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The RNA sequencing approach has been broadly used to provide gene-, pathway-, 
and network-centric analyses for various cell and tissue samples. However, thus far, rich 
cellular information carried in tissue samples has not been thoroughly characterized from 
RNA-Seq data. Therefore, it would expand our horizons to better understand the biological 
processes of the body by incorporating a cell-centric view of tissue transcriptome. Here, 
a computational model named seq-ImmuCC was developed to infer the relative propor-
tions of 10 major immune cells in mouse tissues from RNA-Seq data. The performance 
of seq-ImmuCC was evaluated among multiple computational algorithms, transcriptional 
platforms, and simulated and experimental datasets. The test results showed its stable 
performance and superb consistency with experimental observations under different 
conditions. With seq-ImmuCC, we generated the comprehensive landscape of immune 
cell compositions in 27 normal mouse tissues and extracted the distinct signatures of 
immune cell proportion among various tissue types. Furthermore, we quantitatively char-
acterized and compared 18 different types of mouse tumor tissues of distinct cell origins 
with their immune cell compositions, which provided a comprehensive and informative 
measurement for the immune microenvironment inside tumor tissues. The online server 
of seq-ImmuCC are freely available at http://wap-lab.org:3200/immune/.
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INtRodUCtIoN

High-throughput RNA sequencing (RNA-Seq) has now been widely applied in mouse models 
to study the transcriptome of different disease conditions, such as tumors (1), infections (2), and 
autoimmune inflammation (3), and this has led to the rapid accumulation of enormous RNA-Seq 
data in Sequence Read Archive (SRA). Transcriptomal analyses are traditionally focused on char-
acterizing the biological functions under variable physiological or pathological conditions at the 
molecular level, namely in a gene-centric view (4). Gene module and pathway or network based 
annotation further expands the understanding of RNA-Seq data into the pathway-centric view (5) 
or the network-centric view (6).
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In recent years, a few computational methods have been devel-
oped to extract cellular information, especially the tissue immune 
contexture from transcriptomal data (7–9). The basic hypothesis 
under these methods is that the gene expression profile in tis-
sues is a linear combination of the gene expressed from all of the 
included cell types. According to their derived and applied data 
platforms, these methods can be divided into three types, namely, 
microarray-derived and microarray-applied models, microarray-
derived and RNA-Seq-applied models, and RNA-Seq-derived and 
RNA-Seq-applied models. In microarray-derived models, several 
machine learning methods have been reported, including elastic 
net regularization (Elastic net) (10), linear least square regression 
(LLSR) (11), quadratic programming (QP) (12), and support vec-
tor regression (SVR) (13). Among these models, the SVR based 
method has been proven with good robustness and precision in 
both human and mouse samples (13, 14). Furthermore, to esti-
mate the immune cell compositions from the sequencing data, 
some strategies have been adopted to use the RNA-Seq data with 
a microarray-derived model (10, 15, 16). Li et al. tried to remove 
the batch effect between different platforms with ComBat, which 
was first developed to adjust batch effects between microarray 
and RNA-Seq data (15). Trajanoski et al. characterized the intra-
tumoral immune cell proportions by transforming RNA-Seq data 
into microarray-like data using a cubic smoothing spline with 
four degrees of freedom (16). Altboum et al. reported a computa-
tional method, digital cell quantification, to infer the proportion 
of 213 immune cells directly with microarray based training data 
(10). Up to now, only a few deconvolution methods derived from 
RNA-Seq data have also been applied. DeconRNASeq was the first 
framework for predicting the cellular content from RNA-Seq data 
although there is still no real training data to predict the immune 
cell proportion (17). Recently, a computational model with a 
RNA-Seq reference profile, named EPIC was also developed by 
Gfeller et al. to estimate the proportion of immune and cancer 
cells from human tumor transcriptomal data (18). These models 
have been well used to investigate the cellular microenvironment 
in diseased tissues, such as tumors (19). However, a model to 
predict immune cell compositions from increasing mouse RNA-
Seq data is still lacking.

Here, a computational model, named seq-ImmuCC, was devel-
oped to predict the constitution of 10 immune cells from the RNA-
Seq data of mouse tissues. After collecting and filtering available 
mouse RNA-Seq data from SRA, a signature gene matrix, includ-
ing 162 genes specific for 10 major immune cells, was constructed. 
Subsequently, six machine learning methods were compared in 
the same signature gene matrix. The testing results indicated that 
the SVR- and LLSR-based models tended to achieve better perfor-
mance in both simulated and experimental data. Furthermore, to 
validate the rationality of the computational model across different 
platforms, four combinations with microarray- or RNA-Seq-based 
training or testing data were compared. In general, models with 
consistent training and testing data types had better performances, 
while models with discordant data types achieved worse results, 
although they are still useful for some datasets.

