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Bacteria possess the ability to adapt to changing environments. To enable this, cells use
reversible post-translational modifications on key proteins to modulate their behavior,
metabolism, defense mechanisms and adaptation of bacteria to stress. In this review, we
focus on bacterial protein switches that are activated during exposure to oxidative stress.
Such protein switches are triggered by either exogenous reactive oxygen species (ROS) or
endogenous ROS generated as by-products of the aerobic lifestyle. Both thiol switches
and metal centers have been shown to be the primary targets of ROS. Cells take
advantage of such reactivity to use these reactive sites as redox sensors to detect and
combat oxidative stress conditions. This in turnmay induce expression of genes involved in
antioxidant strategies and thus protect the proteome against stress conditions. We further
describe the well-characterized mechanism of selected proteins that are regulated by
redox switches. We highlight the diversity of mechanisms and functions (as well as
common features) across different switches, while also presenting integrative
methodologies used in discovering new members of this family. Finally, we point to
future challenges in this field, both in uncovering new types of switches, as well as defining
novel additional functions.
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INTRODUCTION

Most bacterial cells live in a dynamically fluctuating environment, requiring rapid responses to
enable successful growth. These changing environments might induce stress conditions (e.g.,
oxidative stress, heat shock, etc.), which challenge bacterial homeostasis and macromolecules,
affecting a wide variety of cellular processes. Thus, it is not surprising that bacteria and other
organisms evolved different sensors and first line of defense mechanisms to combat
environmental assaults. One such stress-response strategy utilizes rapid post-translational
modifications of proteins that induce the general response and trigger defense activities.
Reversible post-translational modification of proteins is one of the major toolboxes available
to cells, which ensures a plasticity of the cellular proteome, as well as rapid control of diverse
cellular functions, including stress specificity. While phosphorylation is one of the major
regulators of the cell cycle (Garcia-Garcia et al., 2016), oxidation, protonation, and
chlorination were found to be crucial to alter the activity of specific proteins during
oxidative and acidic conditions (Winter et al., 2008; Palumaa, 2009). There are multiple
benefits of post-translational switches: rapid reactivity, tight control, reversibility and low
energetic cost relative to transcription and translation of new proteins (Venne et al., 2014; Vu
et al., 2018; Macek et al., 2019).
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Prokaryotes constantly produce reactive oxygen species, ROS,
(peroxide, superoxide and others) during their life cycle as a
consequence of growth in an aerobic environment (Zhao and
Drlica, 2014; Van Loi et al., 2015). These ROS can be byproducts
of either oxidoreductase reactions or oxidation of univalent
electron donors such as metal centers, sulfur and others. In
addition to the self-produced oxidants, bacteria is exposed to
environmental ROS originating from (i) oxidative bursts of
phagocytic cells during the host immune defense (Hardbower
et al., 2013); (ii) irradiation of water; (iii) oxidation of pollution
chemicals found in the bacterial growth environment; (iv)
oxidant excretion by other bacterial and eukaryotic species
into the common habitat environment (Imlay, 2019; Reniere,
2018).

Abnormal levels of oxidative stress can cause irreversible
damage to diverse cellular macromolecules including
nucleotides, lipids and proteins, affecting their function and
stability. The exposure of bacteria to harmful oxidation has led
to the evolution of extensive damage repair systems which consist
of a large repertoire of antioxidant enzymes that detoxify different
oxidants and convert them into harmless molecules (Ezraty et al.,
2017). The main players of the damage repair system include
peroxiredoxins [AhpC, (Perkins et al., 2015)], catalases (Yuan
et al., 2021) and superoxide dismutases [SOD, (De Groote et al.,
1997)] which detoxify peroxide and superoxides, as well as
glutaredoxins [gpxA, (Moore and Sparling, 1995)] and
thioredoxins, which restore protein thiols in cellular
proteomes. Many wonderful reviews were written about the
damage repair system in bacteria and eukaryotes, among
which are (Verity, 1994; Visick and Clarke, 1995; Cabiscol
et al., 2000; Mitra et al., 2002; Hanschmann et al., 2013;
Ezraty et al., 2017).

