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Abstract

Background: Melatonin, a well-known antioxidant, has been shown to possess anti-invasive properties for glioma.
However, little is known about the effect of melatonin on glioma cell migration and invasion under hypoxia, which
is a crucial microenvironment for tumor progress. In addition, focal adhesion kinase (FAK) and proline-rich tyrosine
kinase 2 (Pyk2) are closely associated with cell migration and invasion. Therefore, we investigated the possible role
of these kinases and its related signaling in the regulation of human U251 glioma cells behavior by melatonin
under hypoxia.

Methods: The abilities of migration and invasion of U251 glioma cells were determined by wound healing and
transwell assay in vitro. The intracellular production of reactive oxygen species (ROS) was measured by using
the fluorescent probe 6-carboxy-2', 7'-dichorodihydrofluorescein diacetate (DCFH-DA). Immunofluorescence
experiments and western blotting analysis were used to detect the expression level of protein. Small interfering
RNAs (siRNA) was used to silence specific gene expression.

Results: The pharmacologic concentration (1 mM) of melatonin significantly inhibited the migration and invasion
of human U251 glioma cells under hypoxia. The inhibitory effect of melatonin was accompanied with the reduced
phosphorylation of FAK and Pyk2, and decreased expression of alpha v beta 3 (av(33) integrin. Additionally,
inhibition of avP3 integrin by siRNA reduced the phosphorylation of FAK/Pyk2 and demonstrated the similar
anti-tumor effects as melatonin, suggesting the involvement of av(33 integrin- FAK/Pyk2 pathway in the
anti-migratory and anti-invasive effect of melatonin. It was also found that melatonin treatment decreased
the ROS levels in U251 glioma cells cultured under hypoxia. ROS inhibitor apocynin not only inhibited av(33 integrin
expression and the phosphorylation levels of FAK and Pyk2, but also suppressed the migratory and invasive capacity of
U251 glioma cells under hypoxia.

Conclusions: These results suggest that melatonin exerts anti-migratory and anti-invasive effects on glioma cells in
response to hypoxia via ROS-av(33 integrin-FAK/Pyk2 signaling pathways. This provides evidence that melatonin
may be a potential therapeutic molecule targeting the hypoxic microenvironment of glioma.

Keywords: Melatonin, Glioma, Invasion, Migration, Hypoxia, Focal adhesion kinase

* Correspondence: lizhigiang@whu.edu.cn

Equal contributors

'Department of Neurosurgery, Zhongnan Hospital of Wuhan University,
Wuhan 430071, PR China

“Laboratory of Neuro-oncology, Zhongnan Hospital of Wuhan University,
Wuhan 430071, PR China

Full list of author information is available at the end of the article

- © 2015 Xu et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
() B.oMed Central Attribution License (http//creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:lizhiqiang@whu.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Xu et al. Journal of Translational Medicine (2015) 13:95

Background

Melatonin, N-acetyl-5-methoxytryptamine, secreted pre-
dominately by the pineal gland, has antitumor properties
on a variety of cancer types including glioma [1-3]. Milli-
molar concentrations of this indolamine were found to
reduce U251 glioma cell growth by 70% after 72 hours
of treatment, and intraperitoneal administration of mela-
tonin (15 mg/kg body weight) to a rat subcutaneous
U251 glioma model also reduced tumor growth by 50%
[4]. In patients with glioblastoma, the most common pri-
mary malignant brain tumor, a strategy using radiother-
apy plus melatonin resulted in an increase in survival
compared with radiotherapy alone [5]. Moreover, combi-
nations of melatonin and chemotherapeutic drugs also
demonstrated a synergistic toxic effect on brain tumor
stem cells [6]. Accumulative evidence further indicates
the antitumor function of melatonin and its well-known
antioxidant properties have been shown to be involved
in the inhibitory effect on tumors. Melatonin and its me-
tabolites are documented free radical scavengers and
antioxidants [7]. Millimolar concentrations of melatonin
displayed the ability to inhibit glioma cell migration and
invasion through the inhibition of the oxidative stress
pathway [1,2]. However, the majority of those studies
were performed under normoxia, and little was done to
observe the effect of melatonin on glioma under hyp-
oxia, which results in the change of intracellular reactive
oxygen species (ROS) status and is also a crucial micro-
environment for tumor progress.

