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Abstract: Deep learning plays a key role in the recent developments of machine learning. This paper
develops a deep residual neural network (ResNet) for the regression of nonlinear functions.
Convolutional layers and pooling layers are replaced by fully connected layers in the residual
block. To evaluate the new regression model, we train and test neural networks with different depths
and widths on simulated data, and we find the optimal parameters. We perform multiple numerical
tests of the optimal regression model on multiple simulated data, and the results show that the
new regression model behaves well on simulated data. Comparisons are also made between the
optimal residual regression and other linear as well as nonlinear approximation techniques, such as
lasso regression, decision tree, and support vector machine. The optimal residual regression model
has better approximation capacity compared to the other models. Finally, the residual regression is
applied into the prediction of a relative humidity series in the real world. Our study indicates that
the residual regression model is stable and applicable in practice.

Keywords: nonlinear regression; nonlinear approximation; deep residual learning; neural network

1. Introduction

Functions are common conceptions in sciences and engineering that quantify the dependence
or interaction between one variable and the others. Functions are classified as linear functions and
nonlinear functions from the superposition principle prospective. Linear functions are analytical,
easy to analyze mathematically, and satisfy the superposition principle, while nonlinear functions
are complicated and even nonanalytical. People often use linear models to approximate linear
functions such as multiple linear regression [1], stepwise linear regression [2], ridge regression [3],
lasso regression [4], and elastic net regression [5], which do not work for nonlinear functions. However,
nonlinear functions are more common in the real world. Therefore, the approximation or regression of
nonlinear functions has gained a lot of attention and is more practical and meaningful in practice [6-14].

One of the classical approximations is the Weierstrass approximation theorem, which shows that
every continuous function defined on a close interval can be uniformly approximated as closely as
desired by a polynomial function [15]. Support vector regression machine [16,17] is also a well-known
nonlinear approximation technique. However, it often takes a long time if support vector regression
machines are trained on large datasets, and it is difficult to choose proper kernel functions. In addition,
decision tree regression [18] is widely used in practice. However, decision tree can be very non-robust,
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and it is NP-complete to learn an optimal decision tree where NP is the abbreviation for nondeterministic
polynomial time.

Since the 1980s and 1990s, artificial neural networks have been used to approach deterministic
nonlinear continuous functions based on the universal approximation theorem, which states that a
neural network with a single hidden layer can approximate any continuous function with compact
support to arbitrary accuracy, when the width goes to infinity [19-22]. To improve the efficiency of tuning
parameters of single hidden-layer feedforward networks, [23] proposes an incremental constructive
method. One may randomly choose hidden nodes and only need to adjust the output weights so
that the neural network is fully automatic and works as a universal approximator. To represent
multidimensional nonlinear functions by feedforward neural network, [24] investigates the training
process and the network approximation properties via linear algebra, which has faster execution
speeds and better generalization properties. Neural networks are also used to approximate stochastic
processes. [25] reports that some classes of artificial neural networks are capable of approximating
prescribed stochastic processes with arbitrary accuracy in the mean square sense, which has improved
approximating capabilities of artificial neural networks. [26] considers stochastic neural networks as
a generalization of usually defined neural networks and shows that stochastic neural networks are
more adherent to the real stochastic world. [27] also applies stochastic neural networks to approximate
nonlinear input—output random transformations.

The classic universal approximation theorem relies on “fat” neural networks with infinite widths,
which means there are infinitely many neurons in the hidden layer. Nevertheless, “tall” or deep neural
networks are not covered in the theorem. Recently, a popular trend in machine learning is to build
deeper neural networks (the so-called deep learning), ranging from LeNet [28], AlexNet [29], VGG-Net
with tens of layers [30], to GoogLeNet [31] or residual neural network (ResNet) with hundreds of
layers [32]. They play a central role in the progresses of machine learning and its applications. It’s
observed that deeper networks perform better and approximate nonlinear functions better. [33,34] carry
out research on the approximation property of a deep neural network where rectified linear units (ReLU)
are used as activation functions. Their studies show that in fully connected networks, if each hidden
layer has at least + 1 neurons where is the input dimension, the universal approximation theorem
holds as the depth goes to infinity. [35] also shows that a deep ResNet containing only one neuron in
every hidden layer can uniformly approximate any Lebesgue integrable function in dimensions.

