous state-of-the-art approaches.

To check the efficiency of MA(EP+HC) for longer se-
quences, we have extended our study for test sequences B9
to B11 (Table 5), and these test sequences are taken from the
work of Islam and Chetty [47]. However, none of the other
works has considered sequences longer than 64 for triangular
lattice. In our execution, MA(EP+HC) ran with a population
size of 100 similar to CMA. As each of the compared works
executed on different systems with different configurations,
comparing the results based on time is not a correct approach.
To overcome such problems in the future, we are providing
the complete developed program as supplementary material
with paper.

So, in future, if anyone wants to do a comparative study
they can execute the program on their system and evaluate
the results based on the execution time. This could result in
a precise parameter to assess further work in future. Also, it
contributes to other research areas including use of EAs as in
drug designing, protein engineering, the study of the n-body
problem, etc.

4.7. Additional Biological Sequences. To verify the consistency
of the proposed MA(EP+HC) framework, this study has
also been extended for the experimentally derived proteins.
To carry out this study, we retrieved the proteins from the
Protein Data Bank (PDB) [44]. All these proteins are viral
proteins.

To perform the prediction, first obtained sequences
were converted into their HP sequence (Table 6). Later
they folded using the MA(EP+HC) framework. The optimal
conformations obtained with proposed MA(EP+HC) frame-
work are shown in Figure 10. The structures obtained with
MA(EP+HC) framework have exhibited favourable perfor-
mance. Also, the proposed algorithm has outperformed the
result of GAT [29].

5. Conclusions and Future Work

The proposed initialization approach has produced near-
optimal free energy conformation for the tested benchmark
sequences when compared with the random initialization
in the initial stage of an evolutionary program. This has
also reflected in the convergence rate (71%) of the proposed
approach that is 40% faster than the random initialization
approach.

Also, the proposed framework was evaluated for experi-
mentally derived protein sequence and has been found to be
more efficient for triangular lattice. In the square lattice, the
proposed framework has performed similarly to other search
algorithms. This study has been limited to the sequence
length of 100. But it can be extended for longer protein
sequences (sequence length more than 100), and we are
working in this direction. Overall, the concept of domain-
specific intelligent initialization and mutation can be used in
other domain-specific NP-problems.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request. The
complete program is available at www.abinitio-hp-psp.com.
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S.ID 7: E=-8S.ID 6: E=-9S.ID 5: E=-10

Figure 9: Optimal conformation obtained with MA(EP+HC) for sequences no. 5, 6, and 7.

Figure 10: The figure depicts the model conformation for sequence listed in Table 6. The hydrophobic/polar residue is represented using
red/blue filled circle, and the first residue is encircled with green and ends with sky blue. An adjacent connection is represented using black
line and H-H contact with the yellow line. The free energy is equal to the number of yellow lines.
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[19] F. L. Custódio, H. J. Barbosa, and L. E. Dardenne, “A multiple
minima genetic algorithm for protein structure prediction,”
Applied Soft Computing, vol. 15, pp. 88–99, 2014.

[20] S. P. N. Dubey, N. G. Kini, S. Balaji, and M. S. Kumar, “A review
of protein structure prediction using lattice model,” Critical
Reviews in Biomedical Engineering, vol. 46, 2018.

[21] T. Hoque, M. Chetty, and A. Sattar, “Extended HP model for
protein structure prediction,” Journal of Computational Biology,
vol. 16, no. 1, pp. 85–103, 2009.

[22] B. Berger and T. Leighton, “Protein folding in the hydrophobic-
hydrophilic (HP) model is NP-complete,” Journal of Computa-
tional Biology, vol. 5, no. 1, pp. 27–40, 1998.

[23] U. Bastolla, H. Frauenkron, E. Gerstner, P. Grassberger, and
W. Nadler, “Testing a new Monte Carlo algorithm for protein
folding,” Proteins: Structure, Function, and Genetics, vol. 32, no.
1, pp. 3252–3266, 1998.

[24] F. Liang and W. H. Wong, “Evolutionary Monte Carlo for
protein folding simulations,” The Journal of Chemical Physics,
vol. 115, no. 7, pp. 3374–3380, 2001.

[25] C. Thachuk, A. Shmygelska, and H. H. Hoos, “A replica
exchange Monte Carlo algorithm for protein folding in the HP
model,” BMC Bioinformatics, vol. 8, article 342, 2007.

[26] R. Unger and J. Moult, “Genetic algorithms for protein folding
simulations,” Journal ofMolecular Biology, vol. 231, no. 1, pp. 75–
81, 1993.

[27] M. A. Rashid, S. Iqbal, F. Khatib, M. T. Hoque, and A. Sattar,
“Guided macro-mutation in a graded energy based genetic
algorithm for protein structure prediction,” Computational Bio-
logy and Chemistry, vol. 61, pp. 162–177, 2016.

[28] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee, “Efficient
hierarchical parallel genetic algorithms using grid computing,”
FutureGenerationComputer Systems, vol. 23, no. 4, pp. 658–670,
2007.

[29] M. T. Hoque, M. Chetty, A. Lewis, and A. Sattar, “Twin removal
in genetic algorithms for protein structure prediction using low-
resolutionmodel,” IEEE Transactions on Computational Biology
and Bioinformatics, vol. 8, no. 1, pp. 234–245, 2011.



Advances in Bioinformatics 17

[30] M. T. Hoque, M. Chetty, and A. Sattar, “Protein folding predic-
tion in 3D FCC HP lattice model using genetic algorithm,” in
Proceedings of the 2007 IEEE Congress on Evolutionary Com-
putation (CEC ’07), pp. 4138–4145, September 2007.