It is well documented that rapid tumor growth and in-
sufficient blood supply leads to intratumoral hypoxia.
Hypoxia is a key factor for the modulation of the bio-
logical behavior of glioma cells during tumor develop-
ment [8]. The presence of hypoxic areas in glioblastoma
is also considered to be an important determinant in
tumor response to therapy, particularly to radiotherapy
[9]. When tumor cells are exposed to hypoxia, ROS are
increased and many functional genes that play important
roles in glioma angiogenesis and tumor cell migration or
invasion are upregulated or downregulated [10]. Recently,
emerging evidence suggests the involvement of ROS and
the aberrant activation of redox-sensitive signaling path-
ways in tumor invasion and migration [11,12]. Given the
increased level of intracellular ROS under hypoxia and the
marked antioxidant effect of melatonin, melatonin treat-
ment might be a promising strategy for the modula-
tion of hypoxia-related glioma cell biological behavior
via the regulation of the intracellular ROS level. How-
ever, the ROS-related signaling involved in the action
of melatonin on glioma under hypoxic conditions has
not been well investigated so far.

Some ROS-regulated proteins were identified to play
key roles in epithelial-mesenchymal transition and tumor
metastasis. Integrin family members are of those ROS-
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regulated proteins [13,14]. Integrins are heterodimeric cell
surface glycoproteins consisting of a and p subunits and
control the attachment of cells to the extracellular matrix
(ECM). Cell migration and invasion depend on the bind-
ing of integrins to the ECM, which leads to the recruit-
ment of focal adhesion kinase (FAK) and/or proline-rich
tyrosine kinase (Pyk2) to the newly formed focal adhesion
sites [15]. Then, the activation of FAK and Pyk2 is fol-
lowed by the phosphorylation of a variety of downstream
effectors, resulting in cell migration and invasion [16,17].
Besides cell adhesion and migration, different hetero-
dimeric integrin molecules mediate various complex
processes including angiogenesis in a cell type- and
context-dependent manner [18]. The expression of 3
integrin is mainly associated with tumor metastasis, and
the avfp3 heterodimer has been implicated in the malig-
nant behavior of various tumor types, including glioma,
melanoma, breast, and ovarian cancer [19-21]. Previous
limited researches also demonstrated the possible effect of
melatonin on cellular integrins expression and FAK acti-
vation. In MCF-7 human breast cancer cells, melatonin
could shift it to a lower invasive status by increasing
the P1 integrin subunit expression [22]. In umbilical
cord blood-mesenchymal stem cells, melatonin was
demonstrated to trigger FAK/paxillin phosphorylation
to stimulate reorganization of the actin cytoskeleton
[23]. Despite the important role of avp3 integrin and
FAK/Pyk2 in glioma cell motility and the anti-invasive
effect of melatonin, it remains unknown whether mela-
tonin influences avp3 integrin expression and FAK/Pyk2
activation in glioma cells.

Taken together, it is intriguing to profoundly explore
whether melatonin inhibits glioma cell migration and
invasion under hypoxia via regulating ROS level, con-
sequently modulating avp3 integrin expression and the
activation of FAK and Pyk2. The present work displayed
the inhibitory effect of melatonin at pharmacologic con-
centrations on glioma cell migration and invasion under
hypoxia. A novel ROS-avp3 integrin-FAK/PyK2 pathway
was shown,for the first time, to involve in the inhibitory
effect of melatonin on U251 glioma cell migration and
invasion. The present study, therefore, amplified the
antitumor mechanisms of melatonin and provided a
basis for its potential therapeutic application of malig-
nant glioma.

