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Abstract

Understanding protein–protein interactions (PPIs) is fundamental to infer how

different molecular systems work. A major component to model molecular rec-

ognition is the buried surface area (BSA), that is, the area that becomes inacces-

sible to solvent upon complex formation. To date, many attempts tried to

connect BSA to molecular recognition principles, and in particular, to the under-

lying binding affinity. However, the most popular approach to calculate BSA is

to use a single (or in some cases few) bound structures, consequently neglecting

a wealth of structural information of the interacting proteins derived from

ensembles corresponding to their unbound and bound states. Moreover, the

most popular method inherently assumes the component proteins to bind as

rigid entities. To address the above shortcomings, we developed a Monte Carlo

method-based Interface Residue Assessment Algorithm (IRAA), to calculate a

combined distribution of BSA for a given complex. Further, we apply our algo-

rithm to human ACE2 and SARS-CoV-2 Spike protein complex, a system of

prime importance. Results show a much broader distribution of BSA compared

to that obtained from only the bound structure or structures and extended resi-

due members of the interface with implications to the underlying biomolecular

recognition. We derive that specific interface residues of ACE2 and of S-protein

are consistently highly flexible, whereas other residues systematically show

minor conformational variations. In effect, IRAA facilitates the use of all avail-

able structural data for any biomolecular complex of interest, extracting quanti-

tative parameters with statistical significance, thereby providing a deeper

biophysical understanding of the molecular system under investigation.
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1 | INTRODUCTION

Understanding protein–protein interactions (PPIs) is fun-
damental to infer how different molecular systems work,

for example, organism-based immunity, cell-based signal-
ing, and structure-based enzyme inhibition. Any loss- or
excess- of interaction between proteins may significantly
affect the outcome of that interaction and likely cause an
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altered phenotype, possibly leading to a disease state.
Moreover, any mutations in any of the interacting pro-
teins may swing the balance in either direction. Func-
tional characterization of PPIs is therefore of prime
importance for effective drug discovery. Functional prop-
erties of interacting proteins may directly be predicted
from their 3D structures. Therefore, 3D structures of the
proteins before and after they form a complex may point
towards their binding affinity, defined as the strength of
their interaction. Predicting binding affinities from struc-
tural models has been an active field of research for
almost five decades (Janin, 1995; Kastritis &
Bonvin, 2013; Richards, 1958). Approaches span all the
way from classical force-field calculations, first principle
binding free energy simulations (Lopez et al., 2020), to
machine learning-based methods (Wang et al., 2019). A
dedicated section describing in details the modern
machine learning-based approaches for PPI prediction
can be found in our previous work (Kyrilis et al., 2021).

Buried surface area (BSA) is one of the major predic-
tors of binding affinity and it significantly correlates to the
experimentally measured dissociation constant (Kd)
(Kastritis et al., 2011; Kastritis et al., 2014; Kastritis &
Bonvin, 2013). When a protein forms a complex with
another protein, some fraction of its initial solvent accessi-
ble surface area (SASA) gets buried inside the interface
between the proteins, referred as BSA (Lee &
Richards, 1971). BSA is also shown to be related to the
interaction energy defined according to Chothia–Janin
model (Chothia & Janin, 1975; Miller et al., 1987). The res-
idues that are highly buried upon complex formation are
most likely to be the interface residues (IRs) if no allosteric
changes occur. Identification of residues forming the inter-
face and their properties play a crucial role in determining
the binding specificity of the complex (Jones &
Thornton, 1997), and subsequently in PPI prediction.

In practice, BSA is calculated from a 3D structure of a
bound complex of the two proteins of interest. The differ-
ence between the SASA calculated first by treating the
component proteins together and then by treating them
as separate entities, gives the value of BSA. The drawback
of this approach is that it uses (a) only the bound struc-
tures, and (b) only one bound structure out of a pool of
bound structures, based on subjective criteria. Develop-
ments in the protein–protein docking benchmark over
the last 20 years (Chen et al., 2003; Mintseris et al., 2005;
Vreven et al., 2015) have incorporated BSA calculations
considering the unbound states, even for specific com-
plexes (e.g., antibody–antigen interactions; Guest
et al., 2021). However, even though there exist multiple
structural data of the same protein complex derived by
modern structural biology methods (Guest et al., 2021;
Richardson et al., 2021), still, a single best complex is

considered for subsequent analysis. That means, this
approach assumes the component proteins to be rigid
bodies, making the calculated BSA only an approximate
single value. Furthermore, the structural data of the pro-
teins in their unbound states are seldom used in calcula-
tion of BSA. Currently, there is no systematic algorithm
that could combine the structural information from mul-
tiple bound as well as unbound structures to identify and
investigate the most probable IRs; such algorithm will be
critical for understanding protein–protein recognition,
also in the context of the current COVID-19 pandemic.

In this paper, we propose an algorithm, dubbed as
“Interface Residue Assessment Algorithm” (IRAA), to
overcome this problem. Our method combines all the
available 3D structural data of the protein complex, in their
complexed form as well as in their individual unbound
states, and derives a distribution of BSA (in total as well as
a distribution per residue). Multiple structures (bound and
unbound) of the same protein complex system may con-
tain snapshots of the system in different conformations. By
analyzing all these scattered single, static 3D structures
together, our method sees it, equivalently, as an ensemble
3D system. Creating a representative dynamic system out
of single static structures is a fresh approach, and that facil-
itates our method to identify the most probable IRs and
provides insights into the behavior of each of the IRs.

The structure of the article is as follows. In Section 4,
we first describe the general definitions and procedure of
calculating SASA and BSA. We then describe the novel
algorithm, IRAA, to derive combined BSA-based statisti-
cal distributions, its implementation and limitations. In
Sections 5 and 6, we demonstrate the algorithm using a
complex, currently of prime importance, that of host
(human) Angiotensin Converting Enzyme-Related Car-
boxypeptidase 2 (ACE2) and SARS-CoV-2 Spike protein,
short ACE2-S-protein. Finally, the results and key obser-
vations stemming from this work are described in Sec-
tions 2 and 3.

2 | METHODS

2.1 | Solvent accessible surface area

SASA is defined as the surface area of the protein that is
accessible to water molecule. It is calculated by using the
algorithm developed by (Lee & Richards, 1971). The algo-
rithm essentially treats a water molecule as a sphere of
radius 1.4 Å which is rolled over the 3D structure of the
protein. The surface traced by the center of the sphere is
called as SASA, in Å2. A package called FreeSASA
(Mitternacht, 2016) is used to calculate the SASA with
Lee and Richards algorithm. Note, the package can
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return the values of SASA per residue. Total SASA can be
then calculated by summation over all the residues.

