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Abstract: Brain-computer interfaces (BCIs) provide novel hands-free interaction strategies. However,
the performance of BCIs is affected by the user’s mental energy to some extent. In this study, we aimed
to analyze the combined effects of decreased mental energy and lack of sleep on BCI performance
and how to reduce these effects. We defined the low-mental-energy (LME) condition as a combined
condition of decreased mental energy and lack of sleep. We used a long period of work (>=18 h) to
induce the LME condition, and then P300- and SSVEP-based BCI tasks were conducted in LME or
normal conditions. Ten subjects were recruited in this study. Each subject participated in the LME-
and normal-condition experiments within one week. For the P300-based BCI, we used two decoding
algorithms: stepwise linear discriminant (SWLDA) and least square regression (LSR). For the SSVEP-
based BCI, we used two decoding algorithms: canonical correlation analysis (CCA) and filter bank
canonical correlation analysis (FBCCA). Accuracy and information transfer rate (ITR) were used as
performance metrics. The experimental results showed that for the P300-based BCI, the average
accuracy was reduced by approximately 35% (with a SWLDA classifier) and approximately 40% (with
a LSR classifier); the average ITR was reduced by approximately 6 bits/min (with a SWLDA classifier)
and approximately 7 bits/min (with an LSR classifier). For the SSVEP-based BCI, the average accuracy
was reduced by approximately 40% (with a CCA classifier) and approximately 40% (with a FBCCA
classifier); the average ITR was reduced by approximately 20 bits/min (with a CCA classifier) and
approximately 19 bits/min (with a FBCCA classifier). Additionally, the amplitude and signal-to-noise
ratio of the evoked electroencephalogram signals were lower in the LME condition, while the degree
of fatigue and the task load of each subject were higher. Further experiments suggested that increasing
stimulus size, flash duration, and flash number could improve BCI performance in LME conditions to
some extent. Our experiments showed that the LME condition reduced BCI performance, the effects
of LME on BCI did not rely on specific BCI types and specific decoding algorithms, and optimizing
BCI parameters (e.g., stimulus size) can reduce these effects.

Keywords: BCI; electroencephalogram; low mental energy

1. Introduction

Electroencephalogram (EEG)-based brain–computer interfaces (BCIs) provide a new
human-machine interaction strategy for users [1] and have been widely used in fields
including disability assistance, education, and entertainment. BCI spellers are one of the
most common BCI applications with which users can spell sentences and communicate with
human companions [2,3]. In addition, BCI-controlled wheelchairs [4,5] and BCI-controlled
robotic arms [6,7] are important in the BCI research field since they can be used in more
complex tasks and more cluttered environments. For example, users can modulate the
sensorimotor rhythms (SMRs)-based robotic arm developed by Hochberg et al. to bring
them a bottle of water [6]. In [4], users simply needed to select a destination, and the
BCI-controlled wheelchair introduced by Zhang et al. could automatically navigate to
any location they selected. Although BCIs are useful in many scenarios, relevant studies
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suggested that the performance of BCIs might be affected by the user’s mental energy [8–10],
which may hinder the applications of BCIs.

The term mental energy is a complex and interesting psychological concept, which is
defined as a person’s ability to perceive the current environment and complete tasks [11].
Higher mental energy indicates that the brain is more active, and the person can more
quickly and accurately perceive the environment and complete a prespecified task, and
vice versa. A person’s mental energy is not constant; usually a long period of work will
significantly reduce a person’s mental energy, and the longer a person works, the lower the
mental energy [11–13]. For example, for the same person, the mental energy after working
for several hours is lower than that when not working [14,15].

In our study, we defined the low-mental-energy (LME) condition as a combined
condition of decreased mental energy and lack of sleep. Relevant studies suggest that
reading books [16] and playing games [17,18] can evoke the user’s LME condition. For
example, in a study conducted by Dimitrakopoulos et al. [17], Dimitrakopoulos et al.
wanted to analyze the brain functional connectivity of users in the LME condition. To
evoke the LME condition, Dimitrakopoulos et al. asked each user to play a driving game
for several hours before participating in their experiments. In the present study, we used a
similar method to evoke LME. To the best of our knowledge, few studies have examined
the effects of LME on BCI performance. For this reason, we chose to assess these combined
effects in this study.

P300-based BCIs [1] (BCIs that decode user commands from P300 signals) and SSVEP-
based BCIs [19] (BCIs that decode user commands from steady-state visually evoked
potential signals) have been widely used in various research fields. In our study, we chose
to test the effects of LME on a P300-based BCI and a SSVEP-based BCI. The number of
options of P300- and SSVEP-based BCIs in different scenarios might be different, but the
EEG collection methods and the EEG-decoding algorithms used by BCIs are not severely
affected by the number of options [19,20]. In our study, we set six options for the P300- and
SSVEP-based BCIs, respectively. Each subject used the P300- and SSVEP-based BCIs to
choose prespecified targets in normal conditions (as the control group) and LME conditions
(as the experimental group). We analyzed the amplitude and signal-to-noise ratio (SNR) of
the evoked EEG signals. Additionally, we measured the degree of fatigue and task load
for each subject with the fatigue questionnaire introduced by Trudie et al. [21,22] and the
NASA task load index (NASA-TLX) [23,24].