Methods

Cell culture

Human glioma cells (U251) were obtained from Chinese
Type Culture Collection (Chinese Academy of Sciences,
Shanghai). The U251 glioma cell line was cultured in
DMEM with 10% fetal bovine serum (FBS), 2 mM L-
glutamine, 100 U/ml penicillin and 100 pg/ml strepto-
mycin (Invitrogen Gibco, USA) at 37°C under 5% CO,
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humidified air. All experiments were conducted using
80-85% confluent cells. Before each experiment, the
plated cells were incubated with serum-free medium for
6 hours. Then, the medium was replaced with serum-free
DMEM containing different concentrations of melatonin
(Sigma-Aldrich, St Louis, MO, USA) under normoxic
(20% O,) or hypoxic (1% O,) conditions. For hypoxia
treatment, the cells were incubated in in hypoxic cham-
bers (1% O,, 5% CO,, and 94% N,, Sanyo).

Small interfering RNAs (siRNA) treatment of cells

For silencing specific gene expression, U251 glioma cells
were treated with FAK siRNA, Pyk2 siRNA and integrin
3 siRNA (Santa Cruz Biotechnology, USA). Briefly, 2 x
10° U251 glioma cells were seeded into six well plate
with 2 ml antibiotic-free normal growth medium con-
taining FBS. Transfection of FAK siRNA, Pyk2 siRNA,
integrin B3 siRNA or control siRNA was performed
according to the manufacture’s protocol. U251 glioma
cells transfected with siRNA for 24 h were then exposed
to hypoxia.

Flow cytometry analysis of intracellular reactive oxygen
species

The intracellular production of ROS was measured by
using the fluorescent probe 6-carboxy-2’, 7 -dichorodi-
hydrofluorescein diacetate (DCFH-DA). After 24 hours
of treatment with melatonin at varied concentrations,
cells were incubated with 10 uM DCFH-DA in serum-
free medium for 10 minutes at 37°C. Afterwards, cells
were harvested and resuspended in 500 pl of PBS, and
DCEF fluorescence was measured by a Beckman Coulter
flow cytometer.

Wound healing assay

The wound healing method described previously was
used to assay cell migration ability [17,24]. In brief, 5 x
10° U251 glioma cells were seeded into 6-well plates. An
artificial homogenous wound was made with a sterile
plastic 200 pL micropipette tip. After wounding, cell
debris was removed by washing the cells with warm
serum-free medium. After incubation with serum-free
medium with or without melatonin for another 24
hours, cells that had migrated into the wounded area or
with extended protrusion from the border of the wound
were quantified after being photographed with an inverted
microscope (40 x magnifications, Olympus, Japan). Data
were from 5 independent experiments.

Transwell migration and invasion assays

The in vitro migratory and invasive ability of glioma cells
was assessed using the transwell chamber method [25].
In brief, U251 glioma cells were seeded into 24-well
transwells (Corning Corp. USA) at a density of 5 x 10°
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cells in 200 pL of medium in the upper chamber and
were incubated in serum-free medium with or without
melatonin, and the bottom chamber was filled with 600
puL of medium containing 10% FBS. After 24 hours of
incubation at 37°C, non-migrating cells on the upper
surface of the membrane were scrubbed gently with a
cotton-tipped swab. The migratory cells on the lower
surface of the membrane were fixed with 95% methanol
and stained with 0.1% crystal violet (Sigma-Aldrich, MO,
USA). Stained migratory cells were photographed under
an inverted light microscope and quantified by manual
counting in five randomly selected areas of view. Five
independent experiments were performed. For inva-
sion assays, U251 glioma cells were seeded into diluted
matrigel-precoated 24-well transwells (Corning Corp. USA)
at a density of 5x 10° cells in 200 pL of medium in the
upper chamber. The procedure of cell treatment and
staining was similar with transwell migration assay.

Western blotting analysis

U251 glioma cells were rinsed in PBS and lysed with
RIPA buffer (50 mmol/L Tris—HCI, pH 7.2, 150 mmol/L
sodium chloride, 1% Nonidet P-40, 0.5% sodium deoxy-
cholate, 0.1% sodium dodecyl sulfate) containing a prote-
ase and phosphate inhibitors after treatment for 12 hours.
Western blotting was performed to detected protein
expression and its phosphorylation statues by using
specific antibodies against B-actin (1:2000), FAK (1:2000),
phosphorylated FAK (Tyr397, 1:1000), Pyk2 (1:1000) or
phosphorylated Pyk2 (Tyr402, 1:1000) [17]. All of these
antibodies were purchased from Santa Cruz Biotechnology
(USA). The protein bands were quantitatively analyzed
by Kodak Digital Science ID software (Eastman Kodak
Company, USA). The total protein level of FAK and
Pyk2 was normalized to the expression of B-actin. The
relative phosphorylation level of FAK and Pyk2 was nor-
malized with corresponding total protein level.

