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Abstract

Diagnosis and appropriate intervention for myocardial infarction (MI) are time-sensitive
but rely on clinical measures that can be progressive and initially inconclusive, underscor-
ing the need for an accurate and early predictor of MI to support diagnostic and clinical
management decisions. The objective of this study was to develop a machine learning algo-
rithm (MLA) to predict MI diagnosis based on electronic health record data (EHR) readily
available during Emergency Department assessment. An MLA was developed using ret-
rospective patient data. The MLA used patient data as they became available in the first
3 h of care to predict MI diagnosis (defined by International Classification of Diseases,
10th revision code) at any time during the encounter. The MLA obtained an area under the
receiver operating characteristic curve of 0.87, sensitivity of 87% and specificity of 70%,
outperforming the comparator scoring systems TIMI and GRACE on all metrics. An MLA
can synthesize complex EHR data to serve as a clinically relevant risk stratification tool
for MI.

1 BACKGROUND

In the United States, over 6.5 million patients annually are
evaluated for chest pain in the Emergency Department (ED);
in these instances, myocardial infarction (MI) is a key diagnostic
consideration [1]. MI is defined as an acute myocardial injury
indicated by elevated serum biomarkers of myocardial necrosis
(typically cardiac troponins) with clinical evidence of acute
myocardial ischemia [2]. 14% of people who suffer an MI in
the United States die as a result [3]. Those who survive may
experience significant morbidity and are at elevated risk for
recurrent MI and death [4, 5]. Treatment outcomes are highly
dependent on time-sensitive diagnosis and intervention, which
aims to restore blood flow to ischemic myocardium to prevent
or minimise tissue damage and death [6]. Indeed, the mortality
risk is greatest in the earliest stages of an acute MI, underscoring
the importance of rapid and accurate detection [5].

The diagnosis of MI is based on suggestive clinical signs
and symptoms, electrocardiogram (ECG) abnormalities, and
elevated cardiac troponins; cardiac imaging and stress tests
may further assist in evaluation [7]. However, the diagnostic
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process is complicated by symptom variability across patient
populations and overlap with the symptoms of other syn-
dromes [8–10]. Up to one-third of MI are silent, or occurring
without symptoms [11]. ECG abnormalities may be absent,
progressive, or non-specific in the context of prior cardiac
events and underlying ischemic disease [12]. While newer gen-
eration troponin tests and high sensitivity assays detect troponin
elevation with great sensitivity even in the initial hours after
symptom onset [13, 14], elevations are also detected in a range
of other cardiac and non-cardiac conditions. MI encompasses
both ST-elevation MI (STEMI) and Non-ST-elevation MI
(NSTEMI). STEMI represent more severe ischemic events and
are ideally recognised early in patient assessment based on the
pathognomonic ST elevation on ECG. However, ED crowding
has been identified as a potential challenge to delivering high
quality care, including the timeliness of assessment [15, 16].
The ECG abnormalities in NSTEMI are variable and may be
progressive, and NSTEMI cannot be distinguished from the
related but less severe condition of unstable angina without
evaluating cardiac troponins [9]. Patients, thus, may be boarded
in the ED for prolonged periods and receive serial ECGs as
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well as troponin measurements at 3 or 6 h intervals [9]. ED
length of stay may also be extended for patients with atypical
symptom presentations during diagnostic work-up for MI and
differential diagnoses [16]. Thus, enhanced risk stratification at
3 h represents a clinically relevant timeframe.

Diagnostic accuracy is also largely dependent on the diagnos-
ing clinician, introducing further variability into the diagnostic
process [17–19]. Amidst this complexity, it is perhaps unsur-
prising that the individual components of the standard clinical
evaluation demonstrate limited accuracy for diagnosing MI,
most notably in terms of sensitivity [20]. Clinical prediction
tools, such as the thrombolysis in myocardial infarction (TIMI)
score, may be used to help rule out MI or to determine the
types of treatments appropriate for a patient’s estimated level
of risk [20]. However, the uptake and routine use of these tools
are constrained by their inherent interruption of the clinical
workflow by relying on physicians to tabulate scores at the
bedside or on a computer [21].