The traditional ResNet behaves well in images process because of local convolution kernels and
deep neural networks. However, the convolution kernels have no effects on the whole sequence. Thus,
it is not suitable for the regression of nonlinear functions. Based on the original structure of ResNet,
we build a new neural network for nonlinear regressions. Convolutional layers and pooling layers are
replaced by fully connected layers in the residual block, so that the new residual neural network is
more suitable for nonlinear regressions.

This paper is organized as follows. In the methodology part, the structure of regression model
and datasets are introduced. In the results part, we evaluate the approximation capacity of residual
regression models by performing numerical experiments. The effects of widths and depths are taken
into account. When the optimal parameters are obtained, we compare the optimal residual regression
with other linear and nonlinear regression techniques. We also employ the optimal residual regression
into the prediction of relative humidity series. Finally, we draw conclusions.

2. Methodology

2.1. Architecture of Deep Regression Models

Residual neural network is one of the most successfully applied deep networks. [32] introduces
residual shortcut connections and argues that they are indispensable for training very deep
convolutional models, since the shortcuts introduce neither extra parameters nor computation
complexity and increase the depth of neural network. Considering the input and output dimensions,
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residual shortcuts are classified as identity shortcuts and convolution shortcuts as shown in Figure 1.
The identity blocks in panel (a) only require addition for tensors and can be directly used when the input
and output have the same dimensions. Linear projection shortcuts are used when the dimensions are
different. One linear projection shortcut consists of a 1 x 1 convolution unit and a Batch Normalization
unit. Therefore, it is also called a convolution block as shown in panel (b). The 1 X 1 convolution unit
can change the input dimension so that the input dimension can match with the output dimension,
and then addition operations can be performed. The inputs of ResNet are often images with many
channels, and it behaves well in vision imagery. However, the inputs of nonlinear functions are often
one-dimensional vectors, and convolution is a not a global but rather a local operator. This means that
if vectors are reshaped into matrices, the convolution kernels cannot affect the whole sequence but
rather only parts of the sequence. This contradicts with the aim of nonlinear regression. Therefore,
the original architecture of ResNet is not suitable for the nonlinear regression issues.
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Figure 1. The shortcut connections of a deep residual neural network (ResNet) for the image process.
(a) An identity block, which is employed when the input and output have the same dimensions.
(b) A convolution block, which is used when the dimensions are different.

Based on the structure of ResNet, we build a new neural network for nonlinear regression.
Its architecture is presented in Figure 2. Convolutional layers and pooling layers are replaced by fully
connected layers (or dense layers) in the residual block. Batch Normalization layers from the primary
model are kept in our new model, which act as a regularizer in some cases, eliminating the need for
Dropout, and allow people to use much higher learning rates and care less about initialization [36].
Panel (a) shows identity blocks that are used when the input and output are in the same dimensions.
The dense blocks in panel (b) correspond to convolution blocks in Figure 1 and are used when the
dimensions are different.
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Figure 2. The shortcut connections of ResNet for nonlinear regression. Convolution layers are
replaced by dense layers. There are three hidden dense layers in each dense block and identity block.
(a) An identity block, which is employed when the input and output have the same dimensions. (b) A
dense block, which is used when the dimensions are different.

Usually, deep learning uses a multilayer network and employs the gradient algorithm to train
models, so executing deep learning requires heavy computation, and the learning is often trapped into
a saddle point or local minima [37]. To tackle this issue, people propose the rectified linear unit (ReLU)
as the activation function, whose gradient can be easily computed. ReLU is shown as follows

ReLU(x) = max(0, x). 1)

In this paper, the new residual regression model employs tens or hundreds of layers. Hence,
to speed up the learning convergence, ReLU is applied as activation function in hidden layers. For the
output (or top) layer, linear activation function is used to meet the nonlinear regression requirement.