[31] C. Chira, “A hybrid evolutionary approach to protein structure
prediction with lattice models,” in Proceedings of the 2011 IEEE
Congress of Evolutionary Computation (CEC ’11), pp. 2300–2306,
New Orleans, LA, USA, June 2011.

[32] A. Shmygelska and H. H. Hoos, “An improved ant colony
optimization algorithm for the 2d HP protein folding problem,”
in Proceedings of the 16th Canadian Conference on Artificial
Intelligence, Halifax, Canada, 2003.

[33] B. Li, Y. Li, and L. Gong, “Protein secondary structure optimiza-
tion using an improved artificial bee colony algorithm based
on AB off-lattice model,” Engineering Applications of Artificial
Intelligence, vol. 27, pp. 70–79, 2014.

[34] A. Shmygelska and H. H. Hoos, “An ant colony optimization
algorithm for the 2-D and 3-D hydrophobic polar protein fold-
ing problem,” BMC Bioinformatics, vol. 6, no. 30, 2005.

[35] V. Cutello, G. Nicosia, M. Pavone, and J. Timmis, “An immune
algorithm for protein structure prediction on lattice models,”
IEEE Transactions on Evolutionary Computation, vol. 11, no. 1,
pp. 101–117, 2007.

[36] H. Hsu, V. Mehra, W. Nadler, and P. Grassberger, “Growth-
based optimization algorithm for lattice heteropolymers,” Phys-
ical Review E: Statistical, Nonlinear, and SoftMatter Physics, vol.
68, no. 2, 2003.

[37] N. Krasnogor and J. Smith, “A tutorial for competent memetic
algorithms: model, taxonomy, and design issues,” IEEE Trans-
actions on Evolutionary Computation, vol. 9, no. 5, pp. 474–488,
2005.

[38] T. Jiang, Q. Cui, G. Shi, and S. Ma, “Protein folding simulations
of the hydrophobic-hydrophilic model by combining tabu
searchwith genetic algorithms,”The Journal of Chemical Physics,
vol. 119, no. 8, pp. 4592–4596, 2003.

[39] S. Su, C. Lin, and C. Ting, “An effective hybrid of hill climbing
and genetic algorithm for 2D triangular protein structure
prediction,” Proteome Science, vol. 9, 2011.

[40] S. C. Su and J. J. Tsay, “A novel offspring selection strategy in
gas for protein structure prediction,” in Proceedings of the Inter-
national Symposium on Computer, Consumer and Control (IS3C
’14), pp. 1171–1174, Taichung, Taiwan, June 2014.

[41] A. E. Chamorro, F. Divina, J. S. Aguilar-Ruiz, and G. A. Cortes,
“A multi-objective genetic algorithm for the protein structure
prediction,” in Proceedings of the IEEE International Conference
on Bioinformatics and Biomedicine (BIBM ’10), pp. 1086–1090,
Cordoba, Spain, 2010.

[42] S. P. N. Dubey, S. Balaji, N. G. Kini, and M. S. Kumar, “A
comparative study of various meta-heuristic algorithms for Ab
initio protein structure prediction on 2D hydrophobic-polar
model,” in Advances in Intelligent Systems and Computing, M.
Pant, K. Deep, J. C. Bansal, A. Nagar, and K. N. Das, Eds., pp.
387–399, 2016.

[43] M. T. Hoque, M. Chetty, and A. Sattar, Genetic Algorithm in Ab
Initio Protein Structure Prediction Using Low Resolution Model:
A Review, A. S. Sidhu et al., Ed., vol. 224 of Studies in Computa-
tional Intelligence, Biomedical Data and Applications, Springer-
Verlag Berlin Heidelberg, 2009.

[44] Protein Data Base (PDB), 23-Jan-2016, http://www.rcsb.org/
pdb/home/home.do.

[45] I. Dotu, M. Cebrián, P. Van Hentenryck, and P. Clote, “On
lattice protein structure prediction revisited,” IEEE Transactions

on Computational Biology and Bioinformatics, vol. 8, no. 6, pp.
1620–1632, 2011.

[46] A. P. Engelbrecht, Computational Intelligence: An Introduction,
John Wiley & Sons, Ltd, Chichester, UK, 2nd edition, 2007.

[47] M. K. Islam andM. Chetty, “Clustered memetic algorithm with
local heuristics for ab initio protein structure prediction,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 4, pp.
558–576, 2013.

[48] M. T. Hoque, M. Chetty, and L. S. Dooley, “A hybrid genetic
algorithm for 2D FCC hydrophobic-hydrophilic lattice model
to predict protein folding,” in Advances in Artificial Intelligence,
vol. 4304 of Lecture Notes in Computer Science, pp. 867–876,
Springer-Verlag Berlin Heidelberg, 2006.

[49] H. J. Bockenhauer, A. D. Ullah, L. Kapsokalivas, and K.
Steinhofel, “A local move set for protein folding in triangular
lattice models,” in Algorithms in Bioinformatics, K. Crandall
and J. Lagergren, Eds., vol. 5251, pp. 369–381, Springer Berlin
Heidelberg, 2008.

[50] P. V. Paul, P. Dhavachelvan, and R. Baskaran, “A novel pop-
ulation initialization technique for genetic algorithm,” in Pro-
ceedings of the 2013 IEEE International Conference on Circuit,
Power and Computing Technologies (ICCPCT ’13), pp. 1235–
1238, Nagercoil, India, March 2013.

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