The original hypothesis of this study was that (a) LME can significantly reduce the
BCI performance; (b) compared with the normal condition, the amplitude and SNR of the
evoked EEG signals in the LME condition might be smaller, while the degree of fatigue
and task load of each user in the LME condition might be larger; (c) in the LME condi-
tion, selecting appropriate stimulation parameters might improve the BCI performance to
some extent.

The remainder of this paper is organized as follows: Section 2 describes the subjects,
architecture of the BCIs, experimental procedure, EEG collection, signal-decoding algo-
rithm, and performance metrics of the BCIs. Sections 3 and 4 describe and discuss the
experimental results. Section 5 concludes this paper.

2. Materials and Methods

A. Subjects

Ten subjects participated in this study, who ranged from 23 to 32 years old (4 females
and 6 males) and had normal vision or normal vision after correction. According to
Lieberman et al. [11], taking drugs, and drinking stimulating beverages such as coffee
could change a person’s mental energy, which might interfere with our study. Before the
experiment, we used self-reported measurements. People who had a disease, had a sleep
disorder, or drank coffee 24 h before the experiment were excluded. Before the experiments,
the subjects should have kept enough sleep: the sleeping number of hours was 8.5 ± 1.0.
This study was approved by the Institutional Review Board of Xiangya Hospital of Central
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South University and was conducted in accordance with the ethical standards of the 1964
Declaration of Helsinki. All subjects provided written consent before the experiment. The
experiment was carried out in a normal room that was 5.0 m × 3.0 m in size. During the
experiment, all doors and windows were closed, and only the subjects and researchers
were allowed to stay in the room. Four 1.5 m-long 18-watt incandescent lamps were
used for lighting. The subjects sat in a chair 60 cm from the laptop screen (17.3 inches,
1920 × 1000 pixels, 144 Hz). Before the experiment, we described the procedure and
purpose of the experiment to each subject.

B. Architecture of the BCIs

Figure 1 shows the architecture of the P300-based BCI and the SSVEP-based BCI we
used, both of which consisted of two modules: the user interface module and the signal
decoding module.
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Figure 1. The architecture of the P300-based BCI and the SSVEP-based BCI used in this study. The
two BCIs ran on the same laptop and could be converted between each other with a switch. The user
interface of the two BCIs was a laptop screen with a size of 1900 pixels 1000 pixels; the size of each
stimulus in the user interface was 100 pixels. We used a blue visual cue to mark the current target
and a blue stimulus to evoke users’ EEG signals. The text after “Target” and “Result” presented the
current target and decoding result, respectively.

The user interface of the P300- and SSVEP-based BCI was a laptop screen (Hasee Super
Ares, Hasee Computer, Shenzhen, China), which showed the BCI options, the stimuli, the
decoding results, and a visual cue used to remind subjects of the current target. In our
study, the user interface included six options: “Box”, “Bottle”, “Chair”, “Book”, “Laptop”,
and “Phone”. As shown in Figure 2, the time courses of the P300- and SSVEP-based BCI
included three stages: cue, flash, and decode. For the P300-based BCI, in the cue stage, our
system automatically marked the current target option with a blue visual cue. Based on
Hick’s law, the cue stage should last for one second [25]. In the flash stage, our system used
blue rectangular stimuli to evoke the user’s P300 signals. The stimuli flashed in accordance
with the single-character (SC) paradigm [26,27]. The stimulus onset asynchrony (SOA) of
each stimulus was 400 ms (i.e., each rectangle appeared for 200 ms and disappeared for
200 ms). Each stimulus flashed four times [28]. In the decoding stage, our P300-based
BCI would show the decoding results on the user interface. For the SSVEP-based BCI,
our system also marked the current target option in the cue stage. In the flash stage, each
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option on the user interface flashed at different frequencies: the options “Box”, “Bottle”,
“Chair”, “Book”, “Laptop”, and “Phone” flashed at frequencies of 6.2, 7.1, 8.0, 8.9, 9.8, and
11.0 Hz, respectively [20]. The flash stage of our SSVEP-based BCI lasted for 3000 ms [29].
In the decoding stage, our SSVEP-based BCI would feed the decoding results back to the
users. Although we asked each subject to focus on the current target during the experiment,
sometimes a subject might watch non-target positions because of a lack of interest in the
experiment. For example, during the experiment, we found that subject S1 was looking
at the devices near the laptop instead of the targets shown in the user interface seven
times. Relevant studies have shown that if users do not focus on the current target, BCI
performance will decrease [30,31]. In this study, we wanted to determine the effects of the
LME condition on BCI performance. Therefore, we excluded trials involving this type of
irrelevant interference. In our study, we used a Tobii eye tracker (Tobii 4 C, Tobii Tech,
Danderyd, Sweden) to track each subject’s point of gaze (POG). When a subject’s POG left
the current target, we did not record the EEG signals for this target.
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Figure 2. Illustration of the time courses.

The signal-decoding module consisted of two submodules. The first was an amplifier
and its Ag/AgCl electrodes (actiCHamp, Brain Products, Gilching, Germany), which read,
amplified, and preprocessed the raw EEG signals from the subject’s scalp. The second was
a laptop-run BCI2000 platform, which decoded user commands from the preprocessed
EEG signals [32]. In this study, the subjects could switch between the two BCIs with a small
switch: if subjects pressed the switch once, the P300-based BCI would be activated; if the
switch was pressed again, the P300-based BCI would be turned off and the SSVEP-based
BCI would be activated.