Immunofluorescence experiments

Expression of avp3 integrin protein in U251 glioma cells
was examined via the immunofluorescence technique.
U251 glioma cells on glass coverslips were incubated
with medium containing different concentrations of
melatonin under normoxia or hypoxia for 24 hours and
were then fixed with 4% paraformaldehyde in PBS for 15
minutes at room temperature. Cells were then incu-
bated with primary antibodies to avp3 integrin (1:100,
Cell Signaling) overnight at 4°C. Binding specificity was
controlled by an IgG isotype control (Jackson Immu-
noresearch). Subsequently, secondary antibodies Cy3-
conjugated AffiniPure donkey anti-rabbit IgG (Jackson
Immunoresearch) at 1/500 dilution were applied for 1
hour and viewed using a confocal microscope (Zeiss).
avP3 integrin staining was presented as the average
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fluorescence intensity of three pictures per group. All
sections were performed in Vectashield Mounting Media
with 4,6-diamidino-2-phenylindole (DAPI).

Statistical analysis

All of the values are presented as the means + S.E.M.
Statistical analysis included Students ¢ test analysis
for 2 groups or one-way ANOVA for multiple groups
comparisons. Differences were considered to be statis-
tically significant at p <0.05.

Results

Melatonin inhibits U251 glioma cell migration and
invasion under hypoxia

Hypoxia, a common and important characteristic of the
glioma microenvironment, has been shown to promote
glioma cell migration and invasion. To evaluate the effects
of melatonin on cell migration under hypoxia, wound
healing and a transwell migration assay were performed.
Compared with cells cultured under normoxia, many
more U251 glioma cells migrated into the wound area
under hypoxia in the wound healing assay, and simultan-
eous exposure to 1 mM melatonin significantly reduced
hypoxia-induced U251 glioma cell migration (Figure 1A).
However, melatonin at a physiological concentration
(InM) had no obvious effect on U251 glioma cell migra-
tion under hypoxia (Figure 1A). The inhibitory effect of
melatonin on U251 glioma cell migration was further
quantitatively confirmed by a transwell assay (Figure 1B).
Similar results were also observed in the transwell inva-
sion assay (Figure 1C). These results demonstrated that
melatonin at pharmacological concentration could signi-
ficantly inhibit U251 glioma cell migration and invasion
under hypoxia.

Melatonin modulates phosphorylation state of FAK and
Pyk2 in U251 glioma cells

To explore the mechanism underlying the inhibitory
effects of melatonin on cell migration and invasion,
changes in FAK and Pyk2 activities were studied due to
their important role in the formation of focal adhesions,
which is a key process in cell migration and invasion.
Tyr397 is an autophosphorylation site of FAK that triggers
downstream events leading to cell migration. Activation of
Pyk2 is indicated by an increase in its phosphorylation at
Tyr402 [16]. Therefore, the phosphorylation state of FAK
at Tyr397 and Pyk2 at Tyr402 was examined by immu-
noblotting. Melatonin treatment had no effect on total
protein level of FAK and Pyk2 (Figure 2A). Then we eval-
uated the relative phosphorylation level of FAK and Pyk2
to the total protein level respectively. Compared with cells
under normoxia, a significant increase in phosphorylation
of FAK at Tyr397 and Pyk2 at Tyr402 was observed under
hypoxia accompanied by comparable total protein levels
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(Figure 2B,C). The administration of 1 mM melatonin
significantly reduced the phosphorylation level of both
FAK and Pyk2 under hypoxia (Figure 2B,C). Similar re-
sults were also observed in U251 glioma cells after mela-
tonin treatment under normoxia (see Additional file 1).