Delays in appropriate treatment are associated with increased
mortality risks [9] and unnecessary treatment for MI can intro-
duce treatment-related harms to improperly diagnosed patients
[22] or lower-risk patients who could be treated with less inten-
sive, guideline-recommended pharmacotherapies. These harms
highlight the opportunity for innovative approaches to sup-
port MI diagnosis and treatment planning which are accu-
rate, easy to integrate into the clinical workflow, and can be
utilised within the initial hours of a patient’s assessment within
the ED.

Machine learning (ML) approaches to the diagnosis and
prediction of MI have been leveraged in a growing body of
research, the preponderance of which focus on risk stratifica-
tion or outcomes predictions following an MI [23, 24]. ML
approaches to assist with specific steps in the initial diagnos-
tic process have also been investigated, including approaches
to improving ECG interpretation, identifying misplacement of
ECG leads, and enhancing cardiac imaging capabilities to detect
acute MI [25–27]. However, a Machine Learning Algorithm
(MLA) based clinical decision support (CDS) tool that sup-
ports rapid rule in or rule out of MI, and provides action-
able estimations of risk to guide the intensity of interventions,
would improve care by minimising delays to individualised, risk-
appropriate treatment. Ideally, such a tool would use data rou-
tinely available in the electronic health record (EHR) and would
not require additional physician inputs so as not to impede the
clinical workflow. Towards this end, we have developed a novel
MLA that can predict MI using only data available within the
first 3 h of a patient’s hospital-based assessment, and which does
not require serial troponins or repeated ECG.

2 METHODS

2.1 Data processing

Patient data collected between 2011 and 2015 at a large aca-
demic medical center in the Western United States were used
in this study. Data were extracted from patients admitted to any

TABLE 1 Structured data extracted from the electronic health record if
available in the patent record, used by the machine learning algorithm to
predict myocardial infarction diagnosis

Demographics

Age Sex

History of present illness

Chest pain

Past medical history

Prior myocardial infarction Diabetes mellitus

Hypertension Hyperlipidemia

Tobacco use

Vital signs

Systolic blood pressure Diastolic blood pressure

Heart rate Respiratory rate

Peripheral oxygen saturation (SpO2) Temperature

Laboratory values

Sodium Troponin I

Potassium Lactate

Blood urea nitrogen Hematocrit

Creatinine Platelet count

Bicarbonate White blood cell count

Glucose International normalised ratio (INR)

Aspartate transaminase Blood pH

Alanine transaminase Urine output

Total bilirubin

hospital ward and included patient demographics, past medical
history, vital signs, and laboratory results. Data were collected
passively and de-identified in compliance with the Health Insur-
ance Portability and Accountability Act (HIPAA).

For the purposes of this study, data was included from
patients with at least one of each of the following measurements
in the first 3 h of the patient encounter: systolic blood pressure,
diastolic blood pressure, respiratory rate, peripheral oxygen sat-
uration and troponin I. The requirement for a troponin mea-
surement prior to the time point for algorithm deployment was
included to ensure selection of a high-risk patient population
in which MI was under diagnostic consideration. The informa-
tion extracted by the MLA from the EHR to compute scores
are presented in Table 1. Beyond a troponin measurement and
the minimum vital sign measurements, no other features were
explicitly required by the MLA to generate a prediction score,
in order to maximise utility of the algorithm in live clinical envi-
ronments in which different data may be available for different
patients at the time of prediction generation.

The algorithm was designed to generate a score 3 h after the
start of the patient encounter. Input features were added as they
became available at a refresh rate of 10 min. If there were no
new measurements after 10 min, measurements were carried
forward. For timepoints at which a given measurement had not
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been collected yet, a null value was reported and the null value
was implicitly handled by the ML classifier as an input.

2.2 Gold standard

Encounters were considered positive for MI if an International
Classification of Diseases (ICD), 10th revision (ICD-10) code
for MI was listed for the encounter. The following ICD-10
codes were used to identify MI: I21.0, I21.1, I21.2, I21.3, I21.4,
I22.0, I22.1, I22.2, I22.8, I22.9. ICD codes were used to define
the positive class based on prior literature demonstrating that
the codes perform with acceptably high accuracy as proxies for
MI diagnosis [28–34]. ICD codes have been shown to perform
with high sensitivity, specificity, and positive predictive values
in identifying MI within hospitalisation databases [28–30]. All
patient encounters not labelled with one of the specified ICD-
10 codes were considered negative. Whereas the MLA was only
allowed to access to EHR data available within the first 3 h of an
encounter for MI predictions, the gold standard could be estab-
lished at any point during a patient’s ED assessment or subse-
quent hospitalisation.

2.3 Comparison to standard of care

The diagnostic evaluation of patients with suspected MI is com-
posed of findings taken from the history of present illness, past
medical history, physical exam, and diagnostic tests. Validated
risk stratification tools may be used to integrate findings from
these different sources to assist clinicians in predicting the like-
lihood that a given patient will experience an MI or associated
major adverse outcomes. For this study, we chose to compare
our MLA to two popular risk stratification tools for MI, the
TIMI score and Global Registry of Acute Coronary Events
(GRACE) score [34–36]. Based on clinical measurements taken
at initial ED presentation, the GRACE score has been used to
prognosticate outcomes such as MI and mortality during hospi-
tal admissions and periods of up to 3 years following admission
[14]. The TIMI score also uses initial ED observation to prog-
nosticate adverse outcomes related to cardiovascular morbidity.
Both GRACE and TIMI scores are recommended by clinical
societies to guide treatment planning decisions in the context
of possible MI [14, 37]. Since this MLA was designed to serve
as an alternative prognostication method in high risk patients,
these common, guideline-recommended risk scores used to
predict adverse cardiovascular outcomes were selected as
comparators.

GRACE and TIMI translate key clinical findings into a final
predictive score by weighting the findings and accumulating
the numerical weights. Based on commonly cited cutoff points
above which patients are no longer low risk for an MI and may
be considered to be at elevated risk for an MI, the clinical oper-
ating points were defined as ≥2 for TIMI and ≥108 for GRACE
[9, 38, 39]. The data necessary to tabulate TIMI and GRACE
were not available for each unique encounter. To remedy this,
we used a previously reported method to impute missing data

which has also been used by other MLAs [40, 41]. ECG data
were not available in this dataset and were thus not included
in calculations of any TIMI or GRACE score; this impacted the
maxima for each score. As the MLA produces probability scores
ranging from 0 to 1, TIMI and GRACE scores were scaled into
probability scores to facilitate comparison by dividing the score
by the respective model’s maximum achievable score within our
dataset (5.3 for TIMI, 305 for GRACE). Scaled scores were
then plotted on receiver operating characteristic (ROC) curves.
The original TIMI and GRACE risk scores inputs are pro-
vided in Supplementary Table 1. Data inputs used to tabulate
the adjusted TIMI and GRACE are provided in Supplementary
Table 2.

2.4 Machine learning algorithm

A novel MLA was developed to predict MI, trained using the
inputs in Table 1. The MLA is a gradient boosted tree model
implemented with the XGBoost (XGB) library in Python [42,
43]. The XGB method uses collections of gradient-boosted
decision trees to classify data. For example, a patient’s creati-
nine level may place a patient along one of two paths. Using
this example of creatinine, if this measurement is not available,
the MLA would select a branching direction that results in the
MLA making a better prediction on average. Multiple creatinine
branching points may exist on a single decision tree with, for
example, one that follows a male branching point and one that
follows the female branching point, allowing two cutoff values
for creatinine that are conditioned on the gender of the patient
to exist. The end of the decision tree has one “leaf” that rep-
resents each patient encounter, with the patients in each leaf
predicted to have the same probability of the outcome. The
final score is then the sum of all trees. XGB models progres-
sively incorporate any new splits in the branching points along
the range of the values of its inputs, incorporating that infor-
mation into new branches and new trees. Further, this train-
ing adjusts for the addition of any new component and how
it may impact this component’s ability to reduce the loss func-
tion versus the contribution to the model’s general complexity.
The objective or cost function, or the “loss function,” quan-
tifies each new branch’s ability to improve the training accu-
racy after new branches are added to the model, and also to the
model’s complexity and overfitting. Thus, weaker decision tree
base learners adjust rapidly and effectively from large amounts
of data, and learn even from missing data when using XGB. The
XGB method was chosen for this study due to its simplicity,
high performance, and useful implementation features, which
provides options for handling imbalanced classes and regular-
isation [42, 44]. This model takes the first 3 h of data from
Table 1 as input features, as data is made available, separated
by 10 min intervals. As per the gold standard, patient encoun-
ters were labelled uniquely positive or negative, with encounters
with MI defined as the positive class and those without as the
negative class.

The model was trained and tested using an 80:20 train:test
split. To train the model, 80% of patients were randomly
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TABLE 2 Demographic information for the hold out test dataset used to test the machine learning algorithm

Patients with MI (n = 253) Patients without MI (n = 1,600) p-values

Age (years)

<30 1 (0.4%) 41 (2.6%) 0.04

30–49 25 (9.9%) 160 (10.0%) 1.00

50–59 34 (13.4%) 223 (13.9%) 0.92

60–69 53 (20.9%) 362 (22.6%) 0.63

70–79 55 (21.7%) 341 (21.3%) 0.87

<80 85 (33.6%) 473 (29.6%) 0.21

Sex

Male 169 (66.8%) 831 (51.9%) 0.01

Female 84 (33.2%) 769 (48.1%) 0.01

Unknown 0 (0.0%) 0 (0.0%) 1.0

Race

American Indian or Alaska Native 0 (0.0%) 0 (0.0%) 1.0

Asian 58 (22.9%) 379 (23.7%) 0.87

Black or African American 23 (9.1%) 254 (15.9%) 0.004

Native Hawaiian or Other Pacific Islander 9 (3.6%) 33 (2.1%) 0.17

White or Caucasian 116 (45.8%) 703 (43.9%) 0.59

Other 43 (17.0%) 211 (13.2%) 0.11

Unknown/declined 4 (1.6%) 20 (1.2%) 0.56

Ethnicity

Hispanic or Latino 16 (6.3%) 140 (8.8%) 0.61

Comorbid conditions

Obesity 13 (5%) 143 (9%) 0.05

Diabetes mellitus 108 (43%) 516 (32%) 0.001

Dyslipidemia 130 (51%) 560 (35%) < 0.001

Hypertension 201 (79%) 1126 (70%) 0.003

Peripheral vascular disease 28 (11%) 69 (4%) < 0.001

Angina 52 (21%) 96 (6%) < 0.001

Heart failure 116 (46%) 473 (30%) < 0.001

CKD 100 (40%) 422 (26%) < 0.001

HIV infection and AIDS 7 (3%) 51 (3%) 0.85

Dementia 25 (10%) 173 (11%) 0.74

COPD 35 (14%) 314 (20%) 0.03

Depression 24 (9%) 214 (13%) 0.10

Current tobacco use 25 (10%) 174 (11%) 0.74

Prior MI 61 (24%) 148 (9%) < 0.001

Prior ischemic stroke or TIA 2 (1%) 20 (1%) 0.76

Abbreviations: Acquired immunodeficiency syndrome (AIDS); chronic kidney disease (CKD); chronic obstructive pulmonary disease (COPD); human immunodeficiency virus (HIV);
myocardial infarction (MI); transient ischemic attack (TIA).

selected and the remaining 20% were used as a hold-out set
to test generalisation after training. A stratified threefold cross-
validation grid search [45] was conducted for hyperparameter
optimisation. The training set was split into 3 separate folds
and each combination of hyperparameters was used to train
the model on two folds and validate on the remaining one.
The combination of hyperparameters that resulted in the high-

est validation AUC was saved as the optimal hyperparameters,
which were then used to train the entire training set. Optimal
hyperparameters included learning rate, regularisation penalty,
positive weight scaling, and maximum tree depth. Final opti-
mised hyperparameters for XGB were learning rate of 0.05,
regularisation penalty of 3, positive weight scaling of 1, and max-
imum tree depth of 3.
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FIGURE 1 Patient encounters used to train and test a machine learning
algorithm to predict myocardial infarction based on electronic health data
available within the first 3 h.

Performance metrics are reported as the performance of
the model on the testing set. Operating points for TIMI and
GRACE were defined using the cutoff points described above.
The operating point selected for the MLA along its ROC curve
was selected to maximise sensitivity and specificity relative to
the comparator models. Model performance at this operat-
ing point was compared to comparators’ performance at their
respective operating points in terms of sensitivity, specificity,
likelihood ratios and diagnostic odds ratios.

3 RESULTS

We analysed 99,235 patient encounters, of which 9,265 encoun-
ters had at least 3 h of vital sign data recorded and at least one
troponin-I test ordered during the encounter. The hold-out test
set consisted of 1,853 patient encounters, of which 253 encoun-
ters were positive for MI per the gold standard (Figure 1).

All data presented below pertain to the hold out validation
dataset used to test the MLA. Fisher’s exact test was used
to evaluate statistical significance of demographic differences
between patients with and without MI, with a significance level
of p < 0.05. Patients who experienced an MI were less likely to
be young and less likely to be female (Table 2). Significant dif-
ferences in past medical history were noted between patients in
the positive and negative classes, with MI patients more likely
to have diabetes, hypertension, dyslipidemia, peripheral vascu-
lar disease, angina, heart failure, chronic kidney disease, and
chronic obstructive pulmonary disease. Patients diagnosed with
an MI were also more likely to have a history of prior MI. The
median age for the MI population was 72 years (interquartile
range (IQR): 60, 81), compared to 70 years (IQR: 58, 82) in
the population without MI. Demographic data for the complete
dataset used for training and testing is presented in Supplemen-
tary Table 3.

The MLA’s ability to predict MI was assessed on the hold out
test dataset and compared to the adjusted TIMI and GRACE
scores. ROC curves were plotted (Figure 2), with the MLA
demonstrating superior performance in classifying cases com-
pared to the clinical prediction rules.

TABLE 3 Performance metrics of machine learning algorithm and
comparator models for myocardial infarction prediction

MLA GRACE TIMI

AUROC 0.87 0.61 0.78

Sensitivity 0.87 0.78 0.84

Specificity 0.70 0.33 0.57

LR+ 3.0 1.2 1.9

LR- 0.18 0.67 0.28

DOR 16.5 1.8 7.0

PPV 0.32 0.16 0.24

NPV 0.97 0.91 0.96

Abbreviations: Area under the receiver operating characteristic (AUROC); likelihood ratio
(LR); machine learning algorithm (MLA).; diagnostic odds ratio (DOR); positive predictive
value (PPV); negative predictive value (NPV).

The MLA outperformed the comparator tools in predicting
MI on all metrics evaluated (Table 3). The MLA achieved an
area under the receiver operating characteristic curve (AUROC)
of 0.87, sensitivity of 0.87 and specificity of 0.70. The TIMI
achieved an AUROC of 0.78 with a sensitivity of 0.84 and speci-
ficity of 0.57, performing better than the GRACE. GRACE
demonstrated the lowest AUROC, sensitivity and specificity of
the three models at 0.61, 0.78 and 0.33, respectively.

Feature correlations and distribution of feature importance
for MLA performance was evaluated using a SHAP summary
plot (Figure 3). Prior MI, troponin I values, and chest pain were
among the most important EHR features for predicting MI. As
expected, Troponin I values are positively correlated with MI.
Rather than a single threshold for high versus low however, the
model has multiple thresholds for troponin I conditioned on the
patient’s other features. These thresholds can differ by branch
or tree. In general, troponin I above the thresholds result in
increases in the final score whereas troponin I below the thresh-
olds result in decreases in the final score.

4 DISCUSSION

Delays in appropriate treatment for MI are associated with
increased mortality risks [9]. Conversely, unnecessary treatment
(or unnecessarily aggressive treatment) can introduce treatment-
related harms to improperly diagnosed patients [46], or lower-
risk patients who could be treated with less intensive, guideline-
recommended pharmacotherapies. These harms highlight the
opportunity for innovative approaches to support MI risk strat-
ification tools that are accurate, easy to integrate into the clin-
ical workflow, and can be utilised within the initial hours of a
patient’s assessment within the ED. In this work, we describe
such a tool to support risk-appropriate medical intervention
through timely and accurate risk stratification for MI among
high-risk patients. Using the EHR database of a large academic
medical center, an MLA was developed which could extract
readily available data from EHRs as they were updated with-
out interrupting the clinical workflow. The MLA was developed
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FIGURE 2 Area under receiving operating characteristic curves and clinical operating points for (A) machine learning and GRACE clinical prediction model of
myocardial infarction diagnosis and (B) machine learning and TIMI clinical prediction model of myocardial infarction diagnosis.