The calculated SASA values may differ depending on
the algorithm used as well as other parameters, espe-
cially, the probe radius, that is, van der Waal radius of
water molecule as a probe. To investigate the effect of
algorithm of choice and probe radius. We performed a
comparative analysis by calculating BSA using two algo-
rithms, Lee and Richards (1971) and Shrake and Rupley
(1973). For each method, we used the probe radius of
default value of 1.4 Å and slightly higher value of 1.6 Å.
As shown in Figure S1, it is noticed that the effect of
probe radius is higher than the actual algorithm used.

2.2 | Buried surface area

BSA is defined as the fraction of the SASA of the residues
of a protein, that is buried away after the protein forms a
complex. Using “n” structures of [AB] complex the aver-
age BSA is calculated as

BSABound ¼
Pn

i¼1 A½ �Bound,isol
n

þ
Pn

i¼1 B½ �Bound; isol
n

�
Pn

i¼1 AB½ �Bound; complexed

n

ð1Þ

where [A] and [B] are SASA values summed over all
residues of components A and B, respectively. [A] and
[B] are calculated by isolating the structures of A and B
respectively (denoted with suffix “isol”), while [AB] is the
SASA with components A and B building a complex
(denoted with subscript “complexed”).

2.3 | Most probable interface residues

Residues at the interface tend to be highly buried after bind-
ing, thereby having high BSA values. Considering only the
structures of bound complexes, all the residues that show
absolute BSA value higher than a threshold set at 1.5 Å2 are
classified as most probable IRs or in short called as IRs. The
threshold value is set as a tunable parameter (default to
1.5 Å2). Furthermore, we performed a scan of threshold
value between 0 and 2 Å2 in steps of 0.5 Å2. The correspond-
ing lists of identified IRs are shown in Table S1.

Structures may have missing residues/regions. A resi-
due identified in one structure might be missing in
another structure. Since, identification of the IRs is done
based on multiple structures, missing residues/regions
have less impact on the identification of IRs.

2.4 | Solvent accessible and buried
surface areas of IRs (iSASA and iBSA) from
bound structures and unbound structures

Suppose, there are “n” structures of bound complexes
[AB], and “l” and “m” unbound structures of components
A and B, respectively. From the above IR identification
process, we identify p and q number of IRs of compo-
nents A and B, respectively. Below are simple matrix rep-
resentations of (a) the SASA values of the IRs from
bound structures, with components A and B in com-
plexed state

AA,Bound; complexed ¼

sasa A1,1ð Þ � � � sasa A1,nð Þ
..
. . .

. ..
.

sasa Ap,1
� � � � � sasa Ap,n

� �

2
6664

3
7775

pxn

, &

iSASAB,Bound; complexed ¼

sasa B1,1ð Þ � � � sasa B1,nð Þ
..
. . .

. ..
.

sasa Bq,1
� � � � � sasa Bq,n

� �

2
6664

3
7775

qxn

ð2Þ

iSASAA,Bound,isol ¼
sasa A1,1ð Þ � � � sasa A1,nð Þ

..

. . .
. ..

.

sasa Ap,1
� � � � � sasa Ap,n

� �

2
664

3
775
pxn

, &

iSASAB,Bound,isol ¼
sasa B1,1ð Þ � � � sasa B1,nð Þ

..

. . .
. ..

.

sasa Bq,1
� � � � � sasa Bq,n

� �

2
664

3
775
qxn

ð3Þ

(b) the SASA values of the IRs from bound structures
with components A and B in isolated states

iBSAA,Bound ¼
bsa A1,1ð Þ � � � bsa A1,nð Þ

..

. . .
. ..

.

bsa Ap,1
� � � � � bsa Ap,n

� �

2
664

3
775

pxn

, &

iBSAB,Bound ¼
bsa B1,1ð Þ � � � bsa B1,nð Þ

..

. . .
. ..

.

bsa Bq,1
� � � � � bsa Bq,n

� �

2
664

3
775
qxn

ð4Þ

(c) the BSA values of the IRs, obtained by subtracting
matrices in Richards (1958) from that in Lopez
et al. (2020).
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iSASAA,Unbound ¼
sasa A1,1ð Þ � � � sasa A1,lð Þ

..

. . .
. ..

.

sasa Ap,1
� � � � � sasa Ap,l

� �

2
664

3
775
pxl

, &

iSASAB,Unbound ¼
sasa B1,1ð Þ � � � sasa B1,mð Þ

..

. . .
. ..

.

sasa Bq,1
� � � � � sasa Bq,m

� �

2
664

3
775

qxm

ð5Þ

and finally (d) the SASA values of the IRs from
unbound structures of components A and B.

Where the dimension of each resultant matrix is
shown at the bottom-left, in a format, for example, pxq.
All above matrices are similar in structure. One row con-
sists of values (of either BSA or SASA) corresponding to
one IR. One column consists of values (of either BSA or
SASA) corresponding to all IRs in one structure.

2.5 | Interface residues assessment
algorithm

IRAA is developed to combine multiple 3D structural
data of both bound and unbound states to identify IRs
and calculate distribution of BSA.

The underlying principle involves random sampling
of the distribution/s, followed by a step of combining
sample values as per the given mathematical function/s.
The process of random sampling followed by subsequent
arithmetic is nothing but Monte Carlo method.

Monte Carlo method is a computational statistical
method of picking samples randomly (Henry, 2019). The
earliest attempt of Monte Carlo application dates back to
1930s, a variant developed by Enrico Fermi, while studying
neutron diffusion (Metropolis, 1987). Monte Carlo method
is used in diverse fields and multitude of problems ranging
from Bioinformatics, Physics to Artificial Intelligence. Prob-
lems that are probabilistic in nature and that involve pro-
cesses following one or more complex probability
distributions, are well suited for solving with Monte Carlo
method. Here, all the bound and unbound structures are
independent static structures, each representing a snapshot
of different conformational states. The calculation of BSA
(i.e., difference in ASA values) from any pair of unbound-
bound structures, where the formation of a pair (and
thereby calculating the corresponding BSA) is completely
probabilistic in nature, is a perfectly suitable problem for
Monte Carlo method.