Silencing of FAK and Pyk2 inhibit U251 glioma cells
migration and invasion under hypoxia

To investigate the involvement of FAK and Pyk2 in
hypoxia-induced U251 glioma cell migration and inva-
sion, specific siRNA of FAK and Pyk2 were applied to
U251 glioma cells. As shown in Figure 3A, the efficiency
of specific siRNAs was confirmed by significantly decreased
total protein level of FAK and Pyk2. Phosphorylated FAK
and Pyk2 were also reduced. It was shown that the specific
siRNA of both FAK and Pyk2 significantly inhibited the
migration (Figure 3B) and invasion (Figure 3C) of U251
glioma cells cultured under hypoxia, which was similar to
the effect of the pharmacologic concentration of mela-
tonin. These data suggested that melatonin may inhibit
U251 glioma cell migration and invasion through the in-
hibition of FAK and Pyk2 activity.

Attenuation of avf33 integrin expression mediates the
effect of melatonin on FAK and Pyk2 phosphorylation

It is widely known that focal adhesion kinases are media-
tors of the integrin pathway and that its phosphorylation
can be activated by av(3 integrin under hypoxia in glioma
cells; therefore, we determined whether the inhibitory
effect of melatonin on FAK and Pyk2 phosphorylation
might be mediated through avp3 integrin. We first exam-
ined avP3 expression and cellular localization in U251
glioma cells by immunofluorescence analysis. As shown in
Figure 4A, hypoxia treatment caused a significant increase
of avp3 integrin staining in U251 glioma cells. However,
avp3 integrin staining was significantly decreased after the
application of 1 mM melatonin under hypoxic conditions.
Similar effect of melatonin on avp3 integrin was also
observed under normoxia (see Additional file 2). These
results strongly suggested that hypoxia might activate
avp3 integrin by enforcing their membrane recruitment
and that melatonin can attenuate the stimulation of avf33
integrin by hypoxia in U251 glioma cells.

Then, we used siRNA directed against the 3 subunit
to explore the involvement of av(3 integrin inhibition
on FAK and Pyk2 phosphorylation in U251 glioma cells
under hypoxia. As shown in Figure 4B and C, avp3 integ-
rin staining in U251 glioma cells was significantly reduced
by specific siRNA and the levels of phosphorylated FAK at
Tyr397 and phosphorylated Pyk2 at Tyr402 were also
decreased after siRNA treatment. Consistent with this
observation, the inhibition of avf3 integrin by siRNA
also significantly inhibited U251 glioma cell migration and
invasion, similar to the pharmacologic concentration of
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Figure 1 Effect of melatonin on the migration and invasion of U251 glioma cells under hypoxia. (A) The migratory ability of U251 glioma
cells treated with different concentration of melatonin was evaluated by wound healing assay. The representative images at 0 hour and 24 hours
post-wounding are shown at 10 x magnification. (B) U251 glioma cell migration was analyzed using transwell assay after melatonin treatment for
24 hours. The migratory cells were stained by 0.1% crystal violet (upper). The migratory cell number exposed to hypoxia alone was expressed as
100% (lower). (C) U251 glioma cell invasion was detected by matrigel-precoated transwell assay after melatonin treatment for 24 hours. The
invasive cells were stained by 0.1% crystal violet (upper). The invasive cell number exposed to hypoxia alone was expressed as 100% (lower). The

data presented the mean of three independent experiments. *p < 0.05, **p < 0.01.

melatonin under hypoxia (Figure 4D). These results sug-
gested that melatonin-inhibited migration and invasion in-
volved the avfB3 integrin and FAK/Pyk2 complex.