Non-specific protein oxidation might lead to various post-
translational modifications of sulfur-containing residues (Cys
and Met) and aromatic residues (Tyr, Trp), as well as induce
undesirable disulfide bonds and affect protein cofactors,
especially metal centers – all which might lead to protein
inactivation, unfolding, accumulation of toxic aggregates and
even cell death (Ilbert et al., 2006; Chung et al., 2013; Dahl
et al., 2015; Kehm et al., 2021).

This is alongside a beneficial role of intracellular oxidants in
biosynthesis, lipid oxidation, metabolism and environmental
response (Brynildsen et al., 2013; Imlay, 2013; McBee et al.,
2017), which requires development of a highly sensitive and
dynamic mechanism to maintain the balance between
oxidation and cellular homeostasis. Elegant studies by Imlay
and Linn (1986) and (Rodríguez-Rojas et al., 2020) showed
that priming Escherichia coli with low levels of peroxide
increases its survival during severe oxidative stress conditions,
emphasizing the importance of dynamic responses and bacterial
adaptation to changing intracellular ROS levels. Moreover, it was
shown that production of intracellular ROS might provide
antibiotic tolerance in Mycobacteria, suggesting a tight
regulation between redox homeostasis and adaptation
pathways (McBee et al., 2017).

Therefore, prokaryotes have developed multi-level approaches
to sense changes in redox homeostasis (by SoxR, OxyR, and

RsrA), to detoxify undesirable levels of ROS (through scavenging
enzymes such as catalase, superoxide permutate, peroxidase) and
to protect the cellular proteome against potential damage (by
Hsp33 chaperone, thioredoxin, and others).

One of the main strategies of this defense system is to utilize
rapid and reversible oxidation-dependent modification of specific
protein thiol residues, serving as redox-sensitive switches of the
defense proteins and mediating their rapid activation (Ilbert et al.,
2006; Cremers and Jakob, 2013).

Another strategy – which can be coupled to modification of
the thiol groups – is exploiting redox properties of metal centers
to regulate proteins during fluctuating oxidant levels. Thus,
bacteria (and eukaryotes) have developed an elegant way to
convert “protein weakness” into a powerful and robust
mechanism to regulate the expression of genes that provide a
defense against oxidative stress. They are then able to detoxify
ROS using reversible reduction-oxidation cycles of catalytic
cysteine residues or cofactors, restore the redox status of
proteins and maintain protein quality control under stress
conditions. Here, we will briefly discuss different types of
protein switches and their working mechanism, which enable
bacteria to adapt and defeat oxidation-related challenges during
their life cycle.

Protein Thiols – The Central Component of
Antioxidant Protein Switches
The aerobic lifestyle is an inevitable source of intracellular
ROS, producing byproducts such as hydrogen peroxide
(H2O2), hydroxyl (·OH) and superoxide anion (O−2)
radicals. Accumulation of these ROS results in negatively
charged modification of reactive protein thiols, in the form
of sulfenic (-RSOH) or sulfinic acids (-RSO2H), or in the
formation of non-native, covalent disulfide bonds within
and between different proteins (Figure 1) (Georgiou, 2002;
Ilbert et al., 2006).

Such thiol oxidation of cysteine and methionine residues
might induce local structural and chemical alterations,
influence binding of metal centers, as well as form new, non-
native protein complexes, conjugated via disulfide bonds. While a
majority of proteins undergo a loss of function or misfolding
upon oxidation, cells have developed an array of different thiol-
switch proteins, which utilize site-specific oxidation for their
activity. The majority of known thiol switch proteins contain
reactive cysteine residues which can “sense” changes in the redox
status of cells and undergo reversible modifications, which
regulate their activation or inactivation (Figure 2) (Antelmann
and Helmann, 2011; Fra et al., 2017). Reactive thiols of these
thiol-switch proteins usually have unique chemical properties,
while some of the thiols themselves are located in structurally
flexible and conserved regions. These thiols can be modified in
various ways: sulfenylation, nitrosylation, chlorination,
glutathionylation, persulfidation, and disulfide formation,
responding to different oxidants (Figure 1). Reduction of
these modifications is done by specific enzymes which restore
the redox status of thiols (e.g., thioredoxins or glutaredoxin) and
by related cofactors such as glutathione (GSH) and its analogs
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[e.g., mycothiol (MSH) in Actinobacteria, bacilithiol (BSH) in
Firmicutes] (Fahey, 2013), as well as NAD(P)H (Reniere, 2018).