Suppose we want to calculate BSA using
Equation (1) by using only one of each unbound and
bound structures of [A], [B], and [AB]. We could
either pick the best structures among [A], [B], and

[AB] or we could randomly pick a structure from list
of [A], [B], and [AB].

However, if there are n, l, and m structures of [A],
[B], and [AB], respectively, then there are n � l �mð Þ differ-
ent possible combinations, each with an equal probabil-
ity. Instead of spanning the pool of all possible structure
combinations, we create per IR, distributions of SASA
values derived from different bound and unbound struc-
tures. We can then sample these distributions via Monte
Carlo method and estimate the distribution of BSA.
Below we describe the process of creating distributions of
SASA per IR.

For this purpose, we use matrices in Equations (2) and
(5), basically representing SASA values from unbound
states and bound/complexed states. The values in ith row
in a matrix corresponding to ith IR, are used to estimate
the corresponding probability density function (PDFi) using
Gaussian kernel (bandwidth equal to 0.15), using Scipy
(Virtanen et al., 2020) computing package in Python. As a
result, for each matrix, we create a set of p or
q distributions corresponding to p or q IRs in that matrix.
These distributions are graphically represented by columns
with multiple curves in Figure 1, and are represented as
four sets:

PDFA,bound,complexed
� �q

1, PDFB,bound,complex
� �q

1,
PDFA,unboundf gp1,and PDFB,unboundf gq1. In the following sec-
tion, we describe our algorithm to randomly sample these
distributions and combine the values to calculate BSA.

IRAA has essentially two core components,
(a) generating distributions of SASAs, and (b) the Monte
Carlo method to sample the distributions and combine
the values. The workflow of IRAA consists of the steps
described below. The graphical representation of the pro-
cedure is shown in Figure 1.

Step 1. Identify IRs of the components using all the
bound structures, as described in Section 4.3.

Step 2. Using all the bound and unbound structures,
create the matrices as shown in Equations (2)–(5). And
using only Equations (2) and (5), generate the sets of
probability distributions per IR:

PDFA,bound,complexed
� �q

1, PDFB,bound,complex
� �q

1,

PDFA,unboundf gp1,and PDFB,unboundf gq1:

Step 3. Draw p samples from p distributions
PDFA,unboundf gp1, and another p samples from
PDFA,bound,complexed

� �q
1. Similarly, draw q samples from

q distributions PDFB,unboundf gq1 and another q samples
from PDFB,bound,complex

� �q
1, all represented as column

matrices
Step 4. BSA is calculated by subtracting the pairs of

matrices generated in Step 3, resulting in two column
vectors of size p and q, respectively:
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iBSA_AMC½ �px1 ¼ AMC,Unbound�AMC,Bound & iBSA_BMC½ �qx1
¼BMC,Unbound�BMC,Bound:

Step 5. Total BSA is calculated by summation over all
IRs of A and B.

Repeat Steps 3–5 over “k” iterations to generate a dis-
tribution of “k” iBSAMC values

iBSAMC½ �kx1 ¼
Xp

1

iBSA_AMC½ �px1þ
Xq

1

iBSA_BMC½ �qx1:

AMC,unbound ¼

sasa1
sasa2

..

.

sasap

2
66664

3
77775

1xp

,AMC,Bound ¼

sasa1
sasa2

..

.

sasap

2
66664

3
77775

1xp

& BMC,unbound¼

sasa1
sasa2

..

.

sasaq

2
66664

3
77775

1xq

,BMC,Bound ¼

sasa1
sasa2

..

.

sasaq

2
66664

3
77775

1xq

:

FIGURE 1 Graphical representation of the method. Bound structures of a complex [AB] are represented as blue blobs and its individual

components [A] and [B] in unbound states are represented as pink blobs. Bound structures are used to identify the most probable IRs (i.e., as

described in Step 1 in Section 4) and distribution of BSA bound from bound structures only (blue dotted box). All bound structures in

complexed state and all unbound structures are used to create prob. density functions (represented as columns with multiple curves) of SASA

values per IR. These are used for random sampling by Monte Carlo method and finally to estimate distribution of BSAMC from Monte Carlo

method. BSA, buried surface area; IR, interface residue; SASA, solvent accessible surface area.
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At the end of k iterations, we generate a distribution
of iBSAMC, that has essentially combined all the struc-
tural data together.

Since, in all our calculations, we only consider the
IRs, we may drop the suffix “i” from iBSAMC terms, and
simply call it BSAMC.

2.6 | Implementation

IRAA is a Python-based algorithm. The structure of the
scripts of IRAA consists of three parts, the Jupyter note-
book – Run_IRAA.ipynb. The notebook provides a step-
by-step workflow, allowing the user to interactively exe-
cute/manipulate the steps.

Some helper scripts can be found under iraa_utils. In
addition, the data folder is present consisting of all the
Protein Data Bank (PDB) structure files.

Paths of all the subfolders are set relative to the note-
book (.jpnb) file. To avail ease-of-use to the user, an
ipython-widgets based GUI is developed within the Jupy-
ter notebook. The notebook reads the relevant PDB file
IDs and expects the corresponding mmCIF files to be pre-
sent under data folder. The processed subfiles and SASA
files are then created and saved under the data folder.
The notebook then reads the SASA values for the subse-
quent analysis as detailed in Section 4.5. We caution the
users not to utilize structurally redundant, identical pro-
tein complexes to derive distributions of interface
properties.

For demonstration, the IRAA is applied to a critical
system of current times, i.e., the complex of human
ACE2 and SARS-CoV-2 Spike protein, short ACE2-S-pro-
tein, as discussed in details in Section 4.3. The Jupyter
Notebook Run_IRAA.ipynb not only provides a transpar-
ent view on what is under the hood, but also gives a full
control of the parameters and the steps within the work-
flow. IRAA is developed as an application to investigate
ACE2-S-protein complexes but can be easily adapted
(both IRAA procedure and its code) to any protein com-
plex that has multiple bound/unbound structures.

2.7 | Bayesian parameter estimation

We use PyMC3 (Kruschke, 2013), a probabilistic pro-
gramming package in Python, that fits Bayesian models
using notably MCMC methods. To quantitatively assess
how different any two groups of data are from the other,
we perform a rigorous Bayesian parameter estimation,
using the module—Bayesian Estimation Supersedes the
T-test (BEST) under PyMC3 based on Kruschke (2013).
Driven by Bayesian probability, this is a comprehensive

and more solid approach than the testing approaches that
involve expressing a null hypothesis. Moreover, we esti-
mate the uncertainty associated with the estimated
parameter that accounts for our lack of knowledge of the
model parameters. For a given (groups 1 and 2) data, we
calculate two parameters, namely, (a) the effect size, and
(b) a high-density probability interval around the effect
size. Farther the value of effect size from 0 (and the 95%
HDI), the better it is.