The fundamental blocks of our model are shown in Table 1. The output dimension of the input
block is equal to the input dimension of the first hidden layer. Usually, the input and output of an
identity block have the same dimension (N1), but it is not true for the input dimension (N2) and output
dimension (N3) of a dense block (N2 # N3). A dense block is usually inserted between two identity
blocks when the output shape of one identity block is different from the input shape of the other.
The structure of regression model is presented in Figure 3. The model begins with an input block and
is followed by dense blocks and identity blocks. The output block is in the end. In this paper, every
dense block is followed by two identity blocks, and then it is followed by one dense block, and so forth.
The last two identity blocks are followed by the output layer.
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Table 1. Fundamental blocks of ResNet regression.

Type of Block  Input Shape  Output Shape Activation Input and Output

Function Are of Same Size
Input 1,6) (1, None *) ReLU False
Dense (1, N2) (1, N3) ReLU False
Identity (1, N1) (1,N1) ReLU True
Output (1, None) (1,1) Linear False

* None means the size of input in this dimension is uncertain.
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Figure 3. Structure of ResNet regression model. #1 means 1 dense block and #M means M identity
blocks. In this paper 1 dense block and 2 identity blocks are stacked repeatedly between dashed lines.

2.2. Datasets

In this part, we introduce multiple nonlinear functions to evaluate the residual regression model.
The order of nonlinearity corresponds to the number of minimum functions. Functions with the order
of nonlinearity from 1 to 4 are shown as Equations (2)—(5) where x; is uniformly distributed in the
interval [0, 4].

6
y = min[ (xi)i,400], x; ~ U(0,4), @)
i=0
6 .
yy= min[min(z (xi)', 800], 400], x; ~ U(0,4), 3)
=0
6 .
y= mir{min[min[z (x;)’, 1200], 800], 400} x; ~ U(0,4), @)
i=0

6
y= min[min(min[min[Z(xi)i, 1600], 1200], 800], 400], x; ~ U(0,4). (5)

i=0
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In this paper, 10,000,000 samples are generated for each function. The datasets are shown in
Figure 4. Panels (a), (b), (c), and (d) are samples corresponding to Equations (2)—(5) respectively.
The residual regression models are trained on 6,750,000 samples and validated on 750,000 samples.
The remaining 2,500,000 samples serve as testing data.
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Figure 4. Datasets for residual regression model. (a), (b), (c) and (d) are simulated data with a
nonlinearity order from 1 to 4, respectively.

3. Results

3.1. Regression Models with Different Depths and Widths

As mentioned, the depth and width of ResNet can affect the approximation capacity. In order
to evaluate the effects, we fix one factor and consider the influence of the other. Exactly speaking,
when we assess the effect of depth, the width of every hidden layer is fixed, and the depth is changed.
Nevertheless, when we consider the effect of width, the depth of ResNet is fixed, and the width is
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changed. Training data in this part are generated by Equation (4). Before training, the original data is
standardized by the Min-Max scaler.

maxw; — Wi
A i
Wy =

(6)

maxw; — minw;”’
1 1

where Wy stands for standardized data of wy. The residual regression models are built by Keras using
TensorFlow as the backend and are trained on computer clusters with 64 CPUs and 126 GB Random
Access Memory (RAM). The type of CPUs used is an Intel(R) Xeon(R) CPU E5-2683 V4 working at
2.10 GH. Every core has two threads. Training processing is also accelerated by two graphics processing
units (GPUs). The type of GPUs is a GeForce GTX 1080 Ti produced by NVIDIA, and every GPU has a
10421 MB memory. We use mean squared error (MSE) as the loss function.

1y S12
loss = ;kZ{(}/k -7k 7)

The Adam method is applied to minimize the loss function. It computes individual adaptive
learning rates for different parameters [38] and combines the advantages of AdaGrad, which works well
with sparse gradients [39], and RMSProp which works well in on-line and non-stationary settings [40].

An early stopping strategy is also used to avoid overfitting. When training large models,
people often observe that training loss decreases over time, while validation loss begins to rise again.
This means that a model with better validation loss can be obtained by returning to the time with
the lowest validation loss, which is known as an early stopping strategy and is probably the most
commonly used form of regularization in deep learning due to its effectiveness and simplicity [41].
The algorithm stops when no progress has been made over the best recorded validation loss for some
pre-specified number (or patience) of epochs.

In this paper, the batch size for gradient descent is 5000, and the epoch number of training is
50. The patience of early stopping is 10 epochs. The train loss, validation loss, and testing loss are
computed by standardized data and have the magnitude of 107*. Table 2 shows the training process of
regression models with different depths. Before considering the effects of depth and width, we have
trained residual regression models with different widths for many times and found that testing loss is
small when the width is fixed at 20. Hence by experience, the width of every hidden layer is initially
fixed at 20.

Table 2. Residual regression model with different depths.

Depth of Number of Stopping Training Training Validation = Testing Loss

ResNet Parameters Epoch Time Loss (10-4) Loss (10~4) (10-4)
10 4581 50 00:30:04 6.6637 3.6566 3.6687
19 9581 37 00:23:42 6.7196 4.4022 4.3824
28 * 14,581 44 00:55:34 5.7221 3.5205 3.4855
37 19,581 50 00:59:48 5.0877 5.1125 5.2183
46 24,581 34 01:16:57 6.3228 5.3790 5.3401
55 29,581 41 02:14:36 5.4676 4.3013 4.1437
82 44,581 44 02:27:26 6.6924 3.8426 3.8526
100 54,581 50 02:25:18 8.2667 19.000 18.943
145 79,581 39 03:46:58 15.000 2497.0 2499.5
244 134,581 50 09:09:05 1273.0 1277.0 1279.0

* The bold implies that the depth of ResNet is optimal and has a minimum testing loss.

From Table 2, we could see that when the depth is less than 100, testing losses range from
3.4855 X 107 to 5.3401 x 107%. The testing losses are in the same magnitude and have small changes.
However, when the depth is equal to or beyond 100, the testing and validation losses increase greatly.
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The testing losses vary from 1.8493 X 1072 to 2.4995 x 10~!. Thus, the optimal depth of residual
regression model is approximately 28, since the model has a minimum testing loss, i.e., 3.4855 x 107%.
Besides, it is not true that if the neural network is deeper, it behaves better on approximation or
regression. This is because neural networks use the back propagation (BP) algorithm to minimize their
loss functions, but it is difficult to optimize very deep neural networks.

Based on the optimal depth, we consider the effect of width. Table 3 shows the training information
of residual regression model with different widths. The depth is fixed to the optimal depth, i.e., 28.
From Table 3, we could know that the optimal width is approximately 16, since the model has a
minimum testing loss. When the width changes from 8 to 700, testing losses range from 2.1360 x 107*
to 8.1343 x 104, which have the same magnitude 10~* and have small variations. Nevertheless,
when the width is small (less than 4), testing and validation losses are greater than 1 x 1073. Hence,
the approximation capacities of wide neural networks are stronger than very narrow neural networks.
This is because residual regression models with small widths are too simple to approximate complex
nonlinear mappings. Therefore, it is not recommended to set the residual regression model with a
great depth (more than 100) or a small width (less than 4).

Table 3. Residual regression model with different widths.

Width of Number of Stopping Training Training Validation = Testing Loss

ResNet Parameters Epoch Time Loss (10~4) Loss (10~%) (10-4)
1 198 50 00:41:38 48.000 547.00 548.44

4 1125 50 00:44:36 15.000 13.000 13.255

8 3145 50 00:44:13 5.6651 3.0078 3.0666

12 6061 50 00:20:54 5.2821 6.7455 6.6151
16 * 9873 50 00:22:22 4.7534 21222 2.1360
20 14,581 44 00:55:34 5.7221 3.5205 3.4855
30 30,271 50 00:54:05 4.8670 3.5846 3.5973
50 78,451 42 00:18:28 5.5210 3.9034 3.9000
70 149,031 44 00:21:20 5.1793 4.2886 4.2837
90 242,011 50 00:22:11 4.5157 2.8237 2.8627
150 655,351 50 01:02:57 5.4313 3.4565 3.4189
300 2,570,701 47 00:45:00 5.6756 8.2258 8.1343
500 7,084,501 50 01:16:35 6.2678 4.0093 3.9767
700 13,838,301 50 01:56:21 6.8682 3.3580 3.4051

* The bold implies that the width of ResNet is optimal and has a minimum testing loss.