Despite the wide diversity of bacterial antioxidant strategies,
the most studied thiol-switch proteins are ones that use highly
reactive cysteine thiolates as a switch. This is most probably due
to the availability of a diverse range of experimental tools, ranging
from thiol trapping, thiol quantification and redox mass
spectrometry that allows investigation of the redox status of
cysteine thiols.

One of the classic examples of a thiol switch protein in bacteria
is a transcriptional factor OxyR, which was first identified in
E. coli (Christman et al., 1989) and S. typhimurim (Christman
et al., 1985; Morgan et al., 1986). Stamler, Storz and others
showed that hydrogen peroxide and S-nitrosothiols activate
OxyR transcriptional activity, leading to the production of
∼130 proteins with antioxidant and anti-nitrosylation activities
(Seth et al., 2020). OxyR activity is induced by oxidation of a
highly conserved Cys residue (Cys199 in E. coli), which undergoes
sulfenylation (S-OH) and consequent disulfide formation with
the adjacent cysteine (Cys 208 in E. coli) (Zheng et al., 1998).
Disulfide bond formation induces major structural
rearrangement by forming a new beta strand in the protein,
altering OxyR’s binding to its promoter and subsequent
recruitment of RNA polymerase (Figure 2) (Fuangthong and
Helmann, 2002; Georgiou, 2002) Interestingly, S-nitrosylation of
Cys199 leads to an alternate response to combat nitrosative stress
rather than oxidative stress conditions, by inducing the
expression of enzymes which detoxify NO species involved in
SNO metabolism during aerobic and anaerobic conditions.

This ultimately results in different DNA binding affinity and
specificity, (Kim et al., 2002; Seth et al., 2020), depending on the

respective stress conditions. This makes OxyR a notable, multi-
sensing thiol-switch protein, which uses stress-specific structural
plasticity to activate differential response pathways to overcome
oxidative or nitrosative stress. It is reasonable to speculate that
other thiol modifications of Cys199 might lead to activation of
other related stress-response pathways.

Another example of a thiol-switch sensor is the very well-
studied family of OhrA peroxidase repressors, named OhrR,
which bind to the OhrA promoter in the reduced form
(Figure 2). OhrR repressors are part of the MarR-family
regulators, protecting bacteria against a wide range of
oxidants, reactive nitric species and reactive electrophilic
species (Hillion and Antelmann, 2015). Specifically, OhrR is
activated by organic hydroperoxides (OHP) and other ROS
(Van Loi et al., 2015; Sun et al., 2018; Ruhland and Reniere,
2019). The OhrR repressor family can be divided into two classes,
1-Cys (first identified in Bacillus subtilis (Fuangthong et al., 2001)
and 2-Cys [first identified in Xanthomonas campestris
(Sukchawalit et al., 2001)]. These harbor either one or two
redox-sensitive thiol groups in the N-terminal region, adjacent
to the DNA binding domain. Despite high sequence and
functional similarity, these two classes represent different
peroxide-sensing mechanisms.

The B. subtilis OhrR 1-cys repressor is inactivated by
organic peroxide via formation of sulfenate (-RSOH) on
Cys 15 and small local structural changes (Hong et al.,
2005; Duarte and Latour, 2010), which lead to a rapid
reaction with low molecular weight (LMW) thiols and the
formation of reversible mixed disulfides, including S-BSH (Lee
et al., 2007). Moreover, non-reversible, overoxidation of Cys15
to sulfinic (-RSO2H) or sulfonic (-RSO3) acid leads to the

FIGURE 1 | Thiol group might serve as a functional switch. Reactive protein thiols can undergo a wide range of modifications depending on the oxidative stress
conditions. These include both reversible (e.g., sulfenic acid, disulfide bridge formation) and irreversible modifications (e.g., sulfinic acid, sulfonic acid). Moreover, thiol
groups can interact with metal centers and play central roles in the detection of redox change.
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detachment of OhrR from the ohrA operator region
(Soonsanga et al., 2008b).

In contrast to the OhrR 1-cys repressor, X. campestris OhrR is
inactivated when the initially oxidized Cys22 reacts with another
conserved Cys127, located >15Å apart, in the C-terminal domain
of the opