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Chair of Nonlinear Solid Mechanics, Faculty of Engineering Technology, University of Twente,
7500AE Enschede, The Netherlands; e.e.asik@utwente.nl (E.E.A.); a.h.vandenboogaard@utwente.nl (T.v.d.B.)
* Correspondence: e.s.perdahcioglu@e-mail.com; Tel.: +31-53-489-2675

Received: 10 March 2020; Accepted: 7 April 2020; Published: 10 April 2020
����������
�������

Abstract: The intent of this work is to numerically investigate the effect of second phase morphology
on damage evolution characteristics of dual-phase (DP) steels. A strain gradient enhanced crystal
plasticity framework is used in order to capture the deformation heterogeneity caused by lattice
orientations and microstructural size effects. The investigation is focused on two different martensite
distributions (banded and random) that are relevant for industrial applications. The effects of
martensite morphology are compared by artificially generated 2D plane strain microstructures with
initial void content. The Representative volume elements (RVEs) are subjected to tensile deformation
imposed by periodic boundary conditions. Evolution of voids are analyzed individually as well as a
whole and characterized with respect to average axial strain. It is found that during stretching voids
exhibit varying evolution characteristics due to generation of inhomogeneous strain fields within
the structure. The behavior of individual voids shows that the stress-state surrounding the void
is different from the imposed far field macroscopic stress-state. The voids at the ferrite martensite
interface and in ferrite grains of the randomly distributed martensite grow more than in the banded
structure. On the other hand, voids formed by martensite cracking growth shows an opposite trend.

Keywords: steel; dual phase; void growth; crystal plasticity; strain gradient plasticity; polycrystalline
material; martensite morphology

1. Introduction

The increasing trend toward lighter structures has led the automotive industry to shift towards
Advanced High Strength Steels that are generally multiphase steels with complex microstructural
morphologies, which triggers research not only in production of these materials but also in
development of numerical tools to predict and evaluate material performance. Microstructural features,
e.g., distribution and amounts of phases, grain size and shape variations, of these steels affect the stress
and strain fields within the structure during deformation. Ductile failure behavior is highly dependent
on the local conditions of stress and strain. It is, therefore, necessary to understand interrelated
physical mechanisms that cause ductile material failure in a voided polycrystalline structure subjected
to inelastic deformations.

Ductile fracture of crystalline metals is generally a result of nucleation, growth and coalescence
of small internal voids. Void nucleation usually occurs by decohesion or fracture of second phase
particles [1–3]. Once nucleated, voids evolve with plastic deformation in a stable manner until they
start interacting with each other, which later leads to coalescence and failure. The same story line holds
for multi phase alloys. For example, experimental studies on dual phase (DP) steels show that void
nucleation occurs by cracking of martensite, between ferrite and martensite or within ferrite grains.
In [4] it is reported that interface decohesion and martensite cracking are observed and their proportion
varies depending on the martensite content. Similarly in [5] it was found that martensite cracking
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and interface decohesion both occur in DP600 steels while martensite cracks appear earlier while
having lower number of incidents. According to [6] while all three damage mechanisms are observed
in the non-commercial DP steel that they studied, as grain size decreases the ductile mechanisms
such as interface decohesion and ductile damage in ferrite, become more dominant. In [7] for the
commercial DP600 they studied the main void formation was due to martensite cracking that started
at the ferrite–martensite interface although some voids in ferrite were observed. It is concluded in [8]
that for the DP800 they studied no definitive failure mechanism could be found meaning all of them
were equally possible. Asik [9], who studied damage mechanisms for the specific DP steel that are
used in this study, found that all damage mechanisms are equally likely to occur. A general overview
of literature on this subject can be found in [10].

Modeling of void evolution in ductile metals and the response of mechanical properties to void
content, size and shape have been described in the literature starting with the early works on isolated
void analyses of McClinktock [11], Rice and Tracey [12] and the constitutive framework by Gurson [13].
Later, Koplik and Needleman [14] compared predictions based on Gurson’s model to unit cell analyses.
In these early studies, matrix surrounding the void was assumed isotropic, although recently plastic
anisotropy of the matrix has been taken into account in unit cell calculations by employing either a
Hill-type yield criterion or crystal plasticity formulations [15–22].

Yerra et al. [19] did calculations on void growth in body centered cubic (BCC) crystal under
constant stress triaxiality. They observed strong dependence of void growth rate to crystal orientation.
Moreover, the study also showed that a higher stress triaxiality resulted in faster void growth.
More recently, the study of Ling et al. [22] exhibited similar results for a face centered cubic
crystal. In their work, unit cell simulations were compared with the porous single crystal model
of Han et al. [18] for various grain orientations, stress triaxialities and initial void sizes. For the small
voids at a stress triaxiality of 1, they have observed that the porous model underestimates the void
growth for the [100] and [111] orientations while overestimates the void growth for the [1̄25] orientation.
On the other hand, at a stress triaxiality of 3, both models predicted similar growth characteristics for
the [100] and [1̄25] orientations, but overestimated the void growth for the [111] orientation. This was
attributed to the distortion of the voids at that orientation. They have observed very similar results in
the simulations with higher initial void fraction.

Shu et al. [21] investigated dependency of void size on void growth rate. They used a scale
dependent elasto-viscoplastic framework for unit cell calculations and concluded that small voids had
a tendency to grow slowly compared to large voids. Moreover, Borg et al. [23] and Tvergaard et al. [24]
concluded that void growth rate for small voids was suppressed for low stress triaxialities and effect
of orientation was more pronounced for small voids.

Void growth in metals has been studied at different length scales. At small scales, discrete
dislocation dynamics (DDD) and molecular dynamics (MD) simulations are versatile tools to
investigate the effect of lattice orientations and void size on determining the characteristics of porous
single crystals. In the study of Segurado et al. [25], growth of voids in isolated face centered cubic
(FCC) single crystals under uniaxial and biaxial loading was investigated via DDD simulations.
It was found that void growth was more dependent on lattice orientations in uniaxial stress state
than in biaxial loading. In the study of Tang et al. [26], through MD simulations of void growth
and coalescence in magnesium single crystals, it was shown that the pattern of plastic deformation,
which was strongly dependent on crystal orientations and specimens size, influenced void growth.
Moreover, MD simulations in the study of Potirniche et al. [27], showed a higher increase of void
fraction in smaller specimens, which was attributed to the development of larger local stresses.

Most of the previous work in literature for unit cell calculations use single crystals. However,
in order to come up with a generalized understanding, representative features of an engineering
material, e.g., phases, phase distributions, grain size, should be included in the model. The goal of
this work is to clarify the effects of second phase distribution and grain orientations on the mechanics
of void evolution in polycrystalline dual phase steel microstructures at mesoscopic scale (in the level
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of 0.1–10 µm). A strain gradient enhanced rate independent crystal plasticity formulation is used in
order to capture the size dependent evolution of inhomogeneous plastic deformation.

In this paper, void evolution in 2D polycrystalline Representative volume elements (RVEs) with
initial void content is considered. The RVEs are generated with size and grains orientations so that
the average stress and strain response is indifferent to the present grain orientations. RVEs with two
constituent phases (ferrite and martensite) have been used to elucidate behavior of voids in a DP
steel under tensile loading condition. Depending on the grade, martensite phase exhibits more than
4 times grater yield strength than that of ferrite, which is higher than the mechanical strength response
difference that can be caused by grain orientation variations.

For the simulations, voids are introduced in the structure which are placed based on the most
common active damage mechanisms [9,28]. The cylindrical voids were placed to ferrite–martensite
boundaries and into ferrite grains but being closer to martensite. Moreover, fully close voids
were introduced to the martensite islands in order to mimic the behavior of the voids formed by
martensite cracking.

In order to emphasize the effect of second phase distribution, two different microstructural
morphologies are used. In one case a banded distribution of martensite are employed and for the other
case randomly distributed martensite islands in a ferrite matrix is used. The first structure resembles
the banded martensite distribution of commercial DP600 steels, which has a minimum ultimate tensile
strength of 590 MPa. The banded structure in DP steel sheets originates from the elemental segregation
during solidification and subsequent rolling process [9,29]. On the other hand, the second distribution
(random martensite distribution) is used to compare the evolution of different types of damage in
order to clarify the effect of banding on damage evolution in DP structures.

Furthermore, the effect of grain orientations is studied by using three different sets of random
orientations for each type of microstructure. The results are investigated in terms of area change
of individual damage events—i.e., voids at grains, martensite–ferrite interfaces and voids formed
from cracked martensite islands—as well as the total evolution of damaged area (area of the damage
incidents).

The paper is organized as follows. Section 2 introduces the crystal plasticity and strain gradient
theory used in this study. Section 3 describes the generated realistic microstructures with initial void
content and the finite element model used in this study. Section 4 shows the results and discussions
on the evolution of voids and effect of microstructural morphology and lattice orientations. Finally,
Section 5 presents a summary and the main conclusions of this work.

Throughout the paper the following notations are used: 1st order tensors and vectors are shown
in bold face and lowercase letters (a), 2nd order tensors and matrices in bold face and uppercase letters
(A) and 4th order tensors with blackboard bold face and uppercase letters (A). The single contraction
of tensors is represented by a dot (A ·b = Aij bj), double contraction by a colon (A : B = Aij Bij).
The dyadic (tensor) product is represented with the ⊗ sign (C = a⊗ b, Cij = ai bj). The cross-product
(×) of two vectors (a and b) is defined as ci = εijkajbk, where ε123 = ε231 = ε312 = 1, ε321 = ε213 =

ε132 = −1 and all other combinations equal to zero. The gradient operator in orthogonal basis is
defined as ∇({•}) = ∂({•})

∂xi
ei.

2. Constitutive Model

In this section, we aim to summarize the constitutive model used for damage evolution analysis.
In the current work, we employ the strain gradient enhanced rate independent crystal plasticity
framework developed by Perdahcıoğlu et al. [30] and we extend the model to incorporate lattice
rotations. The framework was implemented by using user subroutines UMAT and USDFLD in finite
element package ABAQUS/STANDARD (version 2017). For the details concerning the implementation,
readers are referred to Perdahcıoğlu et al. [30] and Soyarslan et al. [31], where algorithmic description
of the framework, the backward Euler solution scheme and gradient computation method were
discussed. The framework is capable of capturing strain gradient effects as a results of both structural
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and microstructural gradients. Especially, microstructural strain gradients play an important role when
the plastic deformation is highly heterogeneous, which is the case for multi phase steels. The following
section is subdivided into two parts: (i) crystal plasticity formulation, (ii) strain gradient enhancement.

2.1. Crystal Plasticity

2.1.1. Kinematics

In the current model, it is assumed that crystallographic slip is the only deformation mechanism
responsible for plastic deformation which happens on slip systems. Other mechanisms, such as
twinning or transformation induced plasticity effects, are not considered since they are not observed
for this specific material. The slip systems are defined by unit vectors of slip direction (s(α)0 ) and

slip plane normal (m(α)
0 ) of the slip system α. The total deformation (elastic and inelastic) can be

expressed by using the total deformation gradient which for finite deformation, can be multiplicatively
decomposed in the form

F = F̂e · Fi (1)

where Fi describes the inelastic deformation caused by glide of dislocations and F̂e describes
elastic stretching and lattice rotation of the plastically deformed material point at an intermediate
configuration (#). This decomposition implies that the elastic-plastic deformation process takes place
in two stages. First, there is a plastic flow of material from the initial configuration to intermediate
configuration and a subsequent stage of elastic deformation from intermediate configuration to final
deformed configuration. The total velocity gradient L is calculated as

L = L̂e + F̂e ·Li · F̂−1
e = L̂e + L̂i (2)

The inelastic part of the total velocity gradient tensor is calculated by the sum of shear rates (γ̇(α))
of the slip systems as [32,33]

L̂i = ∑
α

γ̇(α)s(α) ⊗ m(α) (3)

where
s(α) = F̂e · s

(α)
0 , m(α) = F̂−T

e ·m(α)
0 (4)

Furthermore using the definition of the velocity gradient in Equation (A2) one can obtain the rate
of deformation by taking the symmetric part of L which can similarly be decomposed into elastic and
inelastic parts:

D = D̂e + D̂i

W = Ŵe + Ŵi (5)

The elastic part of the deformation rate is used in updating the stress while the inelastic part is
determined using the found shear rates on active slip systems, as described in the following section.
The inelastic part of the spin gives the possibility to update the elastic rotation that is needed to
determine the lattice vectors in the deformed configuration.

The detailed equations that are necessary for the implementation of the model presented above
can be found in Appendix A.
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2.1.2. Flow Rule

In the rate independent formulation, slip occurs only on the slip systems where the resolved shear
stress (τ(α)) of the slip system α is equal to its slip resistance (τ(α)

f ). Hence, we can define φ(α) for each
slip system as:

φ(α) = τ(α) − τ
(α)
f ≤ 0 (6)

The systems at which the equality in Equation (6) holds are called the active slip systems for slip
and the deformation is plastic. In this paper, we define the slip rates γ̇(α) for all systems to be positive
which necessitates consideration of both positive and negative slip directions as slip systems [34].

The elastic behavior in the global frame is defined by the relation between lattice corotational rate
of Cauchy stress tensor and rate of elastic deformation as:

O
σ = Ce : De (7)

At each time increment, ABAQUS/STANDARD rotates the stress tensor σ to the global reference
frame in corotational formulation [35,36].

The resolved stress on the slip system α is calculated by the projection

τ(α) = σ : P(α)
tot (8)

where σ is the Cauchy stress tensor and P(α)
tot is called total Schmid tensor, defined as:

P(α)
tot = P(α)

s + P(α)
ns (9)

The P(α)
s component of P(α)

tot geometrically projects the applied stress on the slip system with the
slip direction s(α) and slip plane normal m(α).

P(α)
s = s(α) ⊗ m(α) (10)

P(α)
ns describes the non-Schmid effects that are responsible for the tensile compression asymmetry

behavior of body centered cubic (BCC) crystals due to the core structure of screw dislocations and it is
calculated as [37]:

P(α)
ns = a1 (s(α) ⊗ m(α)

l ) + a2 (m(α) × s(α))⊗ m(α)
l + a3 (m

(α)
l × s(α))⊗ m(α)

l (11)

where a1, a2, a3 are temperature dependent material parameters.
In the literature, non-Schmid behavior of BCC structures has been investigated extensively by

many researchers and the reader is referred to these works [37–44]. Here, we adopt the formulation
developed by Gröger et al. [37] and employed by Koester et al. [45] and Cereceda et al. [41]. In this
formulation, Equation (11), the vector m(α)

l is the normal of non-glide plane which forms an angle of

300 with the glide plane normal m(α). List of the vectors s(α), m((α) and m(α)
l can be found in the works

of Gröger et al. [37] as well as Cereceda et al. [41]. Moreover, the material specific parameters are used
as a298K

1 = 0.030, a298K
2 = 0.173, a298K

3 = 0.300 from the works of Patra et al. [38] and Mapar et al. [46].
In this work we consider both ferrite and martensite to have BCC structure with the same lattice

parameters. This is assumed due to the low carbon content present in dual phase steels, see Table 2
for the chemical composition of a representative DP600 grade dual phase steel. The carbon content
of martensite in this steel can be estimated to be roughly around 0.5 in weight percentage (based on
18% martensite fraction, and no C solid solution in ferrite). Although the real value depends on other
factors such as other solute atoms, the aspect ratio, c/a, of the martensite lattice on carbon content can
be estimated according to literature [47] to be smaller than 1.01.
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2.1.3. Hardening Rule

In the current work, the main mechanism for work hardening was considered to happen by
impediment of dislocation motion by increase in the forest dislocation density. Therefore for each slip
system, a Taylor type hardening law [48] with physically based interaction matrix was employed as
in Equation (12):

τ
(α)
f = τ0 + µb

√
∑
β

Q(αβ)ρ(β) (12)

where τ0 is the strain independent lattice friction, µ is the shear modulus, b is the Burgers vector length,
ρ(β) is the total dislocation density of the slip system β and Q(αβ) is a physically based interaction
matrix, which is generated by discrete dislocation dynamics simulations and takes into account the
geometric relationship between the slip systems. Hence, it is defined by each crystal structure.

The coefficients of interaction matrix Q(αβ) characterizes the strengthening of slip system α due to
increase of dislocation density on β. It is composed of six possible independent interactions of type:
self, coplanar, collinear, orthogonal, glissile and sessile [41,49–51]. Table 1 shows coefficients of the
interaction matrix determined by Queyreau et al. [51] via discrete dislocation dynamics simulations
for a BCC structure.

Table 1. Coefficients of interaction matrix Q(αβ)for body centered cubic (BCC)-Fe [51].

Self Coplanar Collinear Orthogonal Glissile Sessile

0.009 0.009 0.72 0.05 0.09 0.06

By following the arguments of Ashby [52], the total dislocation density ρ(α) of a slip system α was
considered to be the sum of statistically stored dislocation ρ

(α)
SSD and geometrically necessary dislocation

ρ
(α)
GND densities.

ρ(α) = ρ
(α)
SSD + ρ

(α)
GND (13)

The evolution of ρ
(α)
SSD is governed by shear rate of slip system α whereas ρ

(α)
GND evolves by

the gradient of the shear rate and it will be discussed in the next section. As in the work of
Perdahcıoğlu et al. [30], the evolution of ρ

(α)
SSD is based on a phenomenological constitutive law based

on the linear ordinary differential Equation (14)

ρ̇
(α)
SSD =

γ̇(α)

γ∞

[
ρ∞

SSD − ρ
(α)
SSD

]
(14)

where the terms ρ∞
SSD and γ∞ are constants that control the values for saturation of statistically stored

dislocation density and the rate of saturation which are phenomenological descriptions of the balance
between rate of dislocation production and annihilation [53].

2.2. Geometrically Necessary Dislocations (GND) Density: Strain Gradient Enhancement

This section gives the formulation that is required to calculate the evolution of ρ
(α)
GND based

on the gradient of slip rates. For calculating the evolution of geometrically necessary dislocation
densities, we follow the formulations of Gurtin et al. [54] and Cermelli et al. [55] and the details of the
implementation are given in Appendix B.

Once the shear rates on each slip system are known their gradient can be used to determine the
Burgers tensor explicitly as

G = Fi ·Curl Fi (15)

which involves the rate of screw (�) and edge (

⊥

) geometrically necessary dislocation densities on
slip system α in the following form [54]:
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ρ̇
(α)
�,GND = l(α)0 ·∇0γ̇(α) (16)

ρ̇
(α)⊥

,GND
= −s(α)0 ·∇0γ̇(α) (17)

where l(α)0 is a lattice vector given as l(α)0 = m(α)
0 × s(α)0 .

The edge and screw GND densities represent the vector components of the total GND density
and due to the definition of G, the unit of densities is not per area but rather per length and it is more
a geometrical measure without any material specific input. It is therefore necessary to convert to per
area by dividing by the length of the Burgers vector of the material. This yields the total GND density
to be used in Equation (13) as

ρ
(α)
GND =

1
b

√
[ρ

(α)⊥

,GND
]2 + [ρ

(α)
�,GND]

2 (18)

Computation of strain gradients is realized explicitly making use of a discrete gradient
computation method proposed by Liszka and Orkisz [56]. An irregular grid of data points can
be used with this method for the evaluation of the gradients. This method is used to approximate the
unknown gradient vector by using a weighted least squares approach. To remedy the over-determinacy
of the system of equations associated with the condition where the number of equations exceeds the
number of unknowns we use the following sum of squares form

f (Υ) =
n

∑
k=1

[
γ̇(α)(r0)− γ̇(α)(rk) + Υ ·∆rk

∆r3
k

]2

, (19)

where 1/∆r3
k is the weighting factor. Minimization of f (Υ) with ∂ f /∂Υ = 0 gives the desired gradients.

This procedure is implemented as a USDFLD subroutine for ABAQUS.
In the case of polycrystal simulations, the gradient computation is limited within each domain of

elements belonging to individual material definitions. This implies that the jump of the plastic strain
across the grain boundaries is not treated as a source of GNDs.

3. Microstructure

In this section, 2D polycrystalline RVEs consisting of two phases (ferrite and martensite) have
been used to investigate the evolution of voids in a DP steel under tensile loading condition. Fully
closed voids were introduced inside martensite islands, cutting through the complete island. Moreover,
two types of cylindrical voids were placed at two different location types. The first type of location
was the interphase boundaries between ferrite and martensite. The second type was inside the ferrite
grains with a martensite neighbor and towards the boundary between ferrite and the neighboring
martensite island. The choice of these locations was based on the experimental observations, which
show that in DP steels there is more than one active damage mechanism [9,28]. By adding the most
common damage mechanisms into the model we aim to clarify and give an explanation on how one of
the mechanisms becomes dominant over the others and on the effect of martensite banding on the
evolution of these damage mechanisms.

Two different martensite morphologies were considered, namely banded and randomly
distributed structures. Throughout the section, we have used the word morphology to specifically
mention distribution of martensite islands in the ferrite matrix. For readability we have not used the
word distribution every time but it has always been implied unless mentioned otherwise. The RVE with
banded morphology was generated by considering a commercial DP600 steel (Tata Steel, Ijmuiden,
The Netherlands). The same batch of this steel has been investigated experimentally before for damage
mechanisms [9] and has the composition given in Table 2.
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Table 2. Chemical composition (wt %) of the DP600 steel (TATA Steel, Ijmuiden, The Netherlands) after
which the representative volume elements (RVEs) are modeled.

C Cr Mn Si P & S

0.09 0.5 1.9 0.06 trace

Figure 1 illustrates secondary electron (SE) images obtained from different cross-sections of
the steel and the measured volume percentages of martensite distribution along rolling, transverse
and normal directions. In [9] the experimental procedures for obtaining the images as well as the
quantitative analysis methods are introduced. Using these methods, the martensite content was
calculated by image analysis and it was found to be an average of 17.9± 0.4 vol% martensite. From the
martensite distribution charts, along the thickness direction a non-homogeneous, banded distribution
of martensite can be seen. The spacing between two martensite bands were measured to be roughly
10 to 15 µm and in between the martensite bands there were 2–3 ferrite grains [9]. Moreover, grain
analysis by electron backscattered diffraction revealed an average ferrite grain area of 22.5 µm2

and a martensite grain area of 5.6 µm2. According to these measurements an RVE with a size of
40×40 µm and containing 18.14 vol% martensite was generated, as shown in Figure 2, to represent a
banded DP600 steel. For representing the RVE with random martensite morphology, grain sizes were
generated with the same parameters and this yielded an RVE with a martensite content of 17.85 vol%,
see Figure 3. The martensite morphologies of the generated RVEs can be seen in Figures 2b and 3b,
where black color represents the martensite phase. Moreover, Figures 2c,d and 3c,d show the ferrite
and martensite grains.

Figure 1. Typical microstructure of a commercial DP600 steel and distribution of vol% martensite
where ND (normal direction) represents the direction normal to the plane of sheet and RD and TD
represent the rolling and transverse directions of the sheet.

In the EBSD analysis no specific texture associated with each phase was observed and accordingly
the tensile tests in different directions did not reveal any plastic anisotropy [9]. Therefore, orientations
of the grains in both RVEs were assumed to be random and orientation variations within a martensite
island were not taken into account. For each RVE, 3 randomly generated orientations sets were used in
order to statistically compare damage evolution in the structure.

The RVEs were generated by using MICROSTRUCTURE DESIGN TOOL: MULTILEVEL VORONOI

(MLV) tessellation software developed by Tata Steel. The Multilevel Voronoi technique enables
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generating very complex grain structures and phase distributions compared to the standard Voronoi
tessellation, which results in convex shaped grains. The basic principle of the technique is based on
regrouping fine Voronoi structures by using a coarser tessellation depending on location of the seed
points of fine Voronoi cells. The reader may refer to the works of Kok et al. [57] and Yadegari et al. [58]
for more detailed explanations on the multilevel Voronoi approach, as well as the possibilities it presents
in microstructure generation. The MLV software generates output files, that contain geometrical and
orientation information to create microstructures. These files were used to create grains with defined
orientations as parts in ABAQUS/CAE by using the scripting language PYTHON.

After RVEs were generated, different types of voids were introduced to the structure in the
graphical user interface of ABAQUS/CAE and the resulting RVEs were meshed with quadratic
triangular plane strain elements (CPE6M). The boundary of voids and cracks were meshed finer
for better discretization. Both RVEs contain 9 voids at the ferrite martensite interface and 9 voids
inside ferrite grains with a radius of 0.3 µm and 6 completely cracked martensite grains shown
in Figures 2a and 3a, which makes an initial void percentage (% f0) of 0.32. The initial void size was
selected in a way to represent voids which are nucleated but not grown much. The RVEs were
subjected to 15% tensile elongation by applying periodic boundary conditions which were imposed by
tie constraints to opposing edges. Moreover, periodicity of the grains, which are located at the opposite
edges of the RVEs, were ensured during the RVE generation procedure such that a grain at the right or
top edge continues to the left or bottom edge.

(a)

10 µm

(b)

(c) (d)

Figure 2. RVE with banded morphology, (a) voids (green: voids in ferrite, red: voids at the
ferrite–martensite boundary) and cracks (blue), (b) ferrite (white) and martensite (black), (c) colors
indicate 69 ferrite orientations, (d) colors indicate 29 martensite orientations.
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(a)

10 µm

(b)

(c) (d)

Figure 3. RVE with random morphology, (a) voids (green: voids in ferrite, red: voids at the
ferrite–martensite boundary) and cracks (blue), (b) ferrite (white) and martensite (black), (c) colors
indicate 67 ferrite orientations, (d) colors indicate 32 martensite orientations.

Parameter Identification

Since the aim of the simulations was to investigate the effect of martensite distribution on damage
evolution in DP600 steels, the material properties of the phases were fitted to macroscopic stress–strain
response of ferrite and martensite that was used by Ramazani et al. [59] in modeling dual phase steels.
Parameter identification was done by employing an RVE consisting of either ferrite or martensite as
represented in Figure 4.

(a)

20 µm

(b)

10 µm

Figure 4. RVEs used to model (a) ferrite, (b) martensite. Colors represent the Voronoi cells with
different grain orientations.
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For each phase, a Voronoi-based microstructure with 160 grains was generated and the RVEs
were subjected to 7.5% tensile tensile stretch, while periodic boundary conditions were imposed.
The stretching direction is the one horizontal to the image and parallel to the band orientation since the
vertical direction is assumed to represent the thickness of the sheet. Considering that the constitutive
model used in this study is size dependent the grain sizes of the single phase RVEs were generated
to have similar grain sizes of constituent phases as the RVEs with dual phase structures and the
simulations were repeated with 3 different sets of random orientations to check the representativeness.
Moreover, in the current fitting the initial dislocation densities for each slip system of each phase
were calculated from the total dislocation density that is reported in literature as 9.0× 107 mm−2

for ferrite [60] and 1.6× 109 mm−2 for martensite [61]. These densities were assumed to be equally
distributed to the 12 possible slip systems yielding dislocation densities of 7.50× 106 mm−2 and
1.34× 108 mm−2 for each slip system of ferrite and martensite, respectively. The other parameters (τ0,
ρ∞ and γ∞) given in Table 3 were used as fitting parameters.

In the used model, in total each phase has 7 parameters 2 of which are elastic and are determined
by direct testing. One is the Burgers vector that depends on the lattice parameters of each phase
which are known in literature for the ferrite and martensite in DP steels. Another one, i.e., the initial
dislocation density, is taken from measurements reported in the literature for each phase. This leaves
three parameters per phase, i.e., lattice friction, saturation dislocation density and saturation shear, to
be fitted using a macroscopic tensile test. Lattice friction has a direct relation to the initial flow stress of
the phase and the other two parameters influence the hardening behavior at large strains. Using these
observations and the data found in [59] a calibration was performed to have a good correspondence
with the macroscopic tensile test result.

Mechanical response of RVEs with only ferrite or martensite is shown in Figure 5 with markers.
Additionally, the figure also shows stress–strain curves of RVEs with banded and random morphologies
and an experimentally measured DP600 curve. It can be seen that the obtained stress–strain curves for
each phase are within the range that is reported in literature and the overall response of the RVE is in
good correspondence with the experiment. With the current RVE size, we see that the stress response
of DP600 structures shows a maximum scatter of 3%, which is sufficiently low for this study. However,
if necessary, this scatter can be reduced by using larger sized RVEs at the cost of a higher solution time.
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Table 3. Material parameters for ferrite and martensite.

Ferrite Martensite

E (GPa) 212 212
ν (-) 0.3 0.3

τ0 (MPa) 40 250
b (mm) 2.48× 10−7 2.48× 10−7

ρ0 (mm−2) 7.50× 106 1.34× 108

ρ∞ (mm−2) 3.00× 108 5.00× 108

γ∞(−) 0.4 0.3

4. Results and Discussion

4.1. Evolution of Dislocation Densities

Here we compare the distribution of dislocation densities after deformation. This is done by
first visualizing the deformed RVEs using plots of SSD and GNDs showing their spatial distribution.
Two different scales were used for Figures 6a,d,g and 7a,d,g due to the large difference between the
initial statistically stored dislocation (SSD) density in ferrite and martensite. For both morphologies,
deformation is not uniform but it concentrates in certain regions and forms shear bands. The shear
bands can be identified from the distribution of SSD density, which accommodates and evolves with
plastic strain. The main difference in the SSD density of two morphologies is the distribution of these
bands. In the random morphology, shear bands form a finer pattern compared to that in the banded
one. Based on this observation the following can be deduced. Ferrite in between the martensite islands
has to deform to accommodate the prescribed deformation since the mechanical strength contrast
between the two phases is large so that ferrite phase in any orientation is softer than martensite.
The presence of a higher number of ferrite channels between the martensite islands in the random
morphology yields finer shear band structure. However, the long and continuous martensite bands
restrict the plastic flow causing coarser shear bands.

The effect of martensite distribution and shear band formation can also be evaluated from the
evolution of average SSD and GND densities in different phases. Figure 8 shows that the average SSD
evolution is almost similar for all the cases where there is formation of higher GND density for the
RVEs with random morphology. Figure 9 shows the change in SSD density in ferrite and martensite.
The higher average SSD density of ferrite in the random morphology suggests accommodation of a
higher amount of plastic strain than the ferrite phase in the banded morphology. In the meantime,
martensite phase strains less and yields a lower amount of SSD density. From a stress point of view,
this means that the continuous martensite bands carry more load compared the martensite islands in
the random morphology. The scatter with respect to the average value due to different orientation
sets can also be investigated. It is seen that the average normalized SSD density in ferrite of banded
morphology has a scatter of 6.0% at 0.15 longitudinal strain, whereas that of random morphology
is 1.7%, which means orientations in a banded structure play a more important role than a random
morphology. On the other hand, scatter in average SSD density in martensite for both morphologies is
much smaller at a value of 0.5%.
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ρFerriteSSD
ρGND

ρtotal
ρinitial

9.0× 107 8.3× 108 1.0× 107 3.0 × 1010 1.0 × 100 3.0× 103

ρMartensite
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(d) (e) (f)

(g) (h) (i)

Figure 6. Distribution of (a,d,g) ρSSD (mm−2), (b,e,h) ρGND (mm−2), (c,f,i) Normalized dislocation
density for banded morphology. Three rows represent 3 different orientation sets.

The GND density distributions can be compared by using Figures 6b,e,h and 7b,e,h. All the
figures show clear localization of GND density around voids and at the tips of cracks. In addition,
moderate GND densities (5× 108 mm−2) in ferrite are present at the grain boundaries. In Figure 10
the total GND densities per phase within the random and banded RVEs are plotted. It is seen that the
average GND density of ferrite evolves faster in the random morphology. This can be related to the
finer structure of shear bands and higher SSD (ρα

SSD) content of random morphology. First, through
the width of a shear band, there exists a gradient of slip resulting in GND accumulation. Since there
are more shear bands in random morphology, they cause higher amount of GNDs. Secondly, ferrite
deforms more in random morphology as indicated by the higher SSD (ρα

SSD) content. This increases
the heterogeneity of plastic deformation and the GND content in ferrite. This trend is also observed
in the average GND content of martensite. The higher amount of plastic deformation in martensite
phase in the banded structure than the martensite islands of random morphology causes development
of higher strain gradients. This is due to inhomogeneous distribution of plastic deformation within
the martensite.

Figures 6c,f,i and 7c,f,i show the distribution of normalized total dislocation densities with respect
to the initial dislocation density (ρSSD) of the structure. After normalizing the additional intensity
of dislocation density due to the strength contrast between phases and the high density caused by
presence of voids and cracks become clearly visible. It is seen between the figures that the dislocation
density varies with different orientation sets, even if the average stress–strain curves are within a
range of 3%. For example, the top right corner of Figure 6c has less dislocations than Figure 6f.
However, there are also similarities. In all figures there are large regions of ferrite which are deformed
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less than the average of the structure. Moreover, around the damage occurrences, the dislocation
density is always higher than in the rest of structure due to excess plastic deformation caused by
stress concentration.

ρFerriteSSD
ρGND

ρtotal
ρinitial

9.0× 107 8.3× 108 1.0× 107 3.0 × 1010 1.0 × 100 3.0× 103

ρMartensite
SSD

1.6× 109 2.8× 109

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Distribution of (a,d,g) ρSSD (mm−2), (b,e,h) ρGND (mm−2), (c,f,i) Normalized dislocation
density for random morphology. Three rows represent 3 different orientation sets

Figure 8. Averaged statistically stored dislocation (SSD) (left) and geometrically necessary dislocations
(GND) (right) densities within the RVEs. Each color represents an orientation set.
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SSD) in the RVEs for ferrite (left) and

martensite (right). Each color represents an orientation set.

Figure 10. Evolution of GND density in the RVEs for ferrite (left) and martensite (right). Each color
represents an orientation set.

4.2. Evolution of Voids

This section elaborates on the evolution of voids found in the RVEs in terms of total area of the
voids as well as the individual area of each void. Figure 11 shows the increase in the total void area for
2 morphologies and 3 sets of orientations each. The voids are separated into 2 different classes namely
the voids at the interface (solid lines) and the voids in ferrite grains (dashed lines).
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Figure 11. Evolution of total area of voids (left) banded, (right) random morphology for 3 orientation
sets with total strain. Each color represents an orientation set.

From Figure 11, we see the final average void area is bigger in the random morphology with an
increase of 19.8%, whereas it is 12.4% in the banded morphology. If we compare the different types
of voids (in-grain and at the interface), we see that the average void growth of in-grain voids were
highly affected by the martensite morphology, whereas interface voids seem to be less effected. At the
end of deformation, the average area of all in-grain voids increases 20.7% from 2.53 µm2 to 3.05 µm2

in random morphology. For the banded morphology, the growth of the same type of voids is at 8.5%
corresponding to a total area of 2.74 µm2. However, the average growth of interface voids for both
morphologies deviate less from each other. It is slightly larger for random morphology at 16.1% and
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13.8% for the banded morphology. We can relate the higher percentage of in-grain void growth to the
higher deformation of ferrite in random morphology, which we can see from the higher SSD density
value in ferrite and lower SSD density in martensite, Figure 9. The higher SSD density in ferrite in
random structures suggests two things. First, it means that the ferrite is plastically deformed more for
that structure. Secondly, it means that the ferrite has hardened more. Since on the RVE deformation is
prescribed, the voids have to grow more. In other words, the mechanical contrast between the void
and the ferrite increases as ferrite hardens which forces the void to take more part in the deformation
process. The storyline for interface voids is similar but this time the deformation of martensite is
also crucial. It seems that since martensite does not deform as much as ferrite it stabilizes the void,
the growth of interface voids depends not only on deformation of ferrite but also on the deformation
of martensite.

Figures 12 and 13 show the change of normalized void area for individual voids for only one set
of orientations per structure. The first observation on the curves of the figures is that all voids evolved
differently from each other. The varying behavior of the voids can be attributed to (i) the orientation of
the grains with respect to the loading axis, (ii) distribution of plastic strain within the RVE. Secondly,
for both void groups, there was at least one void which did not grow in size but shrunk during the
deformation. Shrinkage of voids strongly suggests that there was either shear or compressive stress
state surrounding those voids. Moreover, some of the voids show an initially growing trend which
during the deformation process turns into shrinkage or vice versa, which can be attributed to change of
local stress state. This is an important result since it shows the difference in evolution of the local stress
state compared to the evolution of macroscopically applied stress state. Thirdly, in both structures,
there was at least an in-grain void which grows 50%, which is 4–7 times more than the other voids.
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Figure 12. Evolution of the normalized area (with respect to initial area) of individual interface voids
in banded (left) and random (right) morphology with total strain. Each color represents one void.
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Figure 13. Evolution of the normalized area of individual in-grain voids in banded (left) and random
(right) morphology. Each color represents one void.

4.3. Evolution of Voids Formed by Cracking of Martensite

In this part, we analyze the evolution of total area of the voids formed by martensite cracks as
well as area of individual voids of that type. The area of this type of voids is defined as the area in the
plane of the model, that is formed by opening of the faces of the martensite islands during deformation.
In Figure 14, the damaged areas caused by the 6 voids were summed up which gives an overview on
evolution of the voids in the structure. Figure 15 shows the evolution of damaged area that is induced
by individual cracks. Since the results between different orientation sets were similar this figure was
plotted only for one orientation per morphology.
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Figure 14. Evolution of total area of the voids formed by martensite cracks for 3 different orientation
sets for random and banded distribution of martensite with total strain. Each color represents an
orientation set.

From Figure 14, it is seen that for all orientation sets of banded morphology, growth of crack
area occurred faster than for random morphology. This behavior can be expected since the martensite
islands in a banded structure act as strong fibers and they carry more load compared to their
counterpart in a random structure. This explains the faster growth for banded morphology. This
was also verified by the ρSSD and ρGND distributions in Figures 9 and 10 where it can be seen that
the average dislocation density of martensite in banded morphology is slightly higher than that of
random morphology.

In Figure 15, it is seen that for both morphologies all cracks open, but with different rates. This can
be explained by the variation in the local stress state surrounding the crack. In this manner, it is
similar to the evolution of individual voids. The trends of different cracks in random morphology
looks more similar than in banded morphology. In the banded morphology, there is only one case
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that shows a saturating trend. The voids formed by martensite cracking grow in a more monotonic
way—in the sense that growth trend does not change during the deformation—than the voids at the
ferrite–martensite interfaces and in ferrite grains.
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Figure 15. Evolution of the area of individual voids formed by martensite cracking in banded (left)
and random (right) morphology with total strain. Each color represents one void.

5. Summary and Conclusions

In this work, we have investigated and compared the effect of martensite morphology on
damage evolution mechanisms of dual phase steels within a strain gradient enhanced crystal plasticity
framework, which enables incorporation of plastic anisotropy as well as microstructural size effects.
Two industrially relevant martensite morphologies (banded and random) are investigated by generated
artificial 2D RVEs. To the RVEs, the most common damage mechanisms are: voids formed by martensite
cracks, voids between ferrite and martensite, and voids in ferrite grains were introduced. After 15%
tensile deformation it was found that:

• The morphology of the martensite phase in dual phase steels has a direct effect on the stress and
plastic strain distribution among the phases.

• The size of the observed shear bands is strongly influenced by the average spacing between
martensite islands.

• An accurate prediction of the local stress state is necessary to capture the evolution of
individual voids.

• The heterogeneity of the plastic strain within an RVE results in significant GND densities which
can be captured using a gradient enhanced crystal plasticity model.

• Local stress state around a void varies significantly from the applied average stress state and it
evolves considerably during deformation.

• The change of stress state around a void during large plastic deformation may lead to closure of
the void.

• Voids that are formed by cracking of martensite exhibit the highest growth rates, thus they are
considered as the most severe damage mechanism.
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Nomenclature

b Burgers vector length.
BCC Body Centered Cubic crystal structure.
Ce Elasticity tensor.
D̂e Elastic rate of deformation between the lattice and the deformed configurations, defined in the

deformed configuration.
D̂i Inelastic rate of deformation between the reference and lattice configurations, defined in the

deformed configuration.
D Rate of deformation that is the symmetric part of the velocity gradient and a measure of the rate of strain between

the reference and the deformed configurations, defined in the deformed configuration.
F̂e Deformation gradient that describes elastic stretching and lattice rotation of the plastically deformed material point

at an intermediate configuration (#).
F Deformation gradient that takes a line element of the material dx0 from an undeformed, reference configuration to

dx in the final deformed configuration as dx = F ·dx0.
Fi Deformation gradient that describes the inelastic deformation caused by glide of dislocations and takes a line

element from the reference configuration to an intermediate (lattice) configuration.
FCC Face Centered Cubic crystal structure.
γ̇(α) Shear rate on slip system α.
γ∞ Phenomenological constant that controls the rate of saturation of the Statistically Stored Dislocation density.
G Burgers tensor.
�
G Plastically convected rate of the Burgers tensor.
GND Geometrically Necessary Dislocations.
L̂e Velocity gradient that gives the gradient of the velocity field (between the lattice and deformed configuration) at

the final deformed configuration.
L̂i Velocity gradient that gives the gradient of the velocity field (between the reference and lattice configuration) at the

final deformed configuration.
L Velocity gradient that gives the gradient of the velocity field (between the reference and deformed configuration) at

the final deformed configuration.
l(α) A lattice vector that is orthogonal to both s and m.
m(α) Slip plane normal vector on slip system α given at the deformed configuration.

m(α)
l Normal to the non-glide plane on slip system α observed in BCC crystals.

m(α)
0 Slip plane normal vector on slip system α given at the reference configuration.

µ Shear modulus.
∇0 Gradient operator in the reference configuration.
∇# Gradient operator in the lattice configuration.

P(α)
ns Contribution of non-Schmid effects seen in BCC crystals to the total Schmid tensor.

P(α)
s Schmid tensor on slip system α, i.e., P(α)

s = s(α) ⊗ m(α)

φ(α) Flow criterion for slip system α.
Q(αβ) Physically based interaction matrix relating the hardening of slip system α to the dislocation density on slip

system β.
∆r Scalar distance between the points used in the computation of shear gradients.
R̂e Rotation resulting from the elastic deformation between the lattice and the deformed configuration as well as

rigid rotation.
R Total rotation of a line element of the material from the reference configuration to the deformed configuration,

calculated using Polar Decomposition.
r Position vector that is used for the computation shear rate gradients.

ρ
(α)
GND Density of Geometrically Necessary Dislocations on slip system α.

ρ
(α)
SSD Density of Statistically Stored Dislocations on slip system α.

ρ(β) Total dislocation density of the slip system β.
ρ∞

SSD Phenomenological constant that controls the saturation level of Statistically Stored Dislocation density.
σ Cauchy stress, defined in the deformed configuration.
s(α) Slip direction vector on slip system α given at the deformed configuration.

s(α)0 Slip direction vector on slip system α given at the reference configuration.
O
σ An objective rate of the Cauchy stress tensor, in ABAQUS/STANDARD it is updated using the

corotational formulation.
SSD Statistically Stored Dislocations.
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τ(α) Resolved shear stress on slip system α.

τ
(α)
f Critical resolved shear stress on slip system α.

τ0 Strain independent lattice friction.
Ŵe Spin resulting from the elastic deformation between the lattice and the deformed configurations and rigid rotation,

defined in the deformed configuration.
Ŵi Spin resulting from the inelastic deformation between the reference and lattice configurations, defined in the

deformed configuration.
W Spin tensor that is the skew-symmetric part of the velocity gradient and a measure of the rate of rotation between

the reference and the deformed configurations, defined in the deformed configuration.
Y Numerically calculated gradient of the shear rates.

Appendix A. Large Deformation Implementation of Crystal Plasticity

Resulting from the multiplicative decomposition of the total deformation gradient into elastic and inelastic
parts, the total velocity gradient L is calculated as

L = Ḟ · F−1 = ( ˙̂Fe · Fi + F̂e · Ḟi) · F−1
i · F̂−1

e (A1)

L = L̂e + F̂e ·Li · F̂−1
e = L̂e + L̂i (A2)

The inelastic part of the total velocity gradient tensor is calculated by the sum of shear rates (γ̇(α)) of the slip
systems as [32,33]

Li = ∑
α

γ̇(α)s(α)0 ⊗ m(α)
0 , L̂i = ∑

α
γ̇(α)s(α) ⊗ m(α) (A3)

where
s(α) = F̂e · s(α)0 , m(α) = F̂−T

e ·m(α)
0 (A4)

Furthermore by using the additive decomposition of the velocity gradient into rate of deformation (D) and
spin tensor (W), from Equation (A2) one can obtain

L = D̂e + F̂e ·Di · F̂−1
e + Ŵe + F̂e ·Wi · F̂−1

e (A5)

where

D = D̂e + F̂e ·Di · F̂−1
e = D̂e + D̂i (A6a)

W = Ŵe + F̂e ·Wi · F̂−1
e = Ŵe + Ŵi (A6b)

Here, a common simplification is introduced on F̂e such that R̂e � Ûe and Ûe ∼= I since the elastic stretch of

a metal is rather small. This implies that the length of unit vectors s(α)0 and m(α)
0 do not change during deformation

but only rotate with R̂e [16,62–64] which simplifies Equation (A6) to

D ∼= D̂e + R̂e ·Di · R̂−1
e
∼= D̂e + D̂i (A7a)

W ∼= Ŵe + R̂e ·Wi · R̂−1
e
∼= Ŵe + Ŵi (A7b)

In a finite element based time integration scheme the incremental rotation (∆R) can be calculated from the
exponential form of the known spin tensor (W) as [65]

∆R = exp(W) ∼= (I +
1
2

W) · (I− 1
2

W)−1 (A8)

and the total rotation at the end of the time step (t + 1) can be obtained from

Rt+1 = ∆R ·Rt (A9)

With this, and considering that the total spin during the increment is known, now the total elastic rotation of
the slip systems can be found using [66]:

R̂t+1
e = exp(Ŵe) · R̂t

e = exp(W− Ŵi) · R̂t
e (A10)
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Appendix B. Large Deformation Implementation of Strain Gradient Enhancement

We start by defining the Burgers tensor G, which characterizes the closure failure of an initially closed
referential circuit as

G = Fi ·Curl Fi (A11)

and plastically convected rate of G as [67]:

�
G = ∑

α
(∇#γ̇×m(α))⊗ s(α) (A12)

where ∇#γ̇ can be viewed as the gradient of γ̇ in the lattice configuration (#), in which the lattice is undistorted
and in intermediate configuration [54]. We can define a unit lattice vector l(α) as l(α) = m(α) × s(α). Then, by using

the orthogonality of (∇#γ̇×m(α)) to m(α),
�
G can be expanded as

�
G = ∑

α
(l(α) ·∇#γ̇(α)s(α) ⊗ s(α) − s(α) ·∇#γ̇(α)l(α) ⊗ s(α)) (A13)

By definition, both the direction of Burgers vector and dislocation line direction is equal and parallel to
s(α) for screw dislocations (s(α) = l(α)) while for edge dislocations the direction of Burgers vector is s(α) and
dislocation line direction is l(α) and they are perpendicular to each other (s(α) ⊥ l(α)). Then the rate of screw (�)
and edge (

⊥

) dislocation densities due to lattice incompatibility in a slip system α can be calculated from the
dislocation line and the gradient of slip rate vector as:

ρ̇
(α)
�,GND = l(α) ·∇#γ̇(α), (A14a)

ρ̇
(α)⊥

,GND
= −s(α) ·∇#γ̇(α), (A14b)

However, this calculation has to be done in the lattice configuration. On the other hand, the use of
USDFLD—Abaqus user subroutine for field calculations—algorthmically limits the calculations to be done in either
reference or deformed configuration. In order to push forward or pull back, one can employ the identities [55]

∇#γ̇(α) = F−T
i ·∇0γ̇(α) = FT

e ·∇γ̇(α) (A15)

Here our choice was to push forward from lattice configuration # to reference configuration and yield the
GND evolution equations as [54]

ρ̇
(α)
�,GND = l(α) · F−T

i ·∇0γ̇(α) = l(α)0 ·∇0γ̇(α) (A16a)

ρ̇
(α)⊥

,GND
= −s(α) · F−T

i ·∇0γ̇(α) = −s(α)0 ·∇0γ̇(α) (A16b)

References

1. Besson, J. Continuum models of ductile fracture: A review. Int. J. Damage Mech. 2010, 19, 3–52. [CrossRef]
2. Garrison, W.; Moody, N. Ductile fracture. J. Phys. Chem. Solids 1987, 48, 1035–1074. [CrossRef]
3. Stone, R.V.; Cox, T.; Low, J.; Psioda, J. Microstructural aspects of fracture by dimpled rupture. Int. Met. Rev.

1985, 30, 157–180. [CrossRef]
4. Su, Y.; Gurland, J. Strain partition, uniform elongation and fracture strain in dual-phase steels. Mater.

Sci. Eng. 1987, 95, 151–165. [CrossRef]
5. Avramovic-Cingara, G.; Ososkov, Y.; Jain, M.; Wilkinson, D. Effect of martensite distribution on damage

behaviour in DP600 dual phase steels. Mater. Sci. Eng. A 2009, 516, 7–16. [CrossRef]
6. Calcagnotto, M.; Adachi, Y.; Ponge, D.; Raabe, D. Deformation and fracture mechanisms in fine- and

ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011, 59, 658–670.
[CrossRef]

7. Ghadbeigi, H.; Pinna, C.; Celotto, S. Failure mechanisms in DP600 steel: Initiation, evolution and fracture.
Mater. Sci. Eng. A 2013, 588, 420–431. [CrossRef]

8. Kadkhodapour, J.; Butz, A.; Rad, S.Z. Mechanisms of void formation during tensile testing in a commercial,
dual-phase steel. Acta Mater. 2011, 59, 2575–2588. [CrossRef]

http://dx.doi.org/10.1177/1056789509103482
http://dx.doi.org/10.1016/0022-3697(87)90118-1
http://dx.doi.org/10.1179/imr.1985.30.1.157
http://dx.doi.org/10.1016/0025-5416(87)90507-6
http://dx.doi.org/10.1016/j.msea.2009.03.055
http://dx.doi.org/10.1016/j.actamat.2010.10.002
http://dx.doi.org/10.1016/j.msea.2013.09.048
http://dx.doi.org/10.1016/j.actamat.2010.12.039


Materials 2020, 13, 1795 22 of 24
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