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Vaccines are one of the most important tools in public health and play an important role in infectious
diseases control. Owing to its precision, safe profile and flexible manufacturing, mRNA vaccines are
reaching the stoplight as a new alternative to conventional vaccines. In fact, mRNA vaccines were the
technology of choice for many companies to combat the Covid-19 pandemic, and it was the first technol-
ogy to be approved in both United States and in Europe Union as a prophylactic treatment. Additionally,
mRNA vaccines are being studied in the clinic to treat a number of diseases including cancer, HIV, influ-
enza and even genetic disorders.
The increased demand for mRNA vaccines requires a technology platform and cost-effective manufac-

turing process with a well-defined product characterisation. Large scale production of mRNA vaccines
consists in a 1 or 2-step in vitro reaction followed by a purification platform with multiple steps that
can include Dnase digestion, precipitation, chromatography or tangential flow filtration. In this review
we describe the current state-of-art of mRNA vaccines, focusing on the challenges and bottlenecks of
manufacturing that need to be addressed to turn this new vaccination technology into an effective, fast
and cost-effective response to emerging health crises.

� 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Vaccines are one of the greatest advances in medicine and an
important public health tool, as they not only prevent infection,
morbidity and mortality individually, but also reduce and elimi-
nate disease prevalence locally, ultimately leading to eradication
of disease globally [1]. Since the development of the smallpox vac-
cine in 1798 [2] and rabies vaccine in 1885 [3], vaccine technology
progressed from the use of inactivated and attenuated pathogens,
to the use of subunits that only contain those pathogen compo-
nents that can trigger an immunologic response (Fig. 1). Key mile-
stones include the development of virus-like particle vaccines,
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Fig. 1. Vaccination targets and milestones adapted from [4,5].

S.S. Rosa, D.M.F. Prazeres, A.M. Azevedo et al. Vaccine 39 (2021) 2190–2200
recombinant viral-vectored vaccines, and toxoids, polysaccharides
or protein-based vaccines, which can be conjugated with different
protein carriers to improve immune response.

Vaccines save 6 million lives every year and are one of the major
responsible for the increase of human longevity [6]. Their impact
on the economic viability of the healthcare system is also very
large, since vaccines lower the treatment costs of diseases [7],
and reduce the impact and risk of outbreaks [8]. Additionally, by
preventing bacterial infection and, subsequently, reducing the
need for antibiotic treatment, vaccines can have an impact on
antimicrobial resistance [9]. The use of vaccines goes beyond pre-
vention of infectious diseases. Technology advances coupled with
progress in target selection and understanding of the immunosup-
pressive mechanisms have led to the development of therapeutic
cancer vaccines [10].

Despite the proven effectiveness of current vaccines, there is
still room for improvement in the vaccine technology field. Tradi-
tional attenuated and inactivated vaccines are still widely used
today (e.g., Bacillus Calmette–Guérin vaccine, BCG and Inactivated
Polio vaccine, IPV) owing to their robustness and stability. How-
ever, they present safety concerns due to the use of whole patho-
gens and in many cases, they dońt have a defined composition.
In the case of toxoid and subunit vaccines, and despite their safety
and stability profile, the use of adjuvants is required for a strong
immune response and the protection lifetime is limited (Table 1).

The manufacturing of new vaccines is typically a lengthy (6 to
36 months), challenging and expensive process, as no standard
process is available [11,12]. To deliver effective, precise, and con-
sistent vaccines it is imperative to use good manufacturing practice
(GMP) compliant equipment, facilities, and procedures. However,
this is costly and difficult to implement at a large scale. Vaccines
Table 1
Advantages (+) and disadvantages (x) of the currently available types of vaccines.

Properties Inactivated Live attenuated Toxoid

Humoral and cellular immune response

Lasting protection

Stability

Safety

Manufacturing

Presence of adjuvants

Cold chain
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developed on the basis of traditional technology have failed to
respond effectively to several diseases, such as malaria, tuberculo-
sis, AIDS or flu. Furthermore, SARS and Ebola epidemic outbreaks
and, more recently, the CODVID-19 pandemic, show that many of
the current platforms are not well suited for a very fast, efficient,
and cost-effective response.