Inhibition of ROS by melatonin involves its regulation to
avpB3 integrin

Melatonin is an effective free radical scavenger and pos-
sesses antioxidant effects. Furthermore, intracellular ROS

is elevated under hypoxia and the oxidative stress pathway
has been found to be closely associated with cell invasion.
Thus, we evaluated the possible involvement of the anti-
oxidant effects of melatonin on its anti-migration and
anti-invasive properties by detecting the levels of intracel-
lular ROS. Compared with normoxia, intracellular ROS
was elevated under hypoxia. One millimolar melatonin
significantly decreased the intracellular status of ROS
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Figure 3 Specific siRNA of FAK and Pyk2 inhibited hypoxia-induced U251 glioma cells migration and invasion. (A) Specific sSiRNA
significantly reduced the total and phosphorylation level of FAK and Pyk2. (B) Effect of FAK and Pyk2 siRNA on migration of U251 glioma cells using a
transwell assay. The migratory cells were stained by 0.1% crystal violet (upper). The migratory cell number of control was expressed as 100% (lower)
*p <0.05, *p <0.01. (C) Effect of FAK and Pyk2 siRNA on invasion of U251 glioma cells by a matrigel-precoated transwell assay. The invasive cells were
stained by 0.1% crystal violet (upper). The invasive cell number of control was expressed as 100% (lower). *p <0.05, **p <0.01 vs control.
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stained by 0.1% crystal violet (upper) and the cell number of control was expressed as 100% (lower). *p <0.05, **p <0.01 vs control.

under hypoxia (Figure 5A) and normoxia (see Additional
file 3). However, DCF fluorescence was not changed by
the physiological concentration (1 nM) of melatonin.

We next determined whether the regulation of avf3 in-
tegrin expression and FAK/Pyk2 phosphorylation by mela-
tonin is mediated by its antioxidant effect. Remarkably,
treatment with the ROS inhibitor apocynin (a NADPH
oxidase inhibitor) significantly reduced the migratory and
invasive capacity of U251 glioma cells under hypoxia in

parallel to the pharmacologic concentration of melatonin.
Exposure of U251 glioma cells to apocynin also inhibited
avp3 integrin expression and the levels of phosphorylated
FAK at Tyr397 and phosphorylated Pyk2 at Tyr402
(Figure 5B-D).

Discussion
The hypoxic microenvironment is frequently found in
solid tumors and contributes to the development of an
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Figure 5 Effect of ROS on migration and invasion of U251 glioma cells under hypoxia. (A) Intracellular production of ROS were measured
by flow cytometry analysis. The ROS inhibitor apocynin reduced the expression of av33 integrin (B), the phosphorylation of FAK and Pyk2 (C), as
well as the migration and invasion (D) of U251 glioma cells under hypoxia. *p <0.05, **p <0.01 vs control.

aggressive and poor prognostic phenotype with high
metastatic rates and chemo- or radio-resistance [26].
Glioma is the most common primary malignant tumor
in the central nervous system (CNS) and the most ag-
gressive brain tumor with very poor prognosis and is
characterized by invasive growth, high vascularization
with immature or abnormal vessels, and a recurrent
tendency [27]. Due to the inefficient microcirculation
in malignant glioma and the poor maintenance of the
blood-brain barrier, malignant gliomas are more prone
to chronic hypoxia [28]. Hypoxia is a well-characterized
component of the malignant glioma microenvironment

and has been demonstrated to promote cell invasion and
migration [9,24,29,30]. It has been reported that hypoxia
results in an increased generation of ROS, which are
important mediators of the hypoxia-induced cellular
response [31]. Several studies have suggested a close
relationship between ROS and tumor cell invasion and
migration [32,33]. The present in vitro data demon-
strated that hypoxia stimulated migration and invasion
in U251 glioma cells, and the levels of intracellular ROS
were elevated under hypoxia. When the levels of in-
tracellular ROS were reduced by its inhibitor apocynin,
glioma cell migration and invasion were also inhibited.
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These consistent results suggest that targeting the elevated
intracellular ROS is a possible strategy for the suppression
of glioma cell migration and invasion.