With the computational advantage of the seq-ImmuCC 
model, we built an atlas of immune cell compositions in normal 
and tumor mouse tissues. In total, 27 normal tissues and 18 tumor 

tissues were included and the relative compositions of 10 major 
immune cell types were inferred for each mouse tissue. The com-
prehensive immune cell profiles provided not only the baseline 
of steady state immune cell proportions for most of the normal 
tissues, but also the measurement for highly complex and diverse 
immune microenvironments of various mouse tumor models.

MAteRIALs ANd Methods

schematics of Methodology development
Four major steps have been taken to construct the seq-ImmuCC 
model: (1) data collection and filtering: raw RNA sequencing 
data collected from SRA were preprocessed. Samples that can be 
clearly grouped were kept for later analysis; (2) signature gene 
selection: the differentially expressed genes (DEGs) in each 
of the cell types were achieved with voom (20) in the “limma” 
package, and then the genes that were highly expressed in the 
non-hematopoietic and tumor tissues were removed; (3) algo-
rithm selection: six machine learning methods were compared 
for their performance in synthetic data and experimental data; 
and (4) model evaluation: the determined model was evaluated 
with enriched immune cells, simulated complex tumor data, and 
experimental flow cytometry data.

dataset and Preprocessing
Three different datasets were scanned from the public SRA 
database using the “R” package in SRAdb (21). In total, 358 
enriched immune cells, 2,435 normal tissues, and 2,016 tumor 
tissues were downloaded from SRA. Datasets that were profiled 
on Illumina sequencing platforms with spots larger than 10 M 
were kept. Finally, 286 immune cell samples, 527 normal tissues, 
and 686 tumor samples were retained for later analysis (Table S1 
in Supplementary Material). The raw fastq format of the RNA-
Seq data was preprocessed using FastQC and trimmatic, and 
then mapped to the mouse mm10 genome using STAR. The read 
counts were calculated using HTSeq. Specially, the read counts 
of each V, D, and J gene segments in both the T cell and B cell 
receptors were merged. Finally, a quantile normalization was per-
formed on each sample. The scripts for data preprocessing can be 
downloaded from the ImmuCC web server1 or the Github site.2

signature Gene Matrix Construction
According to the lineage tree of immune cells, RNA-Seq data of 
the terminally differentiated immune cells were scanned from the 
public database and only those cell types with enough sequencing 
data were kept for our analysis. In total, 286 RNA-Seq datasets 
of 10 immune cells, including B cells, CD4 T cells, CD8 T cells, 
macrophages, monocytes, neutrophils, mast cells, eosinophils, 
dendritic cells, and natural killer cells, were selected according 
to sample clustering and PCA analysis. Cell types that can be 
precisely grouped and have a specific expression on their marker 
genes were kept for later analysis. The DEGs in each immune 

1 http://wap-lab.org:3200/immune/ (Accessed: April 3, 2018).
2 https://github.com/chenziyi/ImmuCC/blob/master/webserver/RNASeq_
pipeline.sh (Accessed: April 3, 2018).
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cell were calculated using voom. Genes with an adjusted P 
value  <  0.05 and log2-fold change  >  2 were considered to be 
significant DEGs. Furthermore, genes that are highly expressed 
in both non-hematopoietic tissues and tumor tissues were filtered 
out as described in our previous work (14). To further minimize 
the gene number, genes with maximum read counts < 100 across 
all of the immune cells were filtered out. Finally, all of the genes 
that were left were ordered by decreasing fold changes and the top 
20 signature genes in each cell type were selected to construct the 
signature gene matrix.

Assessment of Algorithms
To determine which algorithm is appropriate for the seq-
ImmuCC model, the performances of six machine learning 
methods, including ridge regression, least absolute shrinkage 
and selection operator (LASSO), Elastic net, LLSR (11), QP (12), 
and SVR (13), were assessed with both simulated and experi-
mental data. The method for simulated data construction and 
experimental design were described in our previous work (14). 
In terms of the simulated data, we first made a random expression 
profile for the immune mixture with known compositions. Then, 
this immune mixture was mixed with the expression profile of 
a tumor cell line sample with different concentrations, ranging 
from 0.1 to 100%. Pearson correlation coefficient (PCC) between 
the predicted proportions and the real input proportions were 
calculated. In terms of the experimental data, the proportions 
that were calculated with six different algorithms were compared 
to the observed proportions from flow cytometry.