FIGURE 3 Top unique feature correlations and distribution of feature
importance for each patient encounter for machine learning models. Input
variables are ranked in descending order of feature importance. Red indicates a
high feature value and blue indicates a low feature value. Points to the right and
left sides of the line of neutral contribution resulted in higher and lower
prediction scores, respectively. Abbreviations: alanine aminotransferase (ALT);
blood pressure (BP); heart rate (HR); international normalised ratio (INR);
myocardial infarction (MI); peripheral oxygen saturation (SpO2).

to predict MI with high accuracy based on available inputs and
outperformed clinical prediction tools which are currently sug-
gested for risk stratification in clinical guidelines produced by
the American Heart Association, American College of Cardiol-
ogy [37] and the European Society of Cardiology [14].

The results of Table 3 demonstrate that the MLA performed
substantially better than the TIMI and GRACE scores in pre-
dicting MI at any point during a patient encounter, achieving
an AUROC of 0.87 compared to 0.78 for TIMI and 0.61 for
GRACE. Notably, the tool was both more sensitive and more
specific than the comparator risk stratification tools (Table 3;
Supplementary Table 4). The MLA also achieved greater PPV

and NPV than either GRACE or TIMI, indicating that it was
more accurate in truly identifying high risk cases where MI ulti-
mately occurred and correctly ruling out low risk cases in which
MI did not occur. The MLA, thus, performed with high accu-
racy in predicting an eventual diagnosis of MI, using only the
data available within an initial 3 h assessment window (Table 1).
Unlike the more complex GRACE and TIMI scoring systems,
which incorporate features that are not routinely assessed across
patients (e.g. Killip class, 1 week history of aspirin use), the
MLA is capable of making predictions using only routinely col-
lected patient data, and therefore does not require additional
work on the part of the clinician. Further, an MLA provides
flexibility, as the operating point and/or threshold for alerts
can be adjusted to reflect clinician feedback and to maximise
the clinical utility of the tool to meet the needs of individual
hospitals.

In addition to comparing performance to GRACE and TIMI,
feature importance for all MLA inputs was assessed using SHAP
values, which consider the contributions of each feature in mak-
ing predictions (Figure 3). Past medical history of MI, Troponin
I values, and chest pain were among the most important features
for the MLA’s performance. Given the substantive research on
chest pain as a cardinal symptom of MI, elevated troponin as a
defining aspect of MI, and prior MI as a risk factor for recur-
rent MI, the MLA identified relevant relationships in the data
consistent with the published literature [3, 39, 15].

The gold standard encompassed ICD-10 codes for both
STEMI and NSTEMI, and was thus designed to predict
both STEMI and NSTEMI. As described in the introduction,
STEMI represent more severe ischemic events and are ideally
recognised early in patient assessment, making enhanced risk
stratification at 3 h a clinically relevant timeframe. Within the
complete training and test dataset, an elevated troponin result
was returned at a median of 2 h and mean of 7 h into the patient
encounter. While this rough proxy for time of clinical diagnosis
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does not take into account the time at which a clinician may first
recognise suggestive ECG abnormalities, it does underscore the
length of the diagnostic window for MI in a real-world setting
and the utility of a CDS risk stratification tool which can facil-
itate hospitalisation and clinical management decisions within
this window.