Melatonin, a small lipophile, exhibits a variety of bio-
logical functions through either binding with its mem-
brane receptors or the direct antioxidant effects [34,35].
Physiologically, melatonin is secreted at low nanomolar
concentrations and a variety of its physiological func-
tions are mediated mainly through a family of guanidine
triphosphate-binding proteins or G protein-coupled re-
ceptors. The high-affinity melatonin receptors, type 1A
and type 1B, share a close pharmacological profile and
are activated by melatonin at nanomolar concentration
[4,36,37]. Melatonin is also a well-documented antioxidant
compound at pharmacological concentrations, which is
almost one million-fold higher than the physiological
levels. A number of studies have showed that melatonin
possesses an antitumor effect on certain cancer types, in-
cluding glioma and solid tumors with brain metastases
[1,2,38,39]. In this study, melatonin also displayed anti-
migratory and anti-invasive properties to U251 glioma
cells under hypoxia. Importantly, our results showed that
melatonin caused down-regulation of ROS production
in U251 glioma cells under hypoxia and that hypoxia-
induced migration and invasion were partially restrained
via blocking elevated ROS by melatonin, which is similar
to other ROS inhibitors. All of these results provide cues
that the inhibitory effect of melatonin on glioma cell
migration and invasion may partially result from its anti-
oxidant effects.

To explore the underlying mechanisms of the above
effect, ROS-related signaling was investigated. ROS, which
are highly reactive O, metabolites, serve as signaling
molecules or directly oxidize important cellular proteins.
Chronic and sustained generation of ROS can activate epi-
thelial mesenchymal transition-related and metastasis-
related genes including integrins [40-42]. Integrins play an
important role in mediating cell-matrix and cell-cell inter-
actions that have impacts on cell survival, proliferation,
adhesion, migration and invasion. Expression of av{3
integrin correlates with the invasion and metastasis of
several tumor types, including glioma, breast cancer, and
melanoma [43,44]. Moreover, ROS accumulation could
markedly up-regulate the expression of integrin av3 het-
erodimers on the surface of colorectal cancer cells, which
in turn promoted an aggressive phenotype in colorectal
cancer cells [13,45]. The reduction of breast cancer
cell adhesive affinity was also correlated with a down-
regulation of ROS production and surface expression
of activated integrin [46]. In the current study, we
first found that hypoxia could significantly increase
the ROS level and expression of avp3 integrin in U251
glioma cells compared with normoxia, while inhibition of
ROS production by apocynin down-regulated the avf33
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integrin expression. It was indicated that the expression of
avp3 integrin can be up-regulated via ROS in U251 glioma
cells under hypoxia. In addition, avf3 integrin knockdown
also strongly inhibited the migration and invasion of
U251 glioma cells under hypoxia. These results indica-
ted that ROS-avp3 integrin signaling might be involved
in hypoxia-induced migration and invasion of glioma
cells. Because there was no report about the relationship
between melatonin and avp3 integrin, these observa-
tions prompted us to explore the possible effect of mela-
tonin on ROS-avp3 integrin signaling in U251 glioma
cells under hypoxia. In response to melatonin treat-
ment, ROS was remarkably reduced and avp3 integrin
protein expression was also consequently decreased. It
suggests that the inhibitory effect of melatonin on av(33
integrin might be mediated by ROS in U251 glioma
cells.