Model Comparison Across Microarray  
and RNA-seq Platforms
To evaluate the reliability of model cross platforms, the train-
ing data and testing data from both the microarray and RNA-
Seq platforms were combined into four groups, Array-Array 
(microarray-based training and microarray-based testing), 
Array-RNAseq (microarray-based training and RNA-Seq-based 
testing), RNAseq-RNAseq (RNA-Seq-based training and RNA-
Seq-based testing), and RNAseq-Array (RNA-Seq-based train-
ing and microarray-based testing). PCC between the predicted 
immune cell compositions and the quantitative flow cytometry 
measurements were calculated.

RNA-seq Library Preparation
Mouse samples including those of the spleen (SP), bone marrow 
(BM), lymph node (LN), and peripheral blood mononuclear  
cell (PBMC) collected in our previous work (14) were used here 
for RNA-Seq. Briefly, RNA-Seq libraries were constructed after 
rRNA depletion using a NEBNext rRNA Depletion Kit (Human/
Mouse/Rat) (NEB). The E6310L NEBNext Ultra RNA Library 
Prep Kit for Illumina (NEB, E7530S) (NEB) was used according to 
the manufacturer’s instructions and the cDNAs were sequenced 
with the Hiseq X10 platform (Illumina).

data Availability
RNA-seq data have been deposited in the ArrayExpress database 
at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession 

number E-MTAB-6458. The rest of the data is available from the 
authors upon reasonable request.

ResULts

overview of the seq-ImmuCC Model
We assumed that the whole transcriptome is actually the com-
prehensive state of all of the genes expressed from different cell 
types within a mouse tissue, and then the cellular compositions 
can be deconvoluted from the transcriptome of the tissue 
(Figures  1A,B). The seq-ImmuCC model consists of four key 
steps (Figure S1 in Supplementary Material): (1) Sequencing data 
collection. The RNA-Seq data for each cell type were collected 
from the database and filtered. (2) Signature gene selection. The 
signature genes for each cell type were selected to construct the 
signature gene matrix. (3) Algorithm determination. The algo-
rithm with the highest performance was used for the determined 
model. (4) Model evaluation. The model was evaluated with the 
simulated and experimental data.

signature Gene selection
In total, 286 RNA-Seq datasets from the SRA database were col-
lected. Then, after filtering with the expression of marker genes, 
38 RNA-Seq datasets were retained to distinguish different 
immune cell types. Finally, 162 genes were selected as a signature 
matrix to cover 10 immune cells, namely, B cells, CD4 T cells, 
CD8 T  cells, macrophages, monocytes, neutrophils, mast cells, 
eosinophils, dendritic cells, and natural killer cells. To test the 
distinguishing performance, the signature matrix was used to 
classify immune cells derived from different laboratories (Figure 
S2 in Supplementary Material). The clear grouping results 
indicated that the selected signature genes have an appropriate 
representativeness and high distinguishing ability.

Model Building and Comparison
In order to obtain an accurate model, six machine learning meth-
ods were used to find the best way for predicting the immune 
cell composition with the same signature gene matrix, including 
LLSR (11), QP (12), LASSO, ridge regression, elastic net (10), 
and SVR (13). To compare the performance of the six models, 
PCC between the inferred proportions and the observed propor-
tions was calculated. On a synthetic dataset with known immune 
cell compositions, both SVR- and LLSR-based models showed 
the highest PCC values. A significantly higher correlation was 
observed even when the proportion of tumor content reached 
99% (Figure 1C). A relatively lower performance was shown in 
the ridge regression-based model with PCC as 0.78 when the 
tumor content ranged from 0 to 95% (Figure 1C). We further 
evaluated six models in the experimental dataset. As illustrated 
in Figure 1D, the relative fractions of four immune cell groups 
in the LN, namely, granulo-monocytic cells, CD4 T cells, CD8 
T cells, and B cells, were calculated with different machine learn-
ing approaches. Consistent with the results in the simulated data, 
the proportions calculated with SVR were in good agreement 
with the flow cytometry results among B  cells, CD4 T  cells, 
and CD8 T  cells. The relative abundance is also well matched 
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FIGURe 1 | An overview of the seq-ImmuCC model. (A) Molecular and cellular views of the tissue transcriptome. (B) Schematics of the seq-ImmuCC model.  
(C) Comparison of six machine learning methods over the simulated data. (d) Comparison of six machine learning methods with the experimental data.
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to the measured results of LLSR and ridge regression methods, 
although there is a slight difference for a specific cell type.