The posterior distributions of all model parame-
ters are estimated by the process of MCMC sampling
within PyMC3. The MCMC process generates a large
(up to 100,000) representative sample of credible
parameter values that better represents the underly-
ing posterior distribution. Note the MCMC process
generates sample of parameter values and not that of
the actual data. For each credible parameter estimate
(μ1, μ2, σ1, and σ2), the effect size if computed as
(μ1 � μ2)/√((σ12 + σ22)/2). A distribution of effect
size (also of 100,000 samples) is computed along with
a 95% credible interval, a high-density probability
Interval (HDI). If the means of two groups are not
significantly different, then the effect size would tend
toward 0. Therefore, a higher effect size indicates a sig-
nificant difference between the two groups. Unlike a
single-point value of p ≤ 0.05 in standard t-test, the
interpretation of Bayesian estimation is not black-and-
white, it uses an entire distribution of parameters for
calculating the effect size. The conclusions are proba-
bilistic in nature, and therefore, we observe if the esti-
mated 95% HDI of the distribution of effect size does
or does not include 0. Moreover, a Region of Practical
Equivalence (ROPE) of �0.1 to 0.1 around the null
value (0) is considered as 0, such that, the effect size
indicates a significant difference in the two groups
only if the ROPE is completely outside the 95% HDI.

2.8 | Molecular dynamics simulation
data set assessment

IRAA allows to use molecular dynamics (MD) simulation
data set to identify IRs as well as to calculation BSA distri-
bution. To demonstrate, we used an MD data set by D. E.
Shaw of the human ACE2 ectodomain in a complex with
the RBD of a SARS-CoV-2-Spike protein (DESRES-
ANTON-10905033; release date April 6th, 2020). The sys-
tem was produced using PDB entry 6M17 and the MD was
performed on Anton supercomputer for 10 μs with frames
saved every 1.2 ns. For details ref to Molecular Dynamics
Simulations Related to SARS-CoV-200, D. E. Shaw Research
Technical Data, 2020, https://www.deshawresearch.com/
downloads/download_trajectory_sarscov2.cgi/.
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For our analysis, we extracted every 100th frame
(every 120 ns), and used in total 84 frames. To adapt to
the FreeSASA calculations requirements, we removed
zinc atom at the ACE2 enzymatic cleft as well as glucosy-
lation sites at Spike protein and ACE2. Moreover, the res-
idues in different protonation states were renamed to
their original names.

2.9 | PDB data diversity assessment

To assess how diverse (or similar) the structures are to
each other, we performed a pair-wise alignment root
mean squared distance (RMSD) calculation of Cα-
atom using PyMol v. 2.4.0a0 using align multi-step
superposition algorithm, with five cycles of refine-
ment. Every chain of unbound S-protein was paired
up with every other S-protein chain (including two
other chains of the same structure) to calculate Cα-
atom RMSD. Altogether 65,703 alignments were per-
formed for S-protein unbound structure. Similar cal-
culation is performed on ACE2-S-protein bound
structures. Here the Cα-atom RMSDs were calculated
between all ACE2-S-protein complexes, considering
only the bound chain of S-protein and the ACE2 chain
and not the whole structure. Altogether, 4753 align-
ments were performed for ACE2-S-protein complex.
Distribution of RSMD values (A) and the RMSD dis-
similarity matrix (B) is shown for unbound S-protein
(Figure S2a,b) and the ACE2-S-protein complex
(Figure S3a,b).

PyMol uses a per-residue level sequence alignment
using BLOSUM62 scoring matrix, followed by structural
superposition in cyclic refinement steps; for details, refer
to PyMol v. 2.4.0a0 documentation (https://pymol.org/
dokuwiki/).

3 | APPLICATION TO ACE2-SARS-
COV-2 S-PROTEIN COMPLEX

SARS-CoV-2 has caused the worldwide pandemic
COVID-19, with 180 million infections and more than
570 million deaths as of July 2022 (WHO). SARS viruses
are regarded as one of the most dangerous viruses by
World Health Organization (WHO). The patients are
seen to have diverse responses to the infection for reasons
not yet fully understood. There is an insurgence in vac-
cine development programs throughout many countries;
however, any mutation that significantly affects the struc-
tural and consequently functional properties of the virus,
may impair the immune response by the host as well as
antivirals. Therefore, structural characterization of the

host (human) Angiotensin Converting Enzyme-Related
Carboxypeptidase 2 (ACE2) protein and the viral Spike
protein (S-protein) complex is not only crucial for effi-
cient drug discovery (Mercurio et al., 2021) but also for
understanding virus protein structure, function and inter-
actions (Wang et al., 2020). To serve the same purpose,
attempts have been made to determine the structure of
the ACE2 and S-protein, both in their bound and
unbound states. As of May 2022, there have been
390 structures submitted on Protein Data Bank (PDB)
(Berman et al., 2000), that have either ACE2, S-protein or
both proteins present.

We apply IRAA to the bound and unbound structures
of ACE2 and S-protein, and derive the combined distribu-
tion of BSA. A local repository of relevant structural data
is maintained and updated automatically, as described in
Section 6. Based on the filtering and curation criteria as
outlined in Section 6, a subset of structures is further ana-
lyzed. Some key observations made are based on the sta-
tistical properties of the complex and are discussed in
Section 2.

4 | DATA

All relevant structures are downloaded from PDB by
matching the PDB IDs and Uniprot codes for human
ACE2 (Q9BYF1, ACE2_HUMAN) and SARS-CoV-2 S-
protein (P0DTC2, SPIKE_SARS2), respectively. As of
May 2022, we have extracted 390 PDB entries in mmCIF
format.

The notebook reads every structure, and compares
the protein sequence with reference sequences to cross-
check the identity and alignment of the individual
chains. The Uniprot sequences of codes Q9BYF1 and
P0DTC2 are used as reference sequence (and for number-
ing) of ACE2 and SARS-CoV-2 S-protein, respectively.
The structures are grouped into three groups according to
their structure type, ACE2-S-protein complex, only
ACE2, only SARS-CoV-2 S-protein.

Structures are excluded if encountered the following
criteria, (a) any non-human host ACE2, (b) SARS-CoV
(previous to 2019) S-protein structures, (c) structures in
complex with other biomolecules (e.g., antibodies) that
may inhibit the receptor binding domain. PDB IDs of all
the structures that are included in the analysis are listed
in Table S2.

In this work, we analyzed 98 ACE2-S-protein complex
structures, 363 unbound S-protein chains, and 6 unbound
ACE2 protein structures derived from total number of
76, 121, and 4 PDB files, respectively, as summarized in
Table S2, after filtering over 600 relevant PDB files. To
inspect the diversity of in the PDB structures, Root-
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mean-square-deviations of main chain atoms (RMSDs)
were calculated using PyMOL (Schrodinger, 2010). The
RMSD distributions of S-protein in bound state and in
unbound state are derived separately, as shown in
Figures S2a and S3a. In this work, all structures were
treated as a whole to expand coverage and reduce ambi-
guity when residues are missing. Statistical breakdown of
the dataset (experimental method used, resolution) is
available in Figure S4.

5 | RESULTS AND DISCUSSION

First, bound structures are used to calculate BSA and
identify IRs. The BSA calculated over all the bound struc-
tures and over full sequences of ACE2 and the viral Spike
protein (S-protein) are shown as heatmaps in Figure 2a
and Figure 2b, respectively. Residues missing in a
sequence are marked by gray shade. The IRs with higher
BSA values are distinctly highlighted with darker shades
of red, whereas the rest of the residues appear in fainter
shades of red. By applying a threshold, BSA >1.5 Å2,
32 residues of ACE2 and 38 residues of S-protein are
identified as the most probable IRs in ACE2–S-protein
complex, as shown in Table 1. Noticeably, the list of IRs
derived in this study is more extensive as compared to
previous reports, for example, based on molecular
dynamics simulations or structural analysis of a single-
bound structure (Ali & Vijayan, 2020; Lan et al., 2020). In
Table 1, the IRs common in result of IRAA and previous
reports are shown by entries in bold black color, while
extended members identified by IRAA are shown in
italic. Figure 2c,d shows the BSA heatmaps of only the
IRs of ACE2 and S-protein. Results confirm that the
known IRs, such as K353, K31, H34, T27, and Q24 for
ACE2 and F486, T500, Y489, and Y505 for S-protein (Lan
et al., 2020), are the most deeply buried residues
(Figure 2c,d). Interestingly, their distributions of BSA sig-
nificantly vary across bound structures, indicating local-
ized flexibility. Figure 3 shows the heatmap of SASA for
the IRs listed in Table 1 for S-protein from unbound
structures.

To better analyze the behavior of the IRs between
their unbound to bound states, a side-by-side comparison
of their corresponding SASA distributions is shown as
split-violin plots in Figure 4. To quantitatively assess their
differences (or similarity), a full Bayesian parameter esti-
mation is performed on every pair of distributions using
a Markov chain Monte Carlo (MCMC) based python
package PyMC3 (see Section 4.7). The Bayesian effect
sizes are calculated, and are represented by a color bar on
the right edge of Figure 4. The higher the value, the
greater is the difference between the two distributions.

The IRs, specifically, K417, Y449, Y453, L455, F456,
A475, G476, F486, N487, Y489, Q493, Q498, and Y505 of
S-protein are highly heterogeneous across the data,
depicted by distinct differences in their split-violins, and
also their Bayesian effect size values. However, IRs, spe-
cifically, D405, E406, N437, N439, G485, and S494 of S-
protein are systematically showing minor variations,
depicted by lower differences in split-violins and their
corresponding Bayesian effect size values. Despite the
nature of the Glycine (G) residue, which contains only a
hydrogen as side-chain, it is critical to note that the list of
residues exhibiting minor conformational variations also
includes Phenylalanine (F) and Glutamine (Q), residues
with large side-chains. The analysis described above
highlights an extensive variation on a per-residue basis
for both the SASA and the BSA. The reported variabil-
ity is observed for various residues, including those
with smaller and larger side chains. These observed
distinct differences in the SASA could be attributed to
the conformational variations present among different
structures. However, variation or non-uniformity in
the resolution, type of structural determination
method, as well as other experimental parameters may
also contribute to the variation depicted in the SASA
values. Only by collectively analyzing several static
snapshots of structures, which can also come from MD
or Monte-Carlo simulations, one can observe such var-
iations and create a dynamic representation of the sys-
tem. IRAA, for example, can be applied on MD
simulations (Figure S5), showing recovery of IRs and
BSAs comparable to those retrieved form the ACE2-S-
protein structures, as described in Section 4.8. More-
over, comparing the IRs identified by IRAA from the
experimental data set as well as from the frames of MD
simulation have a high overlap with a few differences
summed up in Figure S6 and Table S3 for IRs of S-
protein and Table S4 in case of ACE2.

We observe that higher difference in SASA in general
is not correlated to size of the residue. This is evident
when the Bayesian effect sizes (from Figure 4) calculated
for SASA distribution for each IR in unbound and bound
states of S-protein are plotted (on y-axis) against the max-
imum SASA of an individual amino acid (on x-axis) in
increasing order, see Figure 5a. This plot also visualizes
very well that the IRs with highest values of Bayesian
effect, belong to most of IRs previously reported in the lit-
erature with addition of three residues identified in this
work (G476, V503, and Y473). The residues from each
group were visualized (PDB ID: 7A94) and color-coded
accordingly (Figure 5b). The visualization demonstrates
that the residues (red shade) with effect size (b-value)
above 9.0 are within the ACE2 interface (gray). The resi-
dues from the second and third groups (b-values between
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4.0 and 9.0 as well as between 2.0 and 4.0, respectively,
orange and yellow shade in Figure 5b) are surrounding
the abovementioned core residues. Finally, the residues
from the group below 2.0 are located in the rim regions
of the interface (shades of blue). This correlation between

b-value and residue localization at the ACE2-S-protein
interface is intriguing and connected to residue-specific
conformational changes that possibly relate to the under-
lying recognition mechanism (Ali & Vijayan, 2020; Yan
et al., 2020).
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FIGURE 2 Heatmap of

BSA. Panels (a) and (b) show the

BSA per residue across all bound

structures (N = 98) and over the

full sequence of ACE2 and S-

protein, respectively. Among

these, the most probable IRs of

ACE2 and S-protein are easily

identified as those with BSA

greater than a threshold set at

1.5 Å2, and are plotted in panels

(c) and (d), respectively. BSA,

buried surface area; IR, interface

residue.
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Furthermore, we perform a side-by-side comparison
of the BSA values of IRs from S-protein—values stem-
ming from only the bound structures against those calcu-
lated by the Monte Carlo method. This comparison is
shown by split-violins in Figure 6. The corresponding
Bayesian effect size values are calculated and are

represented by a color bar on the right edge of Figure 6.
Residues that show distinct differences (as depicted by
the Bayesian effect size values) are K417, Y449, L455,
F456, F486, N487, Q493, Q498, and Y505, already identi-
fied as participating IRs.

Noticeably, for some of the IRs the distribution of
BSA from Monte Carlo method results in a tail extend-
ing toward negative values. The fraction of negative
BSA values (shown in percentages on the left edge of
Figure 6) resulted from the Monte Carlo method. This
is expected when a specific residue is relatively more
buried in the unbound state compared to the bound
state. Top 5 such residues (fraction values highlighted
in dark black) are G504, V445, N437, G485, and D405.
Identification of such residues is extremely interesting
for drug target or for stability studies. Our method
allows an easy identification of such residues due to

TABLE 1 Identified interface residues

Identified interface residues

ACE2 protein S19, T20, I21, E23, Q24, K26, T27, F28, D30,
K31, H34, E35, E37, D38, Y41, Q42, L45,
L79, M82, Y83, T324, Q325, G326, E329,
N330, K353, G354, D355, R357, A386,
A387, R393

SARS-CoV-2
S-protein

R403, D405, E406, K417, Y421, N437, N439,
V445, G446, G447, Y449, Y453, L455, F456,
Y473, A475, G476, S477, E484, G485, F486,
N487, Y489, F490, L492, Q493, S494, Y495,
G496, Q498, P499, T500, N501, G502,
V503, G504, Y505, Q506

Note: Interface residues (IRs) are identified as residues with BSA values
higher than a threshold set at 1.5 Å2. The set of IRs identified by IRAA
consists of 32 residues of ACE2 and 38 residues of S-protein. IRs in black

bold are common in both, output of IRAA and that are previously reported
in the literature (Ali & Vijayan, 2020; Lan et al., 2020), while the rest of the
IRs printed in italics are identified by IRAA as the extended members of the
interface through a collective analysis of all structures.

FIGURE 3 Heatmap of SASA values per IRs of S-protein

across all unbound structures (N = 340). IR, interface residue;

SASA, solvent accessible surface area.

FIGURE 4 Comparison of SASA of S-protein in unbound

versus bound states. For each IR of S-protein the distribution of

SASA values from all isolated S-protein from bound complexes

(green shaded curves) are compared with the distribution of its

SASA values from all unbound states (orange curves). To

quantitatively assess the differences in the behavior of any residue

between the two states, we calculated Bayesian effect size (b),

following the Bayesian parameter estimation performed on every

pair of distributions. The effect sizes (b) are plotted as a color bar

on the right edge; higher values signify higher difference between

the two distributions. c.
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the algorithm that combines the information from
both bound and unbound structures.

Finally, we compare the sum of BSA over all IRs,
obtained over all bound-only structures against that cal-
culated by Monte Carlo method, see Figure 7a. We notice
that IRAA reports comparably lower BSA values with a
significantly broader distribution. Recognition of ACE2
and S-protein may involve the formation of weak inter-
faces during association. Because IRAA utilizes a random
sampling of all known component conformations, it
effectively simulates interface areas of all possible inter-
action strengths between the component proteins. Conse-
quently, the retrieved combined distribution of BSA of
the interface may reflect intrinsic properties underlying
the biomolecular recognition.

Surprisingly, even the experimentally-characterized
bound complexes exhibit relatively broad distributions of
BSA, spanning from �1600 to �2100 Å2, see Figure 7a.
By translating these values to binding affinities using the
monotonic relation of interface size and experimental
energy for transient protein interactions (Kastritis
et al., 2011; Kastritis et al., 2014), a twofold deviation in
binding affinity can be expected. As an example, we com-
pare the interface regions of two bound complexes that
were resolved by the same group using cryo-EM (Benton
et al., 2020), see Figure 7a. One structure (PDB ID: 7A94)

has one RBD of the trimeric S-protein in complex with
ACE2. The other structure (PDB ID: 7A97) has two RBDs
of the trimeric S-protein in complex with two ACE2. All
three interfaces are marked in Figure 7b and are con-
nected to their corresponding BSA values in Figure 7a.
The subtle structural differences between interface
(i) and (ii) (with BSA of 1600 and 1947 Å, respectively)
are shown in Figure 7c.

We took a look into some of IRs those calculated BSA
distributions differ significantly (represented by the
Bayesian effect size), as well as IRs with a large propor-
tion of negative BSA values. For that, we aligned RBD
domains of S-protein in its three main conformational
states: closed, open, and ACE2-bound (Figure 7d). Here,
we considered structures of different lineages (Wild Type
(WT), D614G, Beta, Delta, and Omicron), including
D614G and Delta structures two times, since they are
broadly represented in PDB (Table S5). The IRs with sig-
nificantly different BSA distributions should be ones that
are represented by different rotamers in unbound and
bound states, which cannot be detected via BSA calcula-
tions when the complex is separated. Negative BSA value
of a residue means that the residue is more solvent acces-
sible after the complex is build. These effects may be
caused by the conformational changes that the protein
undergoes before binding and can be limited to a few

FIGURE 5 Bayesian effective size (b) versus SASA of amino acids in increasing order. (a) Values of Bayesian effective size calculated for

pairs of SASA distributions for isolated S-protein from ACE2-S-protein complex and for unbound S-protein for each of the IRs (Figure 4)

plotted versus maximal SASA value for each of the proteinogenic amino acids. The names of each of the IRs correspond to WT residue at the

position. In bold are represented residues with the effect size above 2.0 (lower dotted line). Those are the majority of the IRs identified in

previous publications (black) as well as three IRs identified in present study (green): G476, V503, and Y473. Additionally, we noticed that we

can separate the IRs into groups whose effective size lies below 2.0 (light blue), between 2.0 and 4.0 (yellow), between 4.0 and 9.0 (orange),

and above 9.0 (red). The mentioned thresholds are marked with dotted lines. The residues from each group were visualized (PDB ID: 7A94)

and color-coded accordingly (b). The visualization demonstrates that the residue (red shade) above the threshold of 9.0 is closest to the ACE2

interface (gray). The residues from the second and third groups (between 4.0 and 9.0 as well as 2.0 and 4.0, respectively) are more distant

(orange and yellow shades), and the residues from the group below 2.0 are placed in the rim regions of the interface (shades of blue). IR,

interface residue; SASA, solvent accessible surface area.
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residues, or may involve a movement and structural
rearrangement of a domain or the whole protein. In
addition, substitutions of the position which occur in
considered structures may also be a cause of the
described effects. Thus, for residue 417 (WT is Lysine),
we measured the highest Bayesian effect size for BSA
of �1.5 (Figure 6). In most of the lineages, the position
is occupied by Lysine but in Omicron the position is
substituted by Asparagine and in Beta lineage by
Asparagine or Threonine. In closed and open S-protein
states, residue 417 does not have preferable position,
whereas upon binding to ACE2, two distinct rotamers
are observed (Figure 7d, upper panel). The two rota-
mers of position 417 are also captured by the bimodal
distribution calculated from the complexed structures.