P300 decoding algorithm: Every time a stimulus appeared on an option, we started
recording EEG signals. We recorded a 700 ms-long EEG signal for each stimulus. The
sampling frequency we used was 200 Hz. Therefore, for each stimulus, we collected a
feature vector that contained 140 points. Next, we used a down-sampling filter with a
sampling rate of one tenth to process each feature vector. The purpose of this step was to
reduce the data size. After this step, each feature vector contained 14 points. Next, we used
two widely used EEG feature translation methods, i.e., the stepwise linear discriminant
analysis (SWLDA) algorithm [33] and least square regression (LSR) [34], to decode each
feature vector. We used the EEG data collected in the BCI calibration phase to train the
optimal weight matrix W required by the SWLDA and LSR decoding algorithms. In the
decoding process, we multiplied the optimal weight matrix W by each feature vector, and
the product was the score for each stimulus. We obtained the score of each option by
adding the scores of all stimuli that appeared on this option. Finally, we used the bubble
sort algorithm to determine the largest score. The option with the largest score was the
decoding result [35].

Scorei = ∑k
j = 1 WTXij (1)
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In Equation (1), W is the optimal parameter matrix obtained in BCI calibration and k
is the number of flashes. Xij is the signal of the ith option for the jth stimulus. Scorei is the
score of the ith option.

SSVEP decoding algorithm: The flash duration of the SSVEP-based BCI was 3000 ms,
so we collected a 3000 ms-long EEG signal before decoding a user’s command. The
sampling frequency we used was 200 Hz. We used a Chebyshev type I filter (6th order, the
passband was [4 Hz, 35 Hz], ripple in the passband was 0.1 dB) to process the collected
EEG signal. Next, we used two widely used SSVEP feature translation methods, i.e., the
canonical correlation analysis (CCA) algorithm [36] and filter bank canonical correlation
analysis (FBCCA) algorithm [37], to decode the user’s commands. In the decoding process,
the CCA algorithm would calculate the correlation coefficients between the EEG signal
YEEG and the flash frequency signal of each option Yi

opt. The SSVEP-based BCI had six
options, and each option had a unique flash frequency. Therefore, we could obtain six flash
frequency signals Yi

opt and six correlation coefficients ri. We used the bubble sort algorithm
to determine the option with the largest correlation coefficient, which was the decoding
result. In Equations (2) and (3), i represents the ith option, fi and ri are the flash frequency
and the correlation coefficient of the ith option, respectively, and t is the sampling time
point. Coor is the correlation coefficient operator.

Yi
opt = [sin(2πfit), cos(2πfit), . . . , sin(6πfit), cos(6πfit)] (2)

ri = Coor
(

Yi
opt, YEEG

)
(3)

The decoding process of the FBCCA algorithm included the below steps: Firstly, we
used several bandpass filters to perform sub-band decomposition for each 3000 ms-long
EEG signal YEEG, and the passbands of the used bandpass filters are shown in Equation (4).
According to the Nyquist sampling theorem, the minimum sampling frequency required
is 92 Hz < 200 Hz. Therefore, we can record the SSVEP signal at a sampling frequency of
200 Hz and decode the SSVEP signal by the FBCCA algorithm.

Next, the standard CCA process was applied to each sub-band component separately,
i.e., we calculated the correlation coefficients between each sub-band SBk (k = 1, 2, 3 . . . , 7)
and each flash frequency signal Yi

opt (i = 1, 2, 3, .., 6). As shown in Equation (5), vector
ri

vec was the calculated correlation coefficients. Next, as shown in Equations (6) and (7),
we used the coefficients a (n) [37] to determine the weighted sum of a (n) and ri
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used the bubble sort algorithm to determine the option with the largest ri, which was the
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a(n) = n−1.25 + 0.25, n ∈ [1, 2, 3, . . . , 7] (6)

ri = ∑7
n = 1 a(n) ∗ (ri

n)2 (7)

C. Experimental Procedure

Each subject participated in two experiments within a week. The two experiments
were assigned in a random order to avoid order effects. To prevent the subjects from
remembering or being too familiar with the experimental paradigms, the subjects could
not participate in the two experiments on the same day. In our study, the interval between
the two experiments was equal to or greater than three days. We wanted to give each
subject enough time to relax and recover from the first experiment, so as not to interfere
with the second experiment. One experiment was conducted in normal conditions and
was defined as the normal condition experiment. The other experiment was conducted
when the subjects were in an LME condition, which was defined as the LME-condition
experiment. In daily life, typical working scenarios involve reading academic books and
playing games, both of which could effectively evoke LME [17]. We prepared some books in
advance based on each subject’s job and hobbies. The game we used was CARLA Simulator
(Version 0.9.9.4, http://carla.org/, accessed on 22 April 2020) [38]. Relevant studies have
suggested that short durations of work could not well reduce mental energy and that
subjects might recover during the course of the experiment [39]. Working too long would
have required too much time and might not be feasible, and 18 h was a good choice [14].