New vaccine technology approaches are thus necessary to
improve our response to outbreaks and enable vaccination world-
wide. Ideally, a new vaccine should be safe, effective, stable, avail-
able to all populations and not susceptible to antigenic variance
[13]. The manufacturing must be reliable, efficient, low-cost, and
flexible to allow on-demand production. Viral vectors and DNA
technology are two cutting-edge platforms that have the flexibility
and characteristics to support faster vaccine development and
manufacturing [14]. However, the costly and complex manufactur-
ing of viral vectored vaccines and the poor immunogenicity pre-
sented by DNA vaccines (Table 1) can make them unattractive
for some clinical applications.
2. The rise of mRNA technology

mRNA vaccines have reached the spotlight during the Covid-19
pandemic, as the forefront technology used for the development of
vaccines by many companies. In fact, a mRNA vaccine candidate
was the first to reach phase I clinical trials [15]. The potential of
mRNA vaccines was first hinted at in 1990, when the in vivo
expression of a protein was observed after injecting the coding
mRNA into mouse skeletal muscle [16]. These early experiments
proved that in vitro transcribed mRNA (IVT) can induce the produc-
tion of proteins in live tissues. During the following 10 years,
Subunit (conjugate; protein-based; polysaccharide) Viral Vectors DNA
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several studies demonstrated that mRNA could induce an immuno-
logic response to the expressed protein in many mammalian cell
types both in vitro and in vivo [17–19]

mRNA technology presents several advantages that makes it an
attractive alternative over traditional vaccines or even DNA vac-
cines. Unlike attenuated or inactivated vaccines, mRNA is precise
as it will only express a specific antigen and induce a directed
immune response. Additionally, it promotes both humoral and cel-
lular immune response and induces the innate immune system
[20]. Compared with DNA-based vaccines, mRNA is more effective,
since expression does not require nuclear entry, and safer, since
the probability of random genome integration is virtually zero
[21,22]. Additionally, expression of the coded antigens is transient
since mRNA is quickly degraded by cellular processes, with no
traces found after 2–3 days [23]. The flexible nature of the mRNA
vaccine platform is also advantageous for manufacturing since a
change in the encoded antigen does not affect the mRNA backbone
physical–chemical characteristics [24], and hence allow produc-
tion to be standardized. Additionally, since production is based
on an in vitro cell-free transcription reaction, safety concerns
regarding the presence of cell-derived impurities and viral contam-
inants commonly found in other platforms are minimised.

2.1. mRNA vaccine structure

Construction of mRNA vaccines requires the insertion of the
encoded antigen in a DNA template from where the mRNA is tran-
scribed in vitro. Unlike DNA, mRNA only needs to reach the cytosol,
where it will be transcribed into the antigen in vivo, using the cell
machinery. This way, any desired sequence can be designed, pro-
duced in vitro, and delivered to any type of cell [21]. Inside the
cells, RNA is recognised by endosomal or cytosolic receptors, which
can lead to the activation of the type I interferon (IFN-I) pathway,
and to the promotion of the production of chemokines and proin-
flammatory cytokines. These signal molecules lead to antigen-
presenting cell (APC) activation and, subsequently, to a strong
adaptive response [25].

The structure of mRNA vaccines is similar to eukaryotic mRNA -
a single-stranded molecule with a cap at the 50 end, a poly(A) tail at
the 30 end and an open reading frame (ORF) flanked by untrans-
lated regions (UTR) [20]. The 50 cap is an important component
as it enables the translation initiation by binding to a eukaryotic
translation initiation factor (eIF4E) [26]. Different structures are
possible for the 50 cap. The Cap 0 structure, which features a
methyl-7 guanine nucleotide linked to the 50 position through a
50 triphosphate, is the simplest. The Cap 1 structure is achieved
by the methylation of the mRNA first nucleotide at the ribose 20-
O position. Both caps can be added during in vitro mRNA transcrip-
tion using a synthetic cap analogue [27] or the proprietary Cap din-
ucleotide CleanCap� [28]. Another capping approach uses a post-
transcription enzymatic reaction based on the vaccinia capping
system [29]. This modification brings with it a number of advan-
tages as it improves the translation initiation by recruiting transla-
tion initiation factors, protects the synthetic mRNA against
exonuclease degradation [30], and avoids an innate immunity
overactivation response [25]. The addition of a 30 poly(A) tail also
improves mRNA stability and translational activities, as it protects
mRNA from nuclease degradation by the poly(A)-binding protein
(PABP) [31]. This tail can be added to the transcript by inserting
a poly(A) sequence in the DNA template or by an enzymatic reac-
tion [27]. Tail size optimization is an important factor for the sta-
bilization and expression of mRNA. Longer poly-A tails can
improve mRNA stability and translation. However, this effect is
not linear, and the best tail size is dependent on cell type [31].
The untranslated regions (UTRs) are responsible for the transcrip-
tion regulation and mRNA stability. These regions strongly affect
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translation efficiency as the sequences used are involved in the
translation machinery recognition, recruitment, and mRNA traf-
ficking. Strategies to modulate the innate immune response, such
as the introduction of unnatural nucleosides (NTPs), and to
improve translation efficiency, by using codon optimisation, are
also commonly used in mRNA production [27,28].