Model evaluation
Based on the results of the comparison of the models, the SVR 
and LLSR models were suggested to predict immune cell com-
positions from RNA-Seq data, while only the SVR model was 
used as a representative model for further evaluation. The SVR 
model was evaluated on the simulated mixture samples, pure 
immune cell samples, and experimental tissues, respectively. 
For 245 samples of enriched single immune cells, we found 
the highest proportion in each sample was definitely consist-
ent with the expected cell type, where the median predicted 
proportion was 85% (Figure  2A). Next, given the potential 
application of our model in heterogeneous tissues, a simulated 
tumor tissue with defined immune content (see Materials and 
Methods) was used to test its performance on complex tumor 
tissues. The predicted fractions were very consistent with the 
actual proportions even when the proportion of the tumor 
content reached 99.9%, which may provide solid evidence for 

its application on complex tissues (Figure  2B). Furthermore, 
we compared our model with the results from flow cytometry. 
As indicated in Figure 2C, the predicted results were all similar 
to the observed immune cell compositions across SP, PBMC, 
LN, and BM samples.

Comparison of Microarray and  
RNA-seq-Based Models
Although some previous studies have already used microarray-
based models to estimate immune cell compositions in RNA-Seq 
data (10, 15, 16), the reliability of the deconvolution model 
across microarray and RNA-Seq platforms is still unknown. 
Unlike microarray data, RNA-Seq data do not have a continu-
ous distribution and usually tend to have a larger distribution of 
gene abundance. To examine the cross performances between 
microarray- and RNA-Seq-based models, four testing groups, 
named Array-Array, Array-RNAseq, RNAseq-RNAseq, and 
RNAseq-Array (see Materials and Methods for more details), 
were designed to predict the immune cell proportions in four 
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FIGURe 2 | Evaluation of the seq-ImmuCC model in the simulated and experimental data. The performance of the model was evaluated in the enriched cell 
samples (A), simulated tumor samples (B), and measured results from flow cytometry (C). Four immune cell types were compared in (C), namely, granulo-
monocytic cells, CD4 T cells, CD8 T cells, and B cells. Red: predicted results; green: flow cytometry results.
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types of immune samples, namely SP, LN, and BM, and PBMC 
(Figure 3; Figure S3 in Supplementary Material). As shown in 
Figure 3A, Array-Array outperformed the three other groups in 
SP, BM, and PBMC with a PCC larger than 0.9. In comparison 
to Array-Array, the RNAseq-RNAseq group presented a relative 
lower PCC ranging from 0.82 to 0.99. For the SP and PBMC 
samples, training data and testing data derived from the same 
platforms (Array-Array and RNAseq-RNAseq) tended to work 
better than the two cross groups (Array-RNAseq and RNAseq-
Array). This observation suggested that the microarray-based 
model could be better used for microarray data, while the RNA-
Seq-based model should be used for RNA-Seq data. Some bias 
may exist in some conditions when the microarray-based model 
is applied to RNA-Seq data, or reversed, although the general 
performance is still acceptable.

An Atlas of Immune Cell types in Normal 
Mouse tissues
We used our model to systematically calculate the constitution 
of immune cells across different normal mouse tissues. In total, 
27 normal tissue types profiled on the RNA-Seq platform were 
collected and evaluated (Table S1 in Supplementary Material). 
First, we could achieve the relative compositions of 10 immune 
cell types in a specific tissue. Taking the colon as an example 
(Figure  4A), the results indicated that the largest proportion 

is B cells (30 ±  18%), then about 25 ±  11% for macrophages, 
10 ± 8% for CD4 T cells, and 10 ± 9% for CD8 T cells. Then, 
a specific immune cell type across multiple tissues could be 
estimated. As shown in Figure 4B, the distribution of B cell pro-
portion among various tissues ranges from 0 to 50%. Consistent 
with our previous knowledge, the spleen has the highest relative 
proportion of B cells (40 ± 21%). The second highest proportion 
of B cells was in the colon tissue. In a gene-centric view, a high 
expression of IgA was found in the transcriptomal data of the 
colon, which may be associated with an enrichment of IgA pro-
duction of plasma cells in the colon (Figure S4 in Supplementary 
Material). Interestingly, we noted that a relative higher B  cell 
content was seen when compared among the fetal liver and 
the adult liver, which was consistent with the high expression 
level of IgM in the fetal liver (Figure S5 in Supplementary 
Material). Finally, a divergent immune content was observed 
among different normal mouse tissues (Figure  4C; Figures 
S6 and S7 in Supplementary Material). In the immune system 
organs, the abundance of corresponding immune cells was very 
consistent with our common sense. For example, as a primary 
lymphoid organ for the development of T cells, the thymus was 
mainly enriched with CD4 T cells and CD8 T cells. However, 
the relatively high proportion of neutrophils was observed in 
BM (50.85 ±  7.56%) and fetal liver (13.68 ±  5.65%), which is 
known to be the hematopoiesis organ at different stages of life. 
For most solid tissues, such as the skin, ovary, etc., the tissue 
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FIGURe 3 | Comparison of microarray and RNA-seq based deconvolution models. (A) Four cross models with microarray or RNA-seq data as the training or testing 
input were compared. The value in the heatmap is the Pearson correlation coefficient between the results from four computational models and flow cytometry in four 
tissues. (B) The error bar plots are the comparison of the RNA-seq training and testing model with the flow cytometry for granulo-monocytic cells, CD4 T cells, CD8 
T cells, and B cells in peripheral blood mononuclear cell.
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immune microenvironment is mainly comprised of myeloid 
cells, including macrophages and monocytes. In the limb and 
skeletal muscle, there was a relatively higher abundance of mast 
cells (>20%). Different from other tissues, a higher amount of 
lymphocytes (B cells, T cells, and NK cells) in the intestines and 
mammary glands was also determined.