Figure 3 illustrated our experiment design. In our study, each subject entered our
laboratory at approximately 8:00 a.m. Before the LME-condition experiment, each subject
had to read the books we prepared and play the driving game. Each subject could randomly
choose to play games or read books, but the total time spent reading books and playing
the game must be 18 h. For example, a subject could first read books for 3 h and then play
games for the remaining 15 h. During the 18 h, each subject was not allowed to sleep or go
out. If a subject was too tired to continue, the subject was allowed to take a few minutes
of rest, e.g., walking in our laboratory. In order to better control the reading activities, we
would randomly ask questions about the contents each subject was reading. We asked
once an hour. If the reading time was less than one hour, it would be regarded as one
hour. For example, if a subject read for 9.5 h, we would ask questions ten times. In order
to better control the driving activities, we set up two cars in the driving game, one driven
automatically by the computer and the other driven by the subjects. The subjects were
asked to follow the self-driving car (the distance should be maintained between 10 and
15 m) and avoid obstacles such as pedestrians. At around 2:00 a.m. the next day, the LME
experiment began. Before the normal-condition experiment, each subject was not allowed
to work, and each subject was asked to rest but not sleep for one hour in our laboratory, e.g.,
subjects could listen to some music or just sit on a comfortable chair. At around 9:00 a.m.
the same day, the normal experiment began.
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Figure 3. Illustration of our experiment design.
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In our study, each subject participated in two experiments: the normal-condition
experiment and the LME-condition experiment. The procedures of the two experiments
were the same, and both contained three phases: (1) the BCI calibration phase, (2) the
online phase, and (3) the optimization phase. In the BCI calibration phase, each subject
used the P300-based BCI to select 20 predefined targets. In this phase, we collected the EEG
signals to train the SWLDA and LSR decoding algorithms, and obtained the optimal weight
matrix. In the online phase of the normal-condition experiment and the LME-condition
experiment, each subject used the P300-based BCI and the SSVEP-based BCI to choose
30 prespecified targets, respectively. Each subject could first use the P300-based BCI and
then use the SSVEP-based BCI, or use the two BCIs in a reverse order. The P300 signal is
mainly observed near the parietal lobe and the SSVEP signal is mainly observed near the
occipital lobe. In our study, the average P300 signal is defined as the average signal of the
P300 signals collected by five electrodes (FC1, FC2, CP1, CP2, and Cz). The average SSVEP
signal is defined as the average signal of the SSVEP signals collected by six electrodes
(PO3, O1, POZ, Oz, O2, and PO4). Figure 4 showed the EEG electrodes used in our study.
We created Figure 5 below, Tables 1 and 2 using the data collected in the online phase
of the two experiments. Additionally, according to the below Equations (10)–(12), we
calculated the amplitudes and SNRs of the EEG signals recorded in the online phase of the
two experiments, and the results are shown in Figure 6. In the optimization phase of the
normal-condition experiment and the LME-condition experiment, each subject completed
the following two additional tasks using the P300- and SSVEP-based BCIs. Figure 7 was
created using the data collected in the optimization phase of the two experiments.
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Figure 5. Evoked P300 signals and SSVEP signals.

Table 1. Accuracy and ITR with the P300-based BCI.

Subjects Sex
Accuracy (%)

by SWLDA Decoding
ITR (Bits/min)

by SWLDA Decoding
Accuracy (%)

by LSR Decoding
ITR (Bits/min)

by LSR Decoding

Normal LME Normal LME Normal LME Normal LME

S1 Female 83.3 46.7 8.0 1.8 80.0 33.3 7.2 0.6
S2 Female 100.0 40.0 13.4 1.1 83.3 43.3 8.0 1.5
S3 Male 76.7 43.3 6.5 1.5 90.3 46.7 9.8 1.8
S4 Female 80.0 56.7 7.2 3.1 93.0 57.0 10.6 3.1
S5 Male 73.3 46.7 5.8 1.8 100.0 50.0 13.4 2.2
S6 Male 70.0 43.3 5.2 1.5 80.3 50.0 7.3 2.2
S7 Male 93.3 56.7 10.7 3.1 83.0 33.3 7.9 0.6
S8 Male 70.0 46.7 5.2 1.8 76.0 36.7 6.4 0.8
S9 Female 80.0 36.7 7.2 0.9 73.0 40.0 5.8 1.1
S10 Male 86.7 46.7 8.8 1.8 76.6 46.0 6.5 1.7

Mean ± SD - 81.3 ± 9.8 46.4 ± 6.4 * 7.8 ± 2.6 1.8 ± 0.7 * 83.4 ± 8.5 43.6 ± 7.9 * 8.3 ± 2.3 1.6 ± 0.8 *

Note: * p value < 0.001 with paired t tests.
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Table 2. Accuracy and ITR with the SSVEP-based BCI.