Two forms of mRNA structure are being extensively studied for
vaccine applications: conventional or non-replicating mRNA and
self-amplifying mRNA. In the conventional mRNA form, the anti-
gen of choice is only flanked by UTR regions, a 30 poly(A) tail and
a 50 cap. This form presents several advantages - molecules are
simple and small, and the possibility of unwanted immune
response is lowered since no other proteins are encoded [32]. How-
ever, this mRNA expression is limited to its transient nature, and
higher mRNA doses may be necessary to achieve high expression
[33]. Efforts have been made to overcome this bottleneck by using
sequence optimization and formulation [34]. Self-amplifying
mRNA (saRNA) is based on the addition of a viral replicase gene
to enable the mRNA to self-replicate. Usually, sequences of
single-stranded RNA viruses, such as alphaviruses, flaviviruses,
and picornaviruses, are used [35]. Upon cytoplasm delivery, this
type of mRNA produces high levels of the antigen of interest.
Despite the use of viral genes, no viral infectious particles or
virus-like-particles are observed during expression, reducing the
safety concerns [21]. Evaluation of an saRNA vaccine for protection
of mouse models against H1N1/PR8 infection showed that a 64-
fold lower dose was required to induce an immunologic response
when compared with the conventional mRNA vaccine counterpart
[36].

Trans-amplifying mRNA (taRNA) is a new structural modality of
mRNA vaccines. The taRNA results from the splitting of the self-
amplifying mRNA in a system with two templates, one containing
the gene of interest and a second containing the replicase system.
The amplification is performed in trans by the replicase in the cyto-
plasm. This system presents some advantages over saRNA since it
is safer, more versatile and cost-effective to manufacture, as the
production of shorter RNAs with high yield and high quality is less
challenging. taRNA has already been used to protect mice against
influenza with results showing induction of antibodies and protec-
tion[37].

2.2. mRNA delivery

mRNA must cross the cell membrane to reach the cytosol. This
is challenging due to the negative charge of the molecule, its rela-
tively large size (300–5000 kDa) and degradability, which can
hamper its passive pass through the cell membrane [38]. To over-
come this, mRNA can be delivered using different strategies includ-
ing: i) direct injection of naked mRNA; ii) conjugation with lipid-
based carriers, polymers, or peptides; iii) via transfection of den-
dritic cells (DC) [39].

The induction of an immune response by injection of naked
mRNA in conventional and self-amplifying forms has been widely
reported [40–44]. However, mRNA delivery can be limited by the
presence of extracellular exonucleases in the target tissues, ineffi-
cient cell uptake or unsuccessful endosomal release [27]. Lipo-
somes or lipid nanoparticles (LNPs) are one of the most
promising mRNA delivery tools [45]. For example, LNP-mediated
delivery of mRNA vaccines against Zika and influenza has shown
encouraging results [46–49]. Although less explored, polymer-
based delivery systems can also be used. Polyethylenimine (PEI)
systems were successfully implemented as a strategy to deliver
mRNA to cells [50], and intranasally [51]. Additionally, PEI-based
systems improved the response to sa-mRNA vaccines in skin
explants [52] and in mice [36]. Peptide-based delivery is a less
explored system, as only protamine has been evaluated in clinical
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trials [53]. New delivery approaches include the use of cationic
cell-penetrating peptides (CPPs) and anionic peptides. CPPs sys-
tems have proved to improve T-Cell immunity response in vivo
[54], modulate innate immune response and enhance protein
expression in both DC and human cancer cells in vitro [55,56].
mRNA polyplexes conjugated with an anion peptide, exhibited an
increase in cellular uptake without inducing cytotoxicity in DC
cells [57].