An Atlas of Immune Cell types in Mouse 
tumor tissues
Similarly, our approach can also be used to estimate the 
immune cell proportions across different mouse tumor tissues. 
In total, 18 tumor types were collected and evaluated (Table 
S1 in Supplementary Material). First, compared to the normal 
tissue, a distinct immune signature was observed in the tumor 
sample (Figure S8 in Supplementary Material). For example, the 
major cell type in colorectal cancer is macrophage, whereas the 
most abundant one in the normal colon is B cell (Figures 4A 
and 5A). In addition, we found that different immune con-
stitutions were observed among different tumor types. For 
example, a significant enrichment of leukocytes was observed 
in the leukemia samples. Acute myeloid leukemia was mainly 
constituted of neutrophils, whereas the dominant cell type in 
other types of solid tumors was macrophage (Figure 5B; Figure 

S9 in Supplementary Material). Next, the distribution of each 
immune cell across different tumor types was fully character-
ized. As shown in Figure 5B, the highest proportion of B cells 
was found in B-ALL, and similar proportions (~10%) of B cells 
were observed among hepatoblastoma and small cell lung can-
cer. As illustrated in Figure S9 in Supplementary Material, the 
highest proportion of CD8 T cells was observed in pancreatic 
neuroendocrine tumors (PanNET) as 25.02 ± 9.08%. Similarly, 
liver-derived tumors, including liver tumors and hepatoblas-
toma, also tended to infiltrate with a relatively higher level of 
CD8 T  cells (13.93  ±  8.45%). Finally, with the seq-ImmuCC 
model, we could investigate the immune cell compositions in 
the same tumor type with different induced strategies. For each 
tumor type, variable strategies, such as chemically inducing, 
genetically modifying, etc., have been used to develop distinct 
tumor models. To investigate the difference of immune composi-
tion across different induced strategies, four different colorectal 
tumor models, including: AOM/DSS (Azoxymethane and dex-
tran sodium sulfate induced model), shAPC, shAPC/Kras, and 
Tcf4Het/ + ApcMin/ + were used. As illustrated in Figure 5C, 
a significantly higher proportion of B cells was observed in the 
AOM/DSS-based model. Furthermore, compared with other 
groups, a relatively higher amount of neutrophils in shAPC/
Kras was observed (Figure 5C).
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FIGURe 4 | Atlas of immune cell compositions in normal mouse tissues. (A). Inferred proportions of 10 immune cells in the colon. (B) Distribution of B cell 
proportion across 27 mouse tissues. (C) Immune cell fingerprint in 12 representative mouse tissues.
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online Web-server
An online webserver was implemented to infer the cellular 
proportions from the transcriptome by both microarray and 
RNA-Seq approaches, which is available at http://wap-lab.
org:3200/immune/. As indicated in Figure 6, the samples profiled 
on various platforms, such as RNA-Seq approach, Affymetric 
mouse 430 2.0, Illumina MouseWG-6 v2.0 expression beadchip 
and Agilent Whole Mouse Genome Microarray 4 × 44K v2 were 
all available. Two machine learning methods, SVR and LLSR are 
presented as choices. The results include a table format file and a 
bar plot figure; if sample number is less than 10, the results will 
be presented on the same page and send via email.

dIsCUssIoN

In this study, we devised a computation model named seq-
ImmuCC to infer the proportion of ten immune cells in mouse 
tissues from RNA-Seq data. To the best of our knowledge, this 
is the first deconvolution model that focuses on RNA-Seq data 
in mice. The performance of seq-ImmuCC has been validated 
in large and various types of independent datasets, including 
simulated data, public data and our own experimental data. The 
seq-ImmuCC model will provide an in-depth and accurate cell-
centric view for transcriptomal data to monitor tissue infiltrating 
immune cells under various conditions. In order to better serve 
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FIGURe 5 | Atlas of immune cell compositions in mouse tumor tissues. (A) Inferred proportions of 10 immune cells in colorectal tumors. (B) Distribution of B cell 
proportion across 18 tumor types. (C) Comparison of the immune cell compositions in the same tumor type (colorectal tumors) with four different inducing models.