Subjects Sex
Accuracy (%)

by CCA Decoding
ITR (Bits/min)

by CCA Decoding
Accuracy (%)

by FBCCA Decoding
ITR (Bits/min)

by FBCCA Decoding

Normal LME Normal LME Normal LME Normal LME

S1 Female 83.3 56.7 18.6 7.1 90.0 53.0 22.6 6.0
S2 Female 93.3 50.0 24.9 5.1 90.6 52.3 23.0 5.7
S3 Male 93.3 53.3 24.9 6.0 93.0 57.7 24.7 7.4
S4 Female 86.7 36.7 20.5 2.0 100.0 66.3 31.0 10. 6
S5 Male 90.0 40.0 22.6 2.7 90.3 52.7 22.8 5.9
S6 Male 86.7 36.7 20.5 2.0 100.0 40.3 31.0 2.7
S7 Male 93.3 56.7 24.9 7.1 86.7 49.7 20.5 5.0
S8 Male 86.7 33.3 20.5 1.4 95.0 50.0 26.2 5.1
S9 Female 96.7 60.0 27.6 8.2 93.0 66.7 24.7 10.7
S10 Male 100.0 63.3 31.0 9.4 94.7 49.0 26.0 4.8

Mean ± SD - 91.0 ± 5.2 48.7 ± 11.0 * 23.6 ± 3.8 5.1 ± 2.9 * 93.3 ± 4.3 53.7 ± 8.0 * 25.2 ± 3.5 6.4 ± 2.5 *

Note: * p value < 0.001 with paired t tests.
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Figure 6. Amplitudes and SNRs in the Normal and LME Conditions. We plotted this figure using
the EEG signals collected in the online phase of the normal and LME condition experiments. The
subfigures (A,B) showed the amplitudes and SNRs of the collected EEG signals, respectively. In this
figure, “*” means that the results were significantly different (p < 0.001).

Task (a): in this task, we resized stimuli of the P300- and SSVEP-based BCIs in the
following order: 100 × 100 pixels, 150 × 150 pixels, 200 × 200 pixels, 250 × 250 pixels, and
300 × 300 pixels. For the P300-based BCI, each subject chose 10 targets at each stimulus
size. Specifically, each subject first chose 10 targets with the 100 × 100 pixel stimuli, then
chose 10 targets with the 150 × 150 pixel stimuli, and so forth, until the subject completed
the task. In other words, each subject chose a total of 50 targets with the P300-based BCI.
For the SSVEP-based BCI, each subject also chose 10 targets at each stimulus size. In task
(a), the number of flashes of the P300-based BCI remained at four, and the flash duration of
the SSVEP-based BCI remained at 3000 ms.

Task (b): in this task, we changed the number of flashes of the P300-based BCI (two,
three, four, five, and six) and the flash duration of the SSVEP-based BCI (2000 ms, 3000 ms,
4000 ms, 5000 ms, and 6000 ms). The stimuli size of the two BCIs remained 100 × 100 pixels.
For the P300-based BCI, each subject chose 10 targets with two flashes, and then chose
10 targets with three flashes, and so forth, until six flashes. For the SSVEP-based BCI, each
subject chose 10 targets with the flash duration of 2000 ms, and then chose 10 targets with
the flash duration of 3000 ms, and so forth, until a flash duration of 6000 ms.
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Figure 7. Effects of the flash number, flash duration, and stimulus size on BCI performance. The
shaded areas in this figure represent the error bands. We plotted this figure using the EEG signals
collected in the optimization phase of the normal and LME condition experiments. The subfigures
(A,B) showed the experimental results of the P300- and SSVEP-based BCIs, respectively.

D. Task Load and Fatigue Degree

The degree of fatigue and the task load might affect the BCI performances. In our study,
we used the NASA-TLX to measure the task load for each subject. The NASA-TLX [23,24]
included six items: “mental demand”, “physical demand”, “temporal demands”, “frus-
tration”, “effort”, and “performance”. The full score for each item was 100, and subjects
separately rated each item. A high score indicated that the load for that particular item
was high, and conversely, a low score indicated low load. For example, if the score of
the item “effort” was 100, it meant that the subject made a large effort to complete the
current task. We used the fatigue questionnaire introduced by Trudie et al. to measure each
subject’s degree of fatigue. The fatigue questionnaire [21,22] included 14 items: seven items
measured the physical fatigue of a person and the other seven items measured the mental
fatigue. The full score of the fatigue questionnaire was 100, and each item was worth
approximately seven points. The higher the scores were, the more fatigued the person. We
measured each subject’s task load and degree of fatigue immediately after the experiments
and present the scores in Table 3 to Table 4 (see Results Section 3).
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Table 3. Overall Scores from the NASA-TLX.

Subjects
Mental Demand Physical Demand Temporal Demands Frustration Effort Performance

Normal LME Normal LME Normal LME Normal LME Normal LME Normal LME

S1 50 85 50 85 40 90 45 95 50 75 50 85
S2 50 90 55 90 60 80 35 100 40 90 45 95
S3 35 95 35 90 45 85 25 95 50 90 45 90
S4 35 90 40 95 45 80 40 90 40 90 40 95
S5 45 80 45 85 35 85 50 85 55 90 45 80
S6 35 90 35 100 30 95 25 95 50 85 30 90
S7 35 80 25 80 35 90 40 75 35 75 35 80
S8 25 85 15 80 15 90 20 75 30 75 15 90
S9 15 70 5 60 5 60 10 55 15 50 5 70

S10 15 70 25 60 10 80 20 75 25 75 15 70

Mean ±
SD

34.0 ±
12.6 *

83.5 ±
8.5

33.0 ±
15.7 *

82.5 ±
13.4

32.0 ±
17.4 *

83.5 ±
9.7

31.0 ±
13.0 *

84.0 ±
14.0

39.0 ±
13.0 *

80.0 ±
12.6

32.5 ±
15.7 *

84.5 ±
9.3

Note: * p value < 0.001 with paired t tests.

Table 4. Overall Scores from the Fatigue Questionnaire.