Despite the efforts to improve mRNA delivery, there are still
challenges that must be considered, such as the delivery efficiency,
cell targeting, materials safety, route of administration and vaccine
thermostability. This topic is extensively revised elsewhere [39].

3. Applications

Since Wolf et al. [16] showed that proteins can be produced
from in vitro transcribed mRNA in live tissues, mRNA vaccines have
been demonstrating efficacy in a number of applications [58]. The
first record of a clinical trial using mRNA technology based on RNA-
pulsed DC cancer vaccine dates back to 2003 [59]. Today, more
than 140 clinical trials can be found that use mRNA to address dif-
ferent conditions such as cancer or infectious disease (Fig. 2).

From the first applications, mRNA has emerged as a potential
therapy for cancer. Boczkowski et al [60] produced one of the first
breakthroughs by using mRNA to generate vaccines based on
RNA-pulsed dendritic cells (DC) against tumour cells. Using this
system, the antigen-presenting immune response was induced,
and tumour regression was observed. Since then, mRNA-based
DC vaccines have shown their potential in cancer applications in
over 70 completed clinical trials. Recently, a phase I study where
RNA transduced DCs were evaluated as a post-remission therapy
in acute myeloid leukaemia (AML) was published [61]. This treat-
ment induced an immune response with a positive relation
between higher survival rate of patients with � 65 years. The use
of mRNA has also been explored to engineer T- or Natural Killer
(NK) cells to express chimeric antigen receptor (CAR) that are used
as a cancer cell therapy [62,63]. In fact, this this system was suc-
cessfully implemented in a phase I clinical trial designed to evalu-
ate its potential in the treatment of colorectal cancers [64].

The direct injection of mRNA is a more cost-effective delivery
alternative to DC vaccines. In vivo delivery of the naked, com-
plexed, or encapsulated mRNA can be successfully performed by
a number of administration routes such as intradermal, intramus-
cular, intranasal, intratumoral, intranodal or even intravenous [45].
Using this method, a dose consisting of only a few tenths or hun-
dreds of micrograms of mRNA (10–250 lg) is administered to each
patient to trigger an immune response [65]. The first clinical trial
evaluating direct injection used naked mRNA in patients with mel-
anoma [66]. This approach was feasible and safe but no clinical
effectiveness was observed. Self-adjuvanted RNActive� vaccines
is a technology developed by CureVac that uses a mixture of
protamine-complexed and naked mRNA to improve the
Fig. 2. Breakdown of mRNA vaccines clinical trials filed per year
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immunostimulatory effect of the vaccine [67]. This technology
was successfully applied in phase I and I/II clinical trials targeting
liver [68], prostate [69], lungs [70] and melanoma [71] cancers.
New delivery approaches using lipoplexes and LNPs have been
extensively used in clinical trials studies in the last couple of years.
Recent results show that both technologies can be successfully
applied to treat melanoma [72], lymphoma [73,74], and solid
tumours [75,76].

Cancer is currently the target of choice for mRNA technology.
Over 50% of the clinical trials focus on the treatment of melanomas,
prostate and brain cancer (Fig. 3), with most of the trials still in the
early phases (I and II). The lack of benchmarks for cancer treatment
hampers the evaluation of the vaccine’s effectiveness beyond the
safety profile and the immunological response [21]. However, this
is not the case for infectious diseases since many conventional vac-
cines are available to serve as benchmarks to validate the new
mRNA vaccines. mRNA have also shown potential, not only for
the treatment of cancer, but also as a therapeutic for protein
expression in the treatment a number of other diseases, such a car-
diovascular disease [87,88] and type II diabetes [88].

Owing to its versatility and flexible manufacture, mRNA is an
excellent platform for the development of prophylactic or thera-
peutic vaccines against infectious diseases (Fig. 3). The first studies
using mRNA technology for infectious diseases therapeutics tar-
geted HIV. Using DC-based and naked delivery systems, phase I
and II clinical trials presented mixed results despite the vaccine’s
safe profile [77], as a lack of an efficient immunologic response
against HIV was observed [78,79].