3.2. Trainng the Optimal Regression Model on Nonlinear Datasets

Table 4 shows the training information of an optimal regression model on simulated nonlinear data.
The depth is fixed at 28 and the width 16. Preprocessing of data is the same as before. From Table 4,
one could see that the maxima and minima of testing losses of the optimal regression model are
42117 x 107* and 2.550 x 107>, respectively. This indicates that the optimal model has small testing
losses on these nonlinear datasets. Figure 5 shows the visualized comparisons between regression
results of the optimal model and the real value of simulated datasets. For each dataset, 200 samples
and the corresponding predictions are compared and plotted in Figure 5. From Table 4 and Figure 5,
we could see that the optimal model behaves well in simulated nonlinear datasets.

Table 4. Optimal regression model on nonlinear datasets.

Nonlinearity = Numberof Stopping Training Training Validation = Testing Loss
of Dataset Parameters Epoch Time Loss (10~4) Loss (1074) (10-4)
1 9873 45 00:46:15 1.0619 0.2552 0.2550
2 9873 35 00:36:09 8.2566 42014 42117
3 9873 50 00:22:22 4.7534 2.1222 2.1360
4 9873 50 00:57:26 3.6542 2.0439 2.0481
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Figure 5. The results of optimal regression model on simulated nonlinear data. A red cross symbol
(X) means predicted data and a green circle symbol (O) stands for simulated data generated by
Equations (2)-(5).

3.3. Comparisons with Other Approximation Techniques

In this section, we compare the optimal residual model with other linear and nonlinear
approximation techniques. Linear techniques include the linear regression, ridge regression, lasso
regression, and elastic net regression, which combines ridge regression and lasso regression. Nonlinear
techniques include the usual artificial neural network (ANN), decision tree, and support vector
regression (SVR) machine. ANN has the same architecture (the same depth and width) as the optimal
residual regression model except for the shortcut connections mentioned in Figure 2. ANN is modeled
by Keras using tensorflow as a backend. Other regression models are built by the machine learning
package scikit-learn in python [42]. A total of 10,000,000 samples generated by Equation (4) are
used here. ANN is trained on 6,750,000 samples and validated on 750,000 samples. The remaining
2,500,000 samples are used as testing data. The epoch and patience of early warning for ANN are
50 and 10, respectively. Other models are trained on 7,500,000 samples and tested on the same
2,500,000 samples. Table 5 shows the comparison results including training time, validation loss,
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and testing loss. There are hyperparameters for every approximation technique excluding linear
regression, which cannot be learned through training and must be set in advance. Hence, to get a
good approximation, we use the grid search method to find the optimal values. Table 6 shows the
information about hyperparameters, including the name, the range, and the corresponding optimal
value of every hyperparameter. NA in Tables 5 and 6 stands for Not Applicable.

Table 5. Comparisons of regression techniques.

Regression Stopping Training Time Training Loss Validation Testing Loss
Techniques Used Epoch 8 (104) Loss (1074) (10-4)
Linear regression NA 00:00:20 371.61 NA 371.68
Ridge regression NA 00:00:33 371.64 NA 371.59
Lasso regression NA 00:00:39 371.51 NA 371.97
Elastic regression NA 00:34:48 371.51 NA 372.00

Residual regression * 50 00:22:22 4.7534 2.1222 2.1360
ANN without 34 00:27:07 72640 6.6379 6.6537
shortcuts
Decision tree NA 00:17:06 9.4083 NA 9.7777
regression
Support vector NA 43:51:36 126.75 NA 126.76
regression
* The bold implies that the residual regression model has a minimum testing loss.
Table 6. Optimal hyperparameters of regression techniques.
Regression Techniques Name of Range of Optimal
Used Hyperparameters Hyperparameters Hyperparameters
Linear regression NA NA NA
. . Penalty parameter of L2 10719,10%, 108 5
Ridge regression norm «; ..., 10%,10%; 10
. Penalty parameter of L! 10719,107, 1078 -5
Lasso regression norm o; ...,10°,101; 10
. ) Penalty parameter o; Ratio  10719,1077, ..., 1019; 0.0, 4
Elastic regression of L norm 0; 01,...0910; 107%; 1.0;
Residual regression Width; Depth; NA 16; 28;
ANN without shortcuts Width; Depth; NA 16; 28;
Decision tree regression Maximum depth; 1,2,...,9,10; 10
Penalty parameter «; 102,103, ..., 107; 10%;
Support vector RBF kernel parameter y; 1074,1073, ... ,10%; 10;
regression Epsilon-tube parameter «; 0.1; 0.1;
Maximum iteration N; 5000; 5000;