Subjects
Physical Fatigue Mental Fatigue

Normal LME Normal LME

S1 13 88 34 67
S2 25 88 34 67
S3 13 88 17 50
S4 13 100 50 50
S5 45 100 50 67
S6 25 75/ 34 67
S7 20 75 34 67
S8 25 88 17 67
S9 15 75 17 67
S10 10 75 34 50

Mean ± SD 20.4 ± 10.4 * 85.2 ± 9.9 32.1 ± 12.2 * 62.0 ± 8.2
Note: * p value < 0.001 with paired t tests.

E. EEG Collection and Preprocessing

The EEG signals were collected from 11 electrodes—FC1, FC2, CP1, CP2, Cz, PO3,
O1, POz, Oz, O2, and PO4—distributed according to the international 10–20 system and
amplified with an actiCHamp amplifier (Brain Products, Gilching, Germany). The sam-
pling frequency was 200 Hz. TP9 and TP10 were reference electrodes, and the reference
corresponds to the average of the signals from these two electrodes. Fpz was the ground
electrode. The impedance of all electrodes was maintained below 5 kΩ. To reduce artifacts
related to eye and muscle activities on the EEG signal, we filtered the collected EEG signal
using a bandpass filter from 0.5 to 50 Hz.

F. Metrics

(i) BCI performance (accuracy and ITR): Relevant studies often use the ITR and accuracy
to evaluate the performance of BCIs [19]. In this study, we also used the ITR and
accuracy as performance metrics. Equations (8) and (9) show the method to compute
the ITR. N is the number of options, which was set to 6, p is the accuracy, and T is the
time required for decoding a target.

ITR =
log2 N + p ∗ log2p + (1− p)∗ log2

(
1−p
N−1

)
T

, if p 6= 100% (8)

ITR = log2 N
T , if p = 100% (9)
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(ii) EEG indices (amplitude and SNR): Studies have suggested that the amplitude and
SNR of evoked EEG signals are associated with the performance of BCIs [20,40].
According to [27,41], the SNR of a P300 signal can be computed with Equations (10)
and (11). In the two equations, k denotes the kth flash. EEGk, P300k, and Noisek
are the recorded EEG signal in the kth flash, the true P300 signal in the kth flash,
and the uncorrelated noise components in the kth flash, respectively. Ek denotes the
mathematical expectation operator, namely, the computed mean signal of all flashes.
The mean of the noise component Noisek was assumed to be zero, and Ek(EEGk)
returned the true P300 signal. vart computed the variance in the signals over time.

EEGk = P300k + Noisek (10)

SNR = 10 log10

(
vart(Ek(EEGk))

Ek(vart(EEGk − Ek(EEGk)))

)
(11)

According to [20], the SNR of an SSVEP signal was the power at the flash frequency
divided by the mean power at its neighboring frequency band. If the flash frequency was
fi Hz, its neighboring frequency band was defined as [fi − 2Hz, fi + 2Hz] [20]. For the
SSVEP-based BCI we used, the frequency resolution was approximately 0.5 Hz. Therefore,
[fi − 2Hz, fi + 2Hz] contained 10 points, i.e., from 5 points on the left side of fi Hz to
5 points on the right side. Equation (12) shows the SNR of a SSVEP signal. P(fi) and SNRi
are the power and the SNR at fi Hz, respectively.

SNRi = 10 log10

(
P(fi)/

(
1

10 ∑j = 5
j = −5,j 6=0 P

(
fi+j
)))

(12)

G. Statistical Analysis

The data we recorded (accuracies and ITRs) followed normal distributions, and the
statistical power of the paired t test was higher than that of non-parametric test. Therefore,
in this study, we used a paired t test to compare the BCI performance in normal and LME
conditions. The statistical analysis software we used was the SPSS (version 21.0). For
example, in the following Table 1, the first item is “Accuracy by SWLDA decoding”. For
this item, we compared the accuracy in the normal condition with the accuracy in the
LME condition. We collected the data of each subject under different stimulus parameters
(flash duration, flash number, and stimulus size), which is a repeated-measure design.
Additionally, the data we collected followed normal distributions, and the statistical power
of analysis of variance (ANOVA) was higher than that of the non-parametric test. Therefore,
in our study, we used one-way repeated ANOVA to test the effects of stimulus parameters.

3. Results

A. Performance of the BCIs

Table 1 shows the performance of the P300-based BCI. The mean accuracy in the LME
condition was 46.4% (decoded by the SWLDA classifier) and 43.6% (decoded by the LSR
classifier), respectively; the mean ITR was 1.8 bits/min (decoded by the SWLDA classifier)
and 1.6 bits/min (decoded by the LSR classifier), respectively. In the normal condition,
the mean accuracy was 81.3% (decoded by the SWLDA classifier) and 83.4% (decoded by
the LSR classifier), respectively; the mean ITR was 7.8 bits/min (decoded by the SWLDA
classifier) and 8.3 bits/min (decoded by the LSR classifier), respectively. Table 2 shows the
performance of the SSVEP-based BCI. In the LME condition, the mean accuracy was 48.7%
(decoded by the CCA classifier) and 53.7% (decoded by the FBCCA classifier), respectively;
the mean ITR was 5.1 bits/min (decoded by the CCA classifier) and 6.4 bits/min (decoded
by the FBCCA classifier), respectively. In the normal condition, the mean ITR accuracy
was 91.0% (decoded by the CCA classifier) and 93.4% (decoded by the FBCCA classifier),
respectively; and the mean ITR was 23.6 bits/min (decoded by the CCA classifier) and
25.2 bits/min (decoded by the FBCCA classifier), respectively. The results of Shapiro-Wilk
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tests [42] showed that all accuracies (p > 0.01) and ITRs (p > 0.01) in Tables 1 and 2 followed
normal distributions. Next, we used paired t tests to further analyze the effects of LME on
performance of the P300- and SSVEP-based BCIs. The experimental results showed that in
the LME conditions, the performance of P300-based BCI (using the SWLDA classifier or the
LSR classifier) and the SSVEP-based BCI (using the CCA classifier or the FBCCA classifier)
was significantly worse (p < 0.001).