Prophylactic vaccines using mRNA technology were also direc-
ted to rabies, with the first clinical trial using a self-adjuvanted
delivery system [80]. Interestingly, this trial showed that the vac-
cine effectiveness depended on the route of administration, as only
those patients that received the vaccine via needle-free devices
produced antibodies above the WHO predefined titre
(�0.5 IU mL�1). A new formulated mRNA vaccine based on LNPs
delivery system is currently being evaluated in a phase I clinical
trial [25].

mRNA technology is a perfect fit to overcome the bottlenecks
faced by the conventional influenza vaccine. Indeed, studies on
influenza immunisation provided the first demonstration of the
efficacy of mRNA vaccines against infectious diseases in animals
models (mice, ferrets and pigs) [81]. An LNP-based vaccine encod-
ing H10N8 and H7N9 is currently being evaluated in phase I clini-
cal trials. The first published results demonstrated that the H10N8
encoding vaccine was safe and triggered a robust prophylactic
immunity [48].

mRNA vaccines have also shown promising results against
other infectious diseases. For example, experiments with an LNP-
based system against Zika have been performed in cells, mice
and primates [46,47]. Currently, phase I clinical trials against Zika
virus, Chikungunya virus, and a phase II trial against Human Cyto-
megalovirus using LNPs-bases systems are on-going.
according to disease type (left) and delivery system (right).



Fig. 3. Distribution of clinical trials from https://clinicaltrials.gov/ and http://www.isrctn.com/ using mRNA vaccines per condition and phase (A), types of cancer (B), other
disease types, and (D) infectious diseases.
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During the current Covid-2019 pandemic, mRNA vaccines took
the spotlight as the first vaccines to be approved for the prophylac-
tic treatment. Furthermore, at least nine clinical trials can be found
using mRNA technology, two of which are in phase III. Three
recently published studies describe encouraging results obtained
in phase I clinical trials using LNP-based systems [82–86]. All stud-
ies reported a safe profile with mild to moderate reactions, despite
the greater reactogenicity observed following the administration of
the second dose. Furthermore, an immunologic response was also
observed in all studies, thus supporting the advance of this tech-
nology to late-stage clinical evaluation. A recent phase III study
reported an efficacy of 95% [86].
4. mRNA Manufacturing: From upstream to downstream

One of the most important advantages of mRNA over conven-
tional vaccines is its relatively simple manufacturing. To produce
the mRNA product with specific quality attributes, a series of man-
ufacturing steps must be carried out. Currently, a well-established
manufacturing platform is still lacking and a number of combina-
tions of steps is possible. These can be grouped into the upstream
processing, which comprises the enzymatic generation of mRNA,
and the downstream processing, which includes the unit opera-
tions required to purify the mRNA product (Fig. 4). These are com-
plemented with LNP formulation and Fill-to-Finish steps [92].
Nonetheless, the choice of the unit operations is still dependent
on the purpose. For example, a lab scale production usually con-
sists of a one-step synthesis reaction followed by a nuclease diges-
tion and a precipitation [58]. The exact unit operations used can
have an impact on the manufacturing price [92] and on the cost
per dose. Ultimately, the cost will be greatly influenced by the
quantity of RNA per dose, production titres and production scale
used. The purchase price of 50 cap analogue and modified UTP seem
to have an impact on the cost [92].
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mRNA is produced in a cell-free system and uses no animal
derived raw materials. Cell-derived impurities or adventitious con-
taminations are thus absent, which makes the manufacturing of
these molecules safer [58,65]. The in vitro transcription (IVT) enzy-
matic reaction used to generate mRNA relies on T7, SP6 or T3 RNA
polymerases to catalyse the synthesis of the target mRNA from the
corresponding DNA template (Fig. 4). This template must be pro-
duced in advance, usually by linearisation of a purified plasmid
or by amplification of the region of interest using PCR. Apart from
the linear DNA template, the IVT components must then include an
RNA polymerase, nucleotide triphosphates (NTPs) substrates, the
polymerase cofactor MgCl2, a pH buffer containing polyamine
and antioxidants [33,89]. The reaction only takes a few hours in
contrast with the time-consuming processes used to manufacture
conventional vaccines. Furthermore, this reduced time lowers the
probability for contamination to occur [65]. In general, milligrams
of mRNA per millilitre of reaction can be obtained [90]. Addition-
ally, the production process can be standardized as it is not depen-
dent on the antigen encoded in the template.