8

Chen et al. The Atlas of Immune Cells in Mouse Tissues

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1286

the scientific community, we have also developed an online user-
interactive webserver.

Due to the absence of an RNA-Seq-based deconvolution 
model, some studies previously used microarray data based 
models to infer immune cell compositions from RNA-Seq data 
(10, 15, 16). However, there was still an open question of whether 
these models can be directly used across different transcriptomal 
platforms. Therefore, we conducted a systematic evaluation of the 
impact of the data platform on the performance by testing four 
groups of models across microarray data and RNA-Seq data. In 
general, better performances were observed in Array-Array and 
RNAseq-RNAseq based computational models in most cases, as 
expected. It is also worthy of noting that both Array-RNAseq 
and RNAseq-Array can still work well in certain conditions, 
which indicates the potential feasibility of using the model across 
microarray and RNA-Seq platforms.

Up to now, several machine learning methods have been pro-
posed in the computational model to deconvolute immune cell 
compositions from transcriptomal data (7). Most of the previous 
researches including our own method (14), employed the linear 
regression model was employed. However, unlike microarray, 

RNA-Seq data do not have a continuous distribution and usually 
tend to have a larger distribution of abundance. In addition, the 
gene product in RNA-Seq data was usually exponentially ampli-
fied with PCR, which may further change the reads distribution. 
Therefore, a non-linear regression-based model may have a better 
performance in RNA-Seq data, which warrants more extensive 
work in future studies.

Using our developed seq-ImmuCC model, we can readily and 
reliably depict the constitution of major immune cells across dif-
ferent tissues or organs through the mouse transcriptomal data. 
Knowledge about the comprehensive immune cell constitution in 
various tissues would provide us an essential baseline to evaluate the 
potential local immune statues and will allow us to further character-
ize their difference of functionality in a molecular view. However, it 
should also be noted that tissue immune cell abundance could be 
influenced by many factors, including age, sex, and other physiologi-
cal and environmental conditions (22). The variation of immune cell 
compositions among different mouse tissues presented here might 
reflect only part of the picture under given experimental conditions.

Predicting tumor-infiltrating immune cells is another impor-
tant application of our model. With rapidly development, cancer 

https://www.frontiersin.org/Immunology/
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immunotherapy is becoming a hot spot in basic immunological 
research and clinical investigation. Clinical trials have already 
indicated that tumor immune content could play a determinant 
role in disease prognosis and treatment selection (23, 24). 
Patients with high levels of intratumoral CD8 T cells while having 
low levels of regulatory T  cells tend to have a better response 
to immune-based therapies (25). By extracting the valuable 
immune cell contexture information with our model, we can 
provide invaluable support to cancer immunological research 
with various mouse tumor models of human cancers. However, 
we have to caution that at the present time, our model has not 
been able to fully capture the tumor immune constitutions. 
For example, gamma delta T cells, which are now known to be 
important members of the immune system in fighting against 
tumors, were not included in our signature matrix. Therefore, 
further expansion and refinement of our model by putting more 
cell types into the composition matrix will be an important work 
in the near future.
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FIGURe s1 | Schematic of the ImmuCC model construction.

FIGURe s2 | PCA of 162 selected genes in 286 enriched immune cell data.

FIGURe s3 | Comparison of the RNA-Seq training and testing models with the 
flow cytometry for Granulo-monocytic cells, CD4 T cells, CD8 T cells, and B cells 
in the bone marrow, lymph nodes, and spleen.

FIGURe s4 | Boxplot of IgA expression in 27 mouse tissues.

FIGURe s5 | Heatmap for the expression profile of B cell-specific genes in the 
fetal liver and the adult liver.

FIGURe s6 | Inferred proportions of 10 immune cells in 26 mouse tissues.

FIGURe s7 | Distribution of CD4 T cells, CD8 T cells, macrophages, monocytes, 
neutrophils, mast cells, eosinophils, dendritic cells and natural killer cells 
proportion across 27 mouse tissues.