In contrary, the neighboring residues 455 and
456, which correspond to L455 and F456 in all consid-
ered lineages, do not differ in their conformational
states that much in all three main conformational
states of S-protein. Therefore, the effect size comparing
both distributions is relatively low, being around �1.
Another residue, 505, which correspond to Y505 in
most of the lineages under exception of Omicron
(H505), shows very broad rotamer conformational dis-
persity in closed and open states, but has a very well-
defined conformation in ACE2-bound state (Figure 7d,
lower panel). Although this conformational dispersity
was not captured by the Bayesian effect size (probably
due to its positioning at the S-protein rim region and
good water accessibility for most of the rotamers), we
observe that the negative BSA values for the neighbor-
ing residue 504 (G504) (Figure 6) possibly reflect the
conformational flexibility of the region in closed and
open states comparing to the ACE2-bound state.
Another residue with a high proportion of negative
BSA values is 405 (D405). The residue does not show
an extensive rotamer variability in open and
ACE2-bound states but has two distinct states is closed
conformation. This conformational duality as well as
the conformational flexibility of the neighboring
505, may be a cause of such a high proportion of nega-
tive BSA values. An interesting observation can be
done for the neighboring residue R403, which is stabi-
lized via cation-π interaction with Y505 and salt-bridge
with D405 and only in the Delta lineage is stabilized
by Y453 and E406. These two conformational states of
R403 are also captured by the binomial distribution
with one prevalent state.

5.1 | Limitations, importance, and
future applicability

IRAA, in essence, relies on random sampling of the
underlying set of distributions (of SASA per IR). Each
underlying distribution approximates the ground truth
distribution based on the Gaussian kernel, when there is
a large number of multiple structures available. IRAA is
based on the widely-applicable Lee & Richards algorithm,
reporting results with a standard probe radius of 1.4 Å;
Depending on algorithm and probe radius used, BSAs
can slightly vary (Figure S1). To find out how many
unique proteins have multiple structures available, we
performed a quick check on Uniprot database and PDB
database. As of July 2022, approximately 31,500 unique
Uniprot IDs were extracted; for each Uniprot ID, we
identified number of PDB structures present. To our sur-
prise, we found >50% of the Uniprot IDs which mapped

FIGURE 6 Compare BSA of S-protein from bound versus

Monte Carlo (MC) analysis. For each IR of S-protein, the

distribution of BSA values from S-protein derived from analysis of

bound complexes (green shaded curves) are compared with the

distribution of its BSA values derived from the MC method (orange

curves). Interestingly, some of the IRs show a fraction (shown in

percentages on the left edge) of negative BSA values resulted from

the MC method. This is expected when a specific residue is

relatively more buried in the unbound state compared to the bound

state. To quantitatively assess the differences in the behavior of any

residue between the two states, we calculated Bayesian effect size

(b), following the Bayesian parameter estimation performed on

every pair of distributions. The effect sizes (b) are plotted as a color

bar on the right edge; higher values signify higher difference

between the two distributions. BSA, buried surface area; IR,

interface residue.
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to 3 or more PDB entries. For some Uniprot IDs, the
number of structures is seen as high as 900. A histogram
of number of PDB structures against the number of Uni-
prot IDs having those many structures is plotted, as

shown in Figure S7. The top 10 most frequent Uniprot
IDs are listed therein. Note that PDB does not represent
all possible states from different type of proteins but for
those that have multiple solved structures it represents a
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higher degree of heterogeneity. IRAA takes advantage of
this heterogeneity to further elucidate the properties of
IRs from ensembles.

Some of the examples include not only the human
ACE2-S-protein, but also chaperones such as the HSP-90,
HSP-70, and similar systems (Schopf et al., 2017). As it is
evident from the current SARS-CoV-2 pandemic as well
as previous SARS-CoV and MERS epidemics, investiga-
tion of the underlying molecular system may demand
extreme urgency. Our method can be a valuable tool for
such investigations but also provide insights on residue
level behavior. As PDB structures are bound to exponen-
tially increase in the light of current structural biology
advances, IRAA can be used in the future to discern
effects stemming from experimental method used, resolu-
tion achieved, as well as biochemical conditions such as
pH-value, that may also improve the detectability of
calculated IRs.

However, if there are less than three structures avail-
able, then it is recommended to either use the traditional
way of selecting either one (or more) of the best bound
structures available as defined by resolution criteria
or/and method consistency, or to produce structural
models of the binding partners in unbound and bound
conformational states applying any computational
method for protein structure prediction (AI-based
methods, but also homology modeling, fold recognition
or ab initio, depending on available data) and to refine
those via molecular dynamics simulations, molecular
docking experiments or any other method.

Application of computational methods may bring a
great value to such investigations since those enable pro-
duction of structural models in slightly different confor-
mational states that are biochemically and
stereochemically plausible, covering at least a part of the
conformational energy surface and representing the
dynamical nature of the binding partners in unbound

and bound states. Other problem is, so-called, dark prote-
ome, the protein regions which have never been observed
by experimental structure determination and therefore
are not well accessible to modeling since they do not
have well-defined 3D structure—also revealed recently
by Alphafold. Thus, more than 50% of proteins in eucar-
yotic as well as viral genome has been predicted to con-
tain long Intrinsically Disordered Protein Regions
(IDPRs) or even being fully Intrinsically Disordered Pro-
teins (IDPs) (Dunker et al., 2000; Perdigao et al., 2015).
Molecular recognition of IDPRs/IDPs often goes along
with disorder-to-order transition (Zhou et al., 2020), so
that structure of some protein regions or proteins is
known only in the bound state. In that case, the SASA
for unbound state can be calculated via separation and
calculation of SASA for each of the binding partners as it
has been done in the present work on the example of
ACE2-S-protein complex. Interestingly, disorder-to-order
transition was also reported for the binding IRs of SARS-
COV-2 Spike protein upon binding to its receptor ACE2
(Yesudhas et al., 2021). Another interesting aspect of
IRAA is its inference of conformational variability, com-
plementing current methods identifying structural varia-
tions in flexible proteins (Hrabe et al., 2016), for example,
methods accounting for a single protein complex to cal-
culate the radius of gyration per residue or its surface
area (Zhou et al., 2020). Implications of such calculations
and future integration with IRAA would further shed
light onto IDPRs/IDPs that have distinct interface proper-
ties (Gunasekaran et al., 2004).