As for mRNA capping, it can be performed during the IVT reac-
tion by substituting a part of the guanosine triphosphate (GTP)
substrate for a cap analog [91]. Alternatively, mRNA can be capped
in a second enzymatic reaction using the vaccinia capping enzyme
(VCC) and a methyl donor as a substrate (Fig. 4). Although the cap-
ping efficiency of this method is higher (100% compared to 60–80%
obtained with the use of a cap analog), the process with cap ana-
logs is faster as it does not require the set-up of a second enzymatic
reaction [25]. However, due to their price, cap analogues can have
an impact on production costs [92], especially if large scale manu-
facturing is considered. Nevertheless, a cost analysis should be per-
formed to compare the costs of the one-step and two-step
production options [93]. Alternatively, co-transcriptional capping
can be performed using CleanCap� Reagent AG [28]. Although this
method does not compete with GTP and delivers a Cap 1 construct,
it requires the use of templates with a modified T7 promoter.

https://clinicaltrials.gov/
http://www.isrctn.com/


Fig. 4. Schematic representation of the production and purification steps of a mRNA vaccines manufacturing process. mRNA production can be performed in a one-step
enzymatic reaction, where a capping analog is used, or in a two-step reaction, where the capping is performed using vaccinia capping enzyme. mRNA purification process at
lab scale consists of Dnase I digestion followed by LiCl precipitation. Purification at a larger scale is obtained using well-established chromatographic strategies coupled with
tangential flow filtration. Alternatively, new types of chromatography can be used to complement the standard purification.
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Although several commercial kits are available to produce
mRNA for preclinical studies at laboratory scale, their costs are
high [94]. The generation of mRNA by IVT at large scale and under
current good manufacturing practice (cGMP) conditions is also
challenging. For example, the specialised components of the IVT
reaction must be acquired from certified suppliers that guarantee
that all the material is animal component-free and GMP-grade.
Furthermore, the availability of large amounts of these materials
is limited and purchasing costs are high [58]. This is true, for exam-
ple, in the case of the enzymes used for translation and capping.
Nevertheless, the expedite and simple nature of the production
process is expected to lower production and operational costs
when compared with the cell-based manufacturing of other
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biologicals such as proteins, antibodies, plasmid DNA and virus-
like particles [94].

Once the mRNA is generated by IVT, it must be isolated and
purified from the reaction mixture using multiple purification
steps to achieve clinical purity standards (Fig. 4). The reaction mix-
ture contains not only the desired product, but also a number of
impurities, which includes enzymes, residual NTPs and DNA tem-
plate, and aberrant mRNAs formed during the IVT. Traditional lab
scale purification methods are based on DNA removal by DNAse
digestion followed by lithium chloride (LiCl) precipitation
[31,58]. However, these methods do not allow the removal of aber-
rant mRNA species such as dsRNA and truncated RNA fragments.
The removal of these product-related impurities is crucial for
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mRNA performance, as they lower translation efficiency and mod-
ify the immunostimulatory profile. For example, a 10–1000-fold
increase in protein production was observed when nucleoside-
modified mRNA was purified by reverse phase HPLC prior to deliv-
ery to primary DC [95].

Chromatography is a mainstream purification process widely
accepted in the pharmaceutical industry. Its high popularity is
derived from several attributes such as selectively, versatility, scal-
ability and cost-effectiveness [96]. The first published protocol for
large scale purification of synthetically produced RNA oligonu-
cleotides used size exclusion chromatography (SEC) in a gravity-
flow mode to separate molecules according to size. [97]. Further
studies applying SEC with fast performance liquid chromatography
were performed [98,99]. These techniques allowed a preparative
scale purification process, achieving high purity and high yields.
However, SEC presents limitations, as it is not able to remove sim-
ilar size impurities, such as dsDNA.

The use of ion pair reverse-phase chromatography (IPC) proved
to be an excellent method for mRNA purification [44,95,100,101].
In IPC, the negatively charged sugar-phosphate backbone of the
oligonucleotides will pair with quaternary ammonium compounds
present in the mobile phase (in this case triethylammonium acet-
ate) to become lipophilic and then interact with the stationary
phase of a reverse-phase chromatography column [90]. Elution is
then performed with a gradient of an adequate solvent, e.g., ace-
tonitrile. Using this approach, dsRNA impurities are effectively
removed while maintaining the process’s high yield. However,
IPC is challenging and costly to scale, and the use of toxic reagents
such as acetonitrile, is not desirable. A new cellulose-based chro-
matography process for the removal of dsRNA has been described
that leverages the ability of dsRNA to bind to cellulose in presence
of ethanol [102]. This method reported a mRNA yield of greater
than 65% with a dsRNA removal of over 90%. Still, the removal of
other impurities was not addressed, and thus the introduction of
pre-purification steps is likely to be required.