In the growing body of research on MLAs as CDS tools,
these tools have performed with high sensitivity and speci-
ficity using variable types of input data [21]. However, many
studies have been limited by training and testing in small sam-
ple populations, and some have required exhaustive inputs or
additional manual data entry to make a prediction [21]. The
MLA described in this work was trained and tested using a
large dataset (n = 9,265) and minimal exclusion criteria were
applied to maximise the generalisability of findings. Our MLA
can extract and integrate multiple features from the EHR into
predictions; however, beyond a single troponin measurement
and at least one measurement for four routinely measured
vital signs, the MLA does not require that any other individ-
ual feature be present in order to make a prediction. Previous
researchers have suggested that incorporating troponin mea-
surements into MLAs may enhance algorithms’ predictive abil-
ity [17]. In 2019, Than et al. reported on the prospective per-
formance of the myocardial-ischemic-injury-index (MI3), a gra-
dient boosted algorithm which uses patient demographics and
two sequential high-sensitivity cardiac troponin values to predict
likelihood of MI diagnosis [47]. MI3 demonstrated high sen-
sitivity and specificity and was effective in ruling out patients
without MI, with a NPV of 99.7% [47]. However, MI3 cannot
make predictions without serial troponin measurements, which
may not be readily available in an early assessment window
in all clinical practice contexts [47]. The MLA we have devel-
oped can incorporate repeated troponin measurements as input
features, but is not inhibited by their absence from making a
prediction.

This work has several limitations. First, patient data were col-
lected from a cohort of patients at a single academic medical
center, which limits generalisability. Second, there was a higher
percentage of male patients as compared to female patients
among patients with MI in the hold out validation dataset. This
sex-based difference may reflect existing bias in the diagnos-
tic process for MI; recent research has suggested that lower
troponin thresholds may be appropriate for diagnosing MI in
women [12]. Third, while ICD codes for MI have been demon-
strated to perform with high sensitivity, specificity, and positive
predictive value for identifying MI in health records [28–30], it
is possible that some patient encounters were not properly clas-
sified. In particular, some recent research in the era of high-
sensitivity troponin tests has demonstrated a lack of concor-
dance between ICD 10 labels and a clinical diagnosis of MI per
the 4th Universal Definition of MI [48]. However, other stud-
ies using historical data have demonstrated acceptable concor-
dance (e.g. kappa statistic K > 0.6) between ICD codes for MI
and clinician adjudicated diagnosis [31, 34]. As the data used in
this study were collected in a comparable historical time period
(2011–2015), ICD codes applied during this time period can
be considered a reasonable proxy for clinical diagnosis. Fourth,

the absence of ECG data in this dataset represents a limita-
tion on the use of TIMI and GRACE as comparator models,
as both scores incorporate ECG findings as inputs. The per-
formance of the adjusted TIMI (AUROC = 0.78) and GRACE
(AUROC = 0.61) in this study are largely consistent with pre-
vious research on unadjusted TIMI and GRACE scores to pre-
dict MI and other major adverse cardiovascular events in ED
patients [49–51]. A further limitation on the use of the GRACE
and TIMI scores as comparators is that neither tool was explic-
itly designed to only predict MI diagnosis within a hospital stay.
However, both scores have been used to prognosticate cardio-
vascular adverse outcomes, such as MI, among patients at high
risk of acute coronary syndrome, such that these clinical risk
scores remain the most appropriate comparators for this novel
MLA. Fifth, as this was a retrospective dataset provided via
contract for research purposes, constraints on the breadth of
data provided were present. For example, while the dataset indi-
cated the timing of troponin test result, troponin test result in
ng/mL, and whether a result was abnormal, no information on
the type(s) or exact troponin assays used over the time period
of the study were available. Finally, as this study was conducted
retrospectively, future research on the prospective performance
of this algorithm is warranted to support its utility as a CDS
tool. In future work, this work will be extended by prospec-
tive assessment across data derived from different hospital set-
tings, and investigate the use of sex-specific troponin cut-offs to
improve diagnostic performance and utility of the tool in clinical
practice.

5 CONCLUSIONS

We have developed an MLA that can risk stratify patients for
MI with high accuracy. Troponin remains an important input
for the MLA, similar to standard MI clinical diagnostic and risk
stratification tools, and future research directions may explore
serial troponin as an input for this model in order to assess the
impact on predictive accuracy. However, while our current MLA
can incorporate repeated troponin measurements, only a single
troponin measurement is required in order to make a prediction.
As this MLA performs with high sensitivity and specificity, we
propose that the use of a risk stratification MLA may support
clinical management and hospitalisation decisions early in the
diagnostic process.
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