Calculated IRAA properties concern amino acid resi-
dues and can be applicable to nucleotides and water mol-
ecules as well. However, user-defined criteria have to be
implemented for BSA calculations, for example, co-
factors (Mitternacht, 2016). At present IRAA excludes all
HETATM entries. In the case of ACE2-S protein interac-
tion, glycans, indeed are extremely important; Both S-

FIGURE 7 Total BSA [A+B] bound versus Monte Carlo (MC) and structural insights. (a) Comparison of BSA value distributions for

ACE2-S-protein interfaces calculated from 98 complexes (bound structures) and using the MC method with inclusion of SASA values for IRs

from available 340 unbound S-protein structures. (b) View of the ACE2-S-protein interfaces for which one the lowest (PDB ID: 7a94,

interface [i]) and the highest (PDB ID: 7a97, interface [ii] and interface [iii]) BSA values were calculated. (c) Identification of the most

flexible regions at the ACE2-S-protein interface (marked red) by aligning the interfaces with one of the lowest (interface [i]) and one of the

highest (interface [ii]) calculated BSA values. The interface is shown from two different viewpoints: The frontal as represented in

subsection (b) and the view by turning the structure 180� around the Z-axis. (d) Comparison of some IRs in closed, open, and ACE2-bound

states of RBD in different lineages (WT, D614G, Beta, Delta, and Omicron). D614F and Delta lineages are represented in each state by two

different structural models due to their frequent appearance in PDB. The names of the residues correspond to WT residue at the position.

K417 (upper panel) shows the highest effect size comparing two distributions from Figure 6 and is in different conformational states before

and after binding to ACE2. Its neighboring residues, F456 and L455 do not show such distinct conformational rearrangements upon binding.

Y505 (lower panel) shows very broad conformational dispersity in closed and open conformation and well-defined conformation in

ACE2-bound state. The analysis shows that this flexibility of Y505 influences the surrounding residues such as G504, which has high

proportion of negative BSA values (�30%) (Figure 6). Moreover, together with D405 and E406, it stabilizes R403 in ACE2-bound state. BSA,

buried surface area; IR, interface residue; SASA, solvent accessible surface area.
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protein and its receptor ACE2 are heavily glycosylated
but most glycans are flexible and cannot be resolved,
and, therefore, are predicted (Choi et al., 2021; Woo
et al., 2020). In addition, glycosylation patterns may
change according to experimental setups (Allen
et al., 2021). Nevertheless, glycosylation has high impact
on binding affinity, sometimes strengthening the com-
plex formation (Mehdipour & Hummer, 2021). Glycans
present in the interface will naturally increase the BSA.
Such an increase is positively correlated with an increase
in binding affinity because BSA and binding affinity are
positively correlated (Kastritis et al., 2014).

IRAA can also be applied on protein structures con-
sisting of mutations and, therefore, monitor conservation.
This is particularly interesting for SARS-CoV-2 S variants
if their unbound and bound structures are available in
multiples. To date, S-protein of only few variants of inter-
est have been structurally characterized in both unbound
and bound states. Limited structural data prohibit com-
parative analysis but the increase in structural characteri-
zation trend in the future will bring conservation analysis
with IRAA within reach. Finally, IRAA can be used to
more confidently define an epitope region since any kind
of protein–protein interface can be calculated considering
it has been characterized structurally in multiples.

In summary, IRAA, a method to collectively estimate
SASA of biomolecules prior and after building a complex
is of importance for various research areas such as devel-
opment of new drugs where solvent accessibility plays a
major role (Samanta et al., 2002; Trisciuzzi et al., 2019)
but also for better understanding of protein folding and
binding processes (Lins et al., 2003). Moreover, it was
reported that SASA is crucial for estimation of disease-
related single residue variations in a protein. With
machine learning-based methods, it was possible to show
that for all residues the proportion of pathogenic single
residue variations largely increases when the wild-type
residue is buried and decreases when it is exposed
(Savojardo et al., 2020).

6 | CONCLUSIONS

IRAA provides a more realistic distribution of BSA of the
ACE2-S-protein complex than a single value obtained from
either a single or multiple bound structures only. As in the
latter case, it is inherently assumed that the components
are rigid and a complex is then formed by a lock-and-key
recognition mechanism (Tripathi & Bankaitis, 2017). How-
ever, it is well known that all complexes undergo some
level of conformational changes during biomolecular rec-
ognition. To complicate the matter further, occurrence of a
mutation in any components, as evident in the case of

SARS-CoV-2 S-protein, may induce conformational varia-
tions. Many protein–protein docking algorithms, for exam-
ple, HADDOCK (Dominguez et al., 2003) and Rosetta
(Gray et al., 2003), offer a platform to investigate such
effects through molecular modeling. Our method provides
a recipe for identifying the IRs from ensemble of single
static structures and create a representative dynamic pic-
ture out of the system, subsequently derive a combined dis-
tribution of BSA, regardless of the experimental method
used, including X-ray crystallography (X-ray diffraction,
XRD) or cryo-electron microscopy (cryoEM). It should be
noted that variations in the interface are not necessarily
purely indicative of dynamics within certain residues.
IRAA, however, is a valid approach to assess confidence in
the contribution of an IR to the BSA, but the source of the
confidence is complex, multi-factorial and not always pos-
sible to dissect into every possible contributing component.
Quantitative parameters calculated with IRAA will serve
as a valuable input to effectively restrain molecular model-
ing in docking algorithms and to better understand PPIs.
Furthermore, this method can be applied to any system
that has multiple structures available, including, in future,
if any SARS-like complex becomes prevailing and would
need investigations of behavior of the IRs collectively over
a large number of single multiple structures.
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