Ion exchange chromatography (IEC) can also be used to purify
mRNA at large scale. This technique explores the charge difference
between the target mRNA species and the different impurities. For
example, weak anion exchange chromatography has been success-
fully implemented to separate mRNA from IVT impurities [103].
IEC presents several advantages: it is scalable and cost-effective;
it allows the separation of longer RNA transcripts; and it presents
higher binding capacities (when compared with IPC) [104]. Never-
theless, this chromatography must be performed under denaturing
conditions. This makes the process more complex as it requires a
mobile phase heater and a tight control of the temperature during
chromatography.

Affinity based separation is another mRNA purification
approach. A single-stranded sequence of deoxythymidine (dT) -
Oligo dT - is routinely used for the capture of mRNA in laboratory
applications. This sequence binds to the poly-A tails present in the
mRNA. Chromatographic beads with immobilized oligo dT could
thus be used for the process scale purification using affinity
chromatography: the poly-A tails of the single stranded mRNA
Fig. 5. Conceptual design of a continuous manufacturing process for the production of m
form, followed by enzyme recycling using tangential flow filtration strategies and two
purification, and a second in flowthrough mode for polishing. Formulation is achieved u
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produced during IVT would bind to the stationary phase while
impurities are washed out. This way, IVT unconsumed reagents,
the DNA template and dsRNA could be efficiently removed [105].
While high purity products can be obtained using affinity chro-
matography, several drawbacks are present such as low binding
capacities and a less cost-effective process.

The removal of small size impurities can also be achieved while
concentrating or diafiltrating solutions by tangential flow filtration
(TFF) [106,107]. Core bead chromatography can also be used for
this purpose [108]. In this case, small impurities are trapped inside
the beads, and the product will be in the flowthrough. However,
both techniques rely on DNase digestion or denaturing agents to
remove high size molecules such as the DNA template or the poly-
merase. DNA removal can also be achieved using hydroxyapatite
chromatography without the use of a DNase [108]. As a polishing
step, hydrophobic interaction chromatography (HIC) can be
applied using connective interaction media monolith (CIM) con-
taining OH or SO3 ligands [109].

Large scale adaptations of the traditional laboratory scale mRNA
purification methods are also being explored. For example, mRNA
precipitation can be combined with TFF technique [106]. During
TFF, the membrane captures the precipitated mRNA product while
other impurities are removed by diafiltration. The product is then
eluted by re-solubilizing the mRNA. Furthermore, DNA template
removal can be achieved by performing the digestion with immo-
bilised DNase [110]. Another approach is to use tagged DNA tem-
plate that can then be removed after IVT using affinity
chromatography [110]. Despite being scalable, these methods pre-
sent a limited effectiveness since they only focus on the removal of
some specific impurities and hence must be coupled with other
purification steps.

4.1. New perspectives

The current IVT mRNA production methods must be improved
to move mRNA technology to commercialisation and to support
market demand. As process yields and production scale have an
impact on the manufacturing costs and consequentially on the cost
per dose [92], we speculate that continuous processing would have
a particular advantage to lower costs. Continuous processing is
already used in the chemical and pharmaceutical industry to run
flexible and cost-effective processes and will ultimately offer on
demand production. Additionally, the process integration made
possible by continuous manufacturing may also reduce operation
time and facilitate automation and process analytical technologies
(PAT), which can result in a higher productivity and higher product
quality [111,112]. The relative simplicity of mRNA manufacturing
makes the process well suited for continuous processing, and in
particular at a microfluidic scale (Fig. 5). At this scale, reaction rates
can be accelerated under specific conditions, the use of expensive
reagents can be minimised, and cascade reactions can be compart-
mentalised easily [113]. Further, in situ product removal (ISPR) and
substrate feed and product recovery (SFPR) strategies can be
implemented in flow to facilitate process control, recirculation,
RNA vaccines. The process is composed of a 2-step enzymatic reaction in continuous
multimodal chromatography steps, one in bind-elute mode for the intermediate
sing a third tangential flow filtration module.
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and re-use of compounds [113]. These strategies will allow the
separation of molecules, such as enzymes (if free enzymes are
used), co-factors or NTPs, that can be recirculated in the process.
Different unit operations, such as TFF, aqueous two-phase systems
(ATPS) or precipitation, could be used for this purpose. These
potentially will lower the burden on the downstream processing
as well as the overall processing costs. furthermore, the proposed
system could be coupled with a microfluidic formulation step, in
which the mRNA is encapsulated into lipid nanoparticles (LNPs)
[116]. This would allow the establishment of continuous mRNA
processing until the fill-to-finish steps.