It is well known that ligand binding to integrins leads
to integrin clustering and association with proteins,
which then result in focal adhesion clusters and the
recruitment of actin filaments [47,48]. Focal adhesion
kinases, including FAK and Pyk2, are widely recognized
as important proteins in this process. Cell migration and
invasion depend on the recruitment of FAK and/or Pyk2
to the newly formed focal adhesion sites [16]. The acti-
vation of FAK and Pyk2 is followed by the phosphoryl-
ation of a variety of downstream effectors, resulting in
cell migration [49]. Many malignant human tumors ex-
hibit increased FAK expression and tyrosine phosphoryl-
ation, which correlated with the acquisition of an invasive
cellular phenotype and increased tumor metastasis [50].
In particular, Pyk2 is highly enriched in the CNS, and sig-
nificant co-expression of FAK and Pyk2 in astrocytomas
has also been demonstrated [51,52]. Recently, Lee et al.
reported that melatonin induced the phosphorylation of
FAK in umbilical cord blood-mesenchymal stem cells
[23]. Therefore, we investigated whether the inhibitory ef-
fect of melatonin on U251 glioma cell migration and inva-
sion is associated with the modulation of FAK and Pyk2
activation. Immunoblot results showed that hypoxia ex-
posure resulted in a significant increase in phosphoryl-
ation of FAK at Tyr397 and Pyk2 at Tyr402 accompanied
by comparable total protein levels. Remarkably, specific
siRNA of FAK and Pyk2 significantly inhibited U251 gli-
oma cell migration and invasion under hypoxia. It sug-
gested that hypoxia-induced invasion of U251 glioma cells
might be correlated with the level of activated Pyk2 and
FAK, but not as a consequence of increased levels of the
total amount of Pyk2 and FAK protein. In addition, avp3
integrin knockdown suppressed Pyk2 and FAK phosphor-
ylation in U251 glioma cells under hypoxia. This is con-
sistent with the report of Skuli, which also showed that
hypoxia stimulated the avP3 integrin pathways through
FAK in human glioblastoma cell lines and inhibiting the
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avp3 integrin by siRNA significantly reduced the amount
of phosphorylated FAK in hypoxic glioblastoma cells [53].
Furthermore, we observed that ROS inhibitor decreased
the amount of Pyk2 and FAK phosphorylated form in
U251 glioma cells under hypoxia. Interestingly, we found
that melatonin treatment could suppress Pyk2 and FAK
phosphorylation without any change of total Pyk2 and
FAK level, which is different from the report of Lee [23].
Our results showed that modulation of the phosphoryl-
ation of Pyk2 and FAK might be involved in the inhibition
of glioma cell migration and invasion by melatonin under
hypoxia. Collectively these data establish that ROS-avf3
integrin-FAK/Pyk2 pathway is associated with the migra-
tion and invasion of glioma cells under hypoxia, and that
melatonin exerts anti-migratory and anti-invasive effects
on glioma cells in response to hypoxia via this pathway.

In present study, however, the effect of melatonin on
U251 glioma cells migration and invasion via ROS-av(33
integrin-FAK/Pyk2 pathway was also observed under
normoxia. This gives a hint that the role of melatonin
and ROS-avf3 integrin-FAK/Pyk2 pathway in hypoxia is
not unique. A previous study also showed that mela-
tonin could suppress migration and invasion via inhib-
ition of oxidative stress pathway in glioma cells under
normoxia [1]. These results suggest that ROS signaling
pathway occurs not only in hypoxia but also in normoxia.
Therefore, the different or specific hypoxia-related mech-
anism promoting tumor cell migration and invasion
should be profoundly investigated.

Conclusion

In summary, the pharmacologic concentration (1 mM)
of melatonin was shown to display a significant inhibi-
tory effect on the migration and invasion of glioma cells
under hypoxia. Additionally, the anti-migration and
invasion effects of melatonin were closely linked to the
reduction of increased ROS levels in glioma cells. Im-
portantly, the inhibition of ROS-avp3 integrin-FAK/
Pyk2 pathway was demonstrated to be involved in the
effect of melatonin on glioma cells. Taken together,
melatonin exerts anti-migratory and anti-invasive effects
on glioma cells in response to hypoxia and normoxia via
ROS-avB3 integrin-FAK/Pyk2 signaling pathway. The
current research displays a novel antitumor mechanism
of melatonin and provides evidence that melatonin may
be a potential therapeutic molecule, especially as a part
of a drug cocktail targeting the hypoxic microenviron-
ment of glioma.

Additional files

Additional file 1: Effect of melatonin on the phosphorylation of
FAK and Pyk2 in U251 glioma cells under normoxia. The total and
phosphorylation levels of FAK and Pyk2 in U251 glioma cells were
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determined by western blot analysis after melatonin treatment with
different concentrations for 12 hours.

Additional file 2: Effect of melatonin on the expression of avp3
integrin in U251 glioma cells under normoxia. Specific fluorescence
index (SFI) was used to evaluate the expression of avf33 integrin determined
by immunofluorescence after treatment with melatonin. *p <0.05 vs control.

Additional file 3: Effect of melatonin on intracellular ROS of U251
glioma cells under normoxia. Flow cytometry analysis was used to
measure the level of intracellular ROS after treatment with melatonin.
*p <0.05 vs control.
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