B. EEG Signals in Normal and LME Conditions

In the normal condition, an obvious P300 response can be observed in Figure 5A, and
the amplitude of the P300 signal was approximately 2.0 µV. In the LME condition, we
could also see a P300 response (approximately 1.0 µV) at approximately 400 ms, but the
P300 response was not as clear as that in the normal condition. With the SSVEP-based BCI,
each stimulus evoked obvious base frequencies and harmonic frequencies. In the normal
condition, the maximum amplitude of base frequencies was approximately 3 µV, which was
observed at 8 Hz, and the amplitudes of other base frequencies were approximately 2 µV.
In the LME condition, the maximum amplitude of the base frequencies was approximately
1.5 µV, and the other amplitudes were approximately 1 µV, which were less than those
recorded in the normal condition. In the LME condition, the amplitudes of all harmonic
frequencies were also less than those recorded in the normal condition. LME decreased the
amplitudes of the evoked SSVEP signals.

We calculated the amplitudes and SNRs of the average P300 signals and the average
SSVEP signals, and showed the results in Figure 6. The mean amplitudes in the LME and
normal conditions were 1.2 V and 2.2 V, respectively. The mean SNRs in the LME and
normal conditions were 4.5 dB and 10.2 dB, respectively. The results from the Shapiro-
Wilk tests showed that all amplitudes (p > 0.01) and SNRs (p > 0.01) followed normal
distributions. Next, we used paired t tests. The amplitudes and SNRs in the LME condition
were smaller than those in the normal condition (p < 0.001). Generally, if the amplitudes and
SNRs of the evoked EEG signals are larger, it indicates that the BCI paradigms successfully
evoked higher-quality EEG signals [20]. Figure 6 suggests that the quality of the EEG signals
with the P300-based BCI and SSVEP-based BCI were not as high in the LME condition as
those in the normal condition.

C. NASA-TLX and Fatigue Questionnaire Scores

Tables 3 and 4 show the overall scores from the NASA-TLX and the fatigue question-
naire, respectively. Despite some individual differences, in the LME condition, the mean
scores of mental demand, physical demand, temporal demands, frustration, effort, and
performance were all approximately 80. In the normal condition, the mean scores of these
metrics were all approximately 30. In the LME condition, the mean scores of physical
fatigue and mental fatigue were 85.2 and 62.0, respectively. In the normal condition, the
two metrics were 20.4 and 32.1, respectively. Paired t tests have often been used to test the
results from the NASA-TLX and the fatigue questionnaire [43], and we also used paired
t tests in our study. All scores of the NASA-TLX and the fatigue questionnaire in the
LME condition were significantly higher than those in the normal condition (p < 0.001).
Regarding the NASA-TLX and the fatigue questionnaire, higher scores indicated that the
tasks were more difficult for the subjects, and the subjects were more fatigued at their
completion [21–24]. The tasks in the LME and normal conditions were the same. The
results might indicate that in the LME condition, the subject’s cognitive ability was reduced
and they were easier to be fatigued.

D. Effects of Flash Duration, Flash Number, and Stimulus Size

To test our hypothesis (c), in the optimization phase of the experiment, we changed
three parameters of the BCIs: flash duration, flash number, and stimulus size. In Figure 7,
we show the accuracies and ITRs of the P300- and SSVEP-based BCIs using the different
parameters. Although the accuracies and ITRs of the two BCIs in the LME condition were
lower than those in the normal condition, increasing the three parameters improved the
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accuracies and ITRs of the BCIs in the LME condition to some extent. To further validate
the experimental results, we used one-way repeated ANOVA to test the data shown in
Figure 7. For the accuracy of the P300-based BCI, the results showed that increasing the
flash number (for LSR decoding: F(4,36) = 3.7, p = 0.01; for SWLDA decoding: F(4,36) = 2.5,
p = 0.05) and stimulus size (for LSR decoding: F(4,36) = 6.0, p = 0.001; for SWLDA decoding:
F(4,36) = 9.0, p = 0.000) could improve the BCI performance. For the ITR of the P300-based
BCI, the results showed that increasing the flash number (for LSR decoding: F(4,36) = 66.0,
p = 0.000; for SWLDA decoding: F(4,36) = 120.0, p = 0.000) and stimulus size (for LSR
decoding: F(4,36) = 37.0, p = 0.000; for SWLDA decoding: F(4,36) = 3.8, p = 0.01) could
improve the BCI performance. For the accuracy of the SSVEP-based BCI, the results showed
that increasing the flash duration (for FBCCA decoding: F(4,36) = 19.0, p = 0.000; for CCA
decoding: F(4,36) = 7.1, p = 0.000) and stimulus size (for FBCCA decoding: F(4,36) = 9.4,
p = 0.000; for CCA decoding: F(4,36) = 9.8, p = 0.000) could improve the BCI performance.
For the ITR of the SSVEP-based BCI, the results showed that increasing the flash duration
(for FBCCA decoding: F(4,36) = 145.0, p = 0.000; for CCA decoding: F(4,36) = 8.5, p = 0.000)
and stimulus size (for FBCCA decoding: F(4,36) = 14.0, p = 0.000; for CCA decoding:
F(4,36) = 22.6, p = 0.000) could improve the BCI performance.