Downstream processing, together with fill-to-finish, is still the
major bottleneck in the mRNA vaccine production due to the lack
of well-established and cost-effective processes. Despite the effort
to develop methods that achieve high purity products, most of
them are coupled with the traditional precipitation or nuclease
digestion techniques [102,108]. Moreover, most methods are not
cost-effective which can make the process infeasible for the market
needs. Alternative cost-effective techniques, such a single-pass
tangential flow filtration (SPTFF) or aqueous two-phase systems
(ATPS), that can be applied in a continuous mode, could potentially
improve the process time and manufacturing flexibility while
reducing cost and maintaining the quality [114]. Additionally,
new chromatographic operation modes can overcome the need
for having multiple mRNA purification steps (Fig. 5). For example,
the use of multimodal chromatography is highly promising as the
combination of interactions between the molecule and the matrix
could result in an integrated and intensified purification process
without the need for multiple chromatographic steps [115].
4.2. mRNA safety and quality

mRNA manufacturing is advantageous when compared to the
production of most biologicals since it does not require the use
of cell cultures. Owing to its fast reaction time, the risk of contam-
ination is lower than what is observed with other complex vaccine
manufacturing processes. Additionally, the non-integrative nature
and the transient expression inside the cells favours the mRNA
safety profile [58,117].

Regulation guidelines for the evaluation of quality, safety and
efficacy of RNA-based prophylactic vaccines for infection diseases
are now being considered [118]. The emphasis is now on the estab-
lishment of manufacturing processes that can deliver a high qual-
ity and consistent product. Specifications for a number of critical
process steps and acceptance criteria, intermediates, drug sub-
stances (DS) and drug product (DP) must therefore be defined,
e.g., in terms of product yields, and analytical technologies that
allows for rigorous product quantification and characterisation
(product identity, purity and quality). mRNA quality can be
assessed using several analytical techniques, such as gel elec-
trophoresis and high-performance liquid chromatography (HPLC)
[117], while the identity can be assured using sequencing tech-
niques, such as reverse transcription polymerase chain reaction
(RT-PCR) or next-generation sequencing [118]. The presence of
residual amounts of DNA, enzymes and solvents [119], as well as
dsRNA and truncated RNA fragments, must be determined. Addi-
tionally, as a general quality control, aspects like the presence of
endotoxins, overall sterility and mRNA stability, must also be eval-
uated [118].
5. Concluding remarks

mRNA is a rising star in the field of biopharmaceuticals. The
interest in this new type of vaccine derives from the flexibility,
safety, and precision that these vaccines present when compared
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to conventional approaches. The growing number of clinical trials
for cancer therapies and infectious diseases demonstrates an
increased interest from the industry to release these types of vac-
cines to the market. mRNA vaccines are precise, safe and flexible,
which can be easily manufactured on a large scale for clinical grade
applications. These vaccines can be an answer to quickly respond
to epidemic outbreaks in terms of manufacturing.

However, to achieve this status, the development of sustainable
and cost-effective manufacturing processes must be addressed.
Although the IVT reaction of mRNA is safer and quicker than most
of the established vaccines production, it relies on the use of
expensive and limited materials. Downstream processing of the
vaccine is still poorly established, and it is dependent on methods
that lack scalability and cost-effectiveness. Moving the process to
continuous manufacturing can overcome these bottlenecks. We
propose a microfluidics approach with the compartmentalisation
of enzymatic reactions coupled with in situ product removal (ISPR)
and substrate feed and product recovery (SDPR) modules and the
use of multimodal chromatography to replace the use of multiple
chromatographic steps (Fig. 5). The use of new productionmethods
that allow the reuse and recirculation of compounds integrated
with high-throughput purification and well-defined analytical
methods in a continuous manufacturing process can be the answer
for a sustainable, flexible and cost-effective vaccine manufacture
that can allow an on-demand response.
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