From Table 5, one could observe that the testing losses of the linear models listed in the top
are approximately 3.72 x 1072, which is much greater than the testing losses of the other nonlinear
approximation techniques. This indicates that these linear models are not appropriate for nonlinear
approximation. It is notable that support vector regression (SVR) machines with radial basis function
(RBF) kernel have the maximum training time, which is close to 44 h, and the second greatest testing
loss (1.2676 x 1072). The testing loss of SVR is also greater than that of residual regression, ANN without
shortcuts, and decision tree. These drawbacks of SVR limit its further applications in practice. It is also
worthy to mention that the testing loss of decision tree regression is 4.58 times as great as that of the
residual regression model. This implies that the residual regression model has better approximation
capacities than decision tree. In addition, the influence of shortcut connections is investigated. ANN
without shortcuts has the same depth and width as the optimal residual model, and it has the second
smallest testing loss. The model is trained for nearly 27 min and early stops at 34 epochs. However,
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the optimal residual model is trained approximately 23 min through 50 epochs. This means that the
residual regression model is more efficient and approximates nonlinear functions better.

3.4. Application of Residual Regression Model on Climate Data

In this paper, we employ the residual regression to approximate relative humidity. Relative
humidity is defined as the ratio of the water vapor pressure to the saturated water vapor pressure
at a given temperature. It is a key factor affecting cloud microphysics and dynamics, and it plays an
important role in climate [43]. The formation of cloud condensation nuclei needs water vapor to be
supersaturated in the air. However, currently, there is no widely accepted and reliable method to
measure the supersaturated vapor pressure accurately [44], which means that the relative humidity
is not accurate under supersaturation circumstance. Therefore, finding the nonlinear relationship
between relative humidity and other factors is meaningful.

Our training data is from EARS hourly reanalysis datasets on the 1000 hPa pressure level [45].
Pressure, temperature, and specific humidity are used as input features. EARS5 is the fifth generation
ECMEF (European Centre for Medium-Range Weather Forecasts) atmospheric reanalysis of the
global climate, and it provides hourly outputs at a spatial resolution of 0.25°. The timestamp of
the training data is from 00:00:00 to 23:00:00 on September 1, 2007. There are 24,917,709 samples
in total. The optimal residual regression model is trained on 20,183,344 samples and validated on
2,242,594 samples. The remaining 2,491,771 samples are testing data. The other parameters are the
same. A total of 200 observations and the corresponding predicted data are plotted in Figure 6.
The relative error of testing data for relative humidity is 9%. We replace the testing dataset randomly
for 10 times, and the averaged relative error is still 9%. This verifies that the residual regression model
is stable and applicable in practice.

Prediction of Relative Humidity
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Figure 6. The prediction of regression models for relative humidity. The red cross symbol (X) means
predicted data, and the green circle symbol (O) stands for observations of EAR5.

4. Conclusions

In this paper, we develop deep residual regression models for nonlinear regression. The traditional
deep residual learning behaves well in the images process due to local convolution kernels and deep
neural networks. However, the convolution kernels have no effects on the whole input sequence.
Therefore, it is not suitable for the regression of nonlinear functions. We replace convolutional layers
and pooling layers by fully connected layers to ensure that deep residual learning can be applied
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in nonlinear regression. The residual regression model is carefully and numerically evaluated on
simulated nonlinear data, and the results show that the improved regression model works well. It is
recommended to avoid setting the residual regression model into a great depth or a small width,
since it has a great testing loss under these circumstances. In addition, we compare the residual
regression model with other linear and nonlinear approximation techniques. It turns out that the
optimal residual regression model has a better approximation capacity compared to others. Finally,
the residual regression model is applied into the prediction of relative humidity, and we get a low
relative error, which indicates that the residual regression model is stable and applicable in practice.
In the future, we intend to apply the residual regression model on large eddy simulation (LES) datasets
of turbulence to improve the subgrid-scale parameterizaitons of LES.

5. Patents

There aren’t any patents resulting from the work reported in this manuscript.
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