FIGURe s8 | Inferred proportions of 10 immune cells in 17 mouse tumor tissues.

FIGURe s9 | Distribution of CD4 T cells, CD8 T cells, macrophages, monocytes, 
neutrophils, mast cells, eosinophils, dendritic cells and natural killer cells 
proportion across 18 mouse tumor tissues.

tABLe s1 | Immune cell data sets collected from the public database and the 
inferred immune proportion in both the normal tissue and the tumor tissues.

ReFeReNCes

1. De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C, et al. 
Transcriptional landscape of human tissue lymphocytes unveils uniqueness 
of tumor-infiltrating T  regulatory cells. Immunity (2016) 45:1135–47. 
doi:10.1016/j.immuni.2016.10.021 

2. Tisoncik-Go J, Gasper DJ, Kyle JE, Eisfeld AJ, Selinger C, Hatta M, 
et  al. Integrated omics analysis of pathogenic host responses during 
pandemic H1N1 influenza virus infection: the crucial role of lipid metab-
olism. Cell Host  Microbe (2016) 19:254–66. doi:10.1016/j.chom.2016. 
01.002 

3. Odhams CA, Cunninghame Graham DS, Vyse TJ. Profiling RNA-Seq at 
multiple resolutions markedly increases the number of causal eQTLs in 
autoimmune disease. PLoS Genet (2017) 13:e1007071. doi:10.1371/journal.
pgen.1007071 

4. Lonnberg T, Chen Z, Lahesmaa R. From a gene-centric to whole-proteome 
view of differentiation of T helper cell subsets. Brief Funct Genomics (2013) 
12:471–82. doi:10.1093/bfgp/elt033 

5. Karathia H, Kingsford C, Girvan M, Hannenhalli S. A pathway-centric view 
of  spatial proximity in the 3D nucleome across cell lines. Sci Rep (2016) 
6:39279. doi:10.1038/srep39279 

6. Carter H, Hofree M, Ideker T. Genotype to phenotype via network analysis. 
Curr Opin Genet Dev (2013) 23:611–21. doi:10.1016/j.gde.2013.10.003 

7. Shen-Orr SS, Gaujoux R. Computational deconvolution: extracting cell 
type-specific information from heterogeneous samples. Curr Opin Immunol 
(2013) 25:571–8. doi:10.1016/j.coi.2013.09.015 

8. Qiao W, Quon G, Csaszar E, Yu M, Morris Q, Zandstra PW. PERT: a method 
for expression deconvolution of human blood samples from varied micro-
environmental and developmental conditions. PLoS Comput Biol (2012) 
8:e1002838. doi:10.1371/journal.pcbi.1002838 

9. Liebner DA, Huang K, Parvin JD. MMAD: microarray microdissection with 
analysis of differences is a computational tool for deconvoluting cell type- 
specific contributions from tissue samples. Bioinformatics (2014) 30:682–9. 
doi:10.1093/bioinformatics/btt566 

10. Altboum Z, Steuerman Y, David E, Barnett-Itzhaki Z, Valadarsky L, Keren-
Shaul H, et  al. Digital cell quantification identifies global immune cell 
dynamics during influenza infection. Mol Syst Biol (2014) 10:720. doi:10.1002/
msb.134947 

11. Abbas AR, Wolslegel K, Seshasayee D, Modrusan Z, Clark HF. Deconvolution 
of blood microarray data identifies cellular activation patterns in systemic 

lupus erythematosus. PLoS One (2009) 4:e6098. doi:10.1371/journal.pone. 
0006098 

12. Gong T, Hartmann N, Kohane IS, Brinkmann V, Staedtler F, Letzkus M, 
et al. Optimal deconvolution of transcriptional profiling data using quadratic 
programming with application to complex clinical blood samples. PLoS One 
(2011) 6:e27156. doi:10.1371/journal.pone.0027156 

13. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust 
enumeration of cell subsets from tissue expression profiles. Nat Methods 
(2015) 12:453–7. doi:10.1038/nmeth.3337 

14. Chen Z, Huang A, Sun J, Jiang T, Qin FX, Wu A. Inference of immune cell 
composition on the expression profiles of mouse tissue. Sci Rep (2017) 
7:40508. doi:10.1038/srep40508 

15. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive anal-
yses of tumor immunity: implications for cancer immunotherapy. Genome 
Biol (2016) 17:174. doi:10.1186/s13059-016-1028-7 

16. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, 
et al. Pan-cancer immunogenomic analyses reveal genotype-immunopheno-
type relationships and predictors of response to checkpoint blockade. Cell Rep 
(2017) 18:248–62. doi:10.1016/j.celrep.2016.12.019 