4. Discussion

With the P300-based BCI and the SSVEP-based BCI, LME reduced accuracies and
ITRs. Although subjects completed the same tasks in the normal condition and the LME
condition, the results from the NASA-TLX and the fatigue questionnaire showed that the
subjects felt that the tasks were more difficult in the LME condition. In the LME condition,
the subject might lack enough cognitive ability and enthusiasm for the tasks. The mental
fatigue, frustration, and distraction caused by LME might be a reason for the decline in BCI
performance. Our experimental results showed that the amplitudes and SNRs of the EEG
signals evoked in the LME condition were significantly lower than those in the normal
condition, which might be another reason for the decrease in BCI performance.

Increasing the number of flashes and flash duration provided more EEG data to the
classifiers, which makes the decoding process easier [44]. Therefore, increasing the number
of flashes and flash duration improved the performance of the P300- and SSVEP-based
BCIs to some extent. In the LME condition, the users could not easily find small stimuli
because their reaction speeds and attention were reduced. However, users can easily find
large stimuli because large stimuli can better attract users’ attention [45–48]. The BCIs
used in our study were visually evoked. The size of visual stimuli might influence visual-
information-processing abilities in the human brain [49,50]. A relevant study showed
that specific cells in the inferior temporal cortex responded only to a specific stimulus
size [51]. A large visual stimulus might improve visual-information-processing abilities
since it might activate more visual neurons [49], which might improve BCI performance in
the LME condition to some extent.

At present, most studies on mental energy have tested the impact of cognitive work-
load on BCI performance. However, the decreased mental energy caused by high cognitive
workload is different from that caused by long periods of work. The two types of decreases
in mental energy have completely different neurophysiological mechanisms. Studies on the
former could not adequately account for the effects of the latter on BCI performance [14,52].
Determining the effects of LME conditions on BCIs was the basis to optimize BCI interaction
strategies in the LME condition. A BCI that could perform robustly in LME conditions
would be useful for more scenarios and more potential users. For example, a disabled
person may want to use BCIs after long periods of rehabilitation training, or a user may
want to use BCIs after a full day of work. Additionally, potential users of BCI-controlled
wheelchairs, such as patients with spinal injury, often continuously use BCI-controlled
wheelchairs for several hours because they have to rely on wheelchairs in their daily
life [53]. Although many studies have optimized BCI paradigms, users’ mental energy will
be reduced after using these BCIs for long periods of time [26,54,55]. Even when not using
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BCIs, the mental energy of many patients is low, and using BCIs for long periods of time
will more quickly reduce their mental energy. For the above scenarios, although the method
of increasing stimulus size did not fully ensure BCI performance, it was useful to some
extent. Moreover, combining our work with EEG-based fatigue detection may provide
a more user-friendly interaction framework: the system automatically detects the user’s
degree of fatigue from the recorded EEG signals and then adaptively chooses appropriate
BCI parameters. We tested only the P300-based BCI and the SSVEP-based BCI, but this
study, as a case study, can be extended to other types of BCIs.

Our research evaluating LME remains preliminary. We may integrate functional
magnetic resonance imaging (fMRI) into our future work to determine more specific
reasons why LME affects BCI performance. For example, in LME conditions, we could
determine the relationship between brain functional connectivity and the SNR of EEG
signals recorded in each brain region. We also need to develop a better BCI paradigm to
further improve its performance in LME conditions. Laplacian spatial filters can filter some
background noise and increase the SNRs of the recorded EEG signals, which are usually
used to process sensorimotor rhythms [56,57]. It may be an interesting future direction
to analyze P300 and SSVEP data with a Laplacian spatial filter. In our study, we did not
collect enough data for two-way ANOVA, and it may be difficult to analyze the relation
among flash number for P300, flash duration for SSVEP, and stimulus size, which is a
limitation of our current work. Our study did not test the circadian/wake effects, which is
a limitation. The lack of sleep may reduce people’s reaction speed and vigilance [58], but
may increase the power of theta and beta waves. Sleep is also related to people’s moods,
e.g., depression [59].

5. Conclusions

In this study, we examined the effects of LME due to a long period of work on
BCI performance. The experimental results suggested that LME significantly reduced
performances of the P300-based BCI and the SSVEP-based BCI. LME reduced user interest
and enthusiasm for BCIs and caused more mental fatigue, frustration, and distraction. In
addition, the amplitudes and SNRs of the evoked EEG signals were lower in the LME
condition. We felt that these might be possible reasons for decreased BCI performance.
Further results suggested that increasing the stimulus size, the flash number, and the flash
duration could improve BCI performance in LME conditions to some extent.
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