17. Gong T, Szustakowski JD. DeconRNASeq: a statistical framework for 
deconvolution of heterogeneous tissue samples based on mRNA-seq data. 
Bioinformatics (2013) 29:1083–5. doi:10.1093/bioinformatics/btt090 

18. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enu-
meration of cancer and immune cell types from bulk tumor gene expression 
data. Elife (2017) 6:e26476. doi:10.7554/eLife.26476 

19. Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor 
and microenvironment evolution during immunotherapy with nivolumab. 
Cell (2017) 171(934–949):e915. doi:10.1016/j.cell.2017.09.028 

20. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear 
model analysis tools for RNA-seq read counts. Genome Biol (2014) 15:R29. 
doi:10.1186/gb-2014-15-2-r29 

21. Zhu Y, Stephens RM, Meltzer PS, Davis SR. SRAdb: query and use public 
next-generation sequencing data from within R. BMC Bioinformatics (2013) 
14:19. doi:10.1186/1471-2105-14-19 

22. Aguirre-Gamboa R, Joosten I, Urbano PCM, van der Molen RG, van 
Rijssen E, van Cranenbroek B, et al. Differential effects of environmental and 
genetic  factors on T and b cell immune traits. Cell Rep (2016) 17:2474–87. 
doi:10.1016/j.celrep.2016.10.053 

23. Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G,  
et  al. Tumor immune microenvironment characterization in clear cell 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01286/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2018.01286/full#supplementary-material
https://doi.org/10.1016/j.immuni.2016.10.021
https://doi.org/10.1016/j.chom.2016.01.002
https://doi.org/10.1016/j.chom.2016.01.002
https://doi.org/10.1371/journal.pgen.1007071
https://doi.org/10.1371/journal.pgen.1007071
https://doi.org/10.1093/bfgp/elt033
https://doi.org/10.1038/srep39279
https://doi.org/10.1016/j.gde.2013.10.003
https://doi.org/10.1016/j.coi.2013.09.015
https://doi.org/10.1371/journal.pcbi.1002838
https://doi.org/10.1093/bioinformatics/btt566
https://doi.org/10.1002/msb.134947
https://doi.org/10.1002/msb.134947
https://doi.org/10.1371/journal.pone.
0006098
https://doi.org/10.1371/journal.pone.
0006098
https://doi.org/10.1371/journal.pone.0027156
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/srep40508
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1093/bioinformatics/btt090
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1016/j.cell.2017.09.028
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1186/1471-2105-14-19
https://doi.org/10.1016/j.celrep.2016.10.053


11

Chen et al. The Atlas of Immune Cells in Mouse Tissues

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1286

renal cell carcinoma identifies prognostic and immunotherapeutically rel-
evant messenger RNA signatures. Genome Biol (2016) 17:231. doi:10.1186/
s13059-016-1092-z 

24. Huang Y, Wang FM, Wang T, Wang YJ, Zhu ZY, Gao YT, et  al. Tumor-
infiltrating FoxP3+ Tregs and CD8+ T  cells affect the prognosis of hepa-
tocellular carcinoma patients. Digestion (2012) 86:329–37. doi:10.1159/ 
000342801 

25. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et  al. 
Resistance mechanisms to immune-checkpoint blockade in cancer: tumor- 
intrinsic and -extrinsic factors. Immunity (2016) 44:1255–69. doi:10.1016/j.
immuni.2016.06.001 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Chen, Quan, Huang, Zhao, Yuan, Yuan, Shen, Shang, Ben, Qin 
and Wu. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1159/
000342801
https://doi.org/10.1159/
000342801
https://doi.org/10.1016/j.immuni.2016.06.001
https://doi.org/10.1016/j.immuni.2016.06.001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular Compositions of Immune Microenvironment From Mouse RNA-Seq Data
	Introduction
	Materials and Methods
	Schematics of Methodology Development
	Dataset and Preprocessing
	Signature Gene Matrix Construction
	Assessment of Algorithms
	Model Comparison Across Microarray 
and RNA-Seq Platforms
	RNA-Seq Library Preparation
	Data Availability

	Results
	Overview of the seq-ImmuCC Model
	Signature Gene Selection
	Model Building and Comparison
	Model Evaluation
	Comparison of Microarray and 
RNA-Seq-Based Models
	An Atlas of Immune Cell Types in Normal Mouse Tissues
	An Atlas of Immune Cell Types in Mouse Tumor Tissues
	Online Web-Server

	Discussion
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	Supplementary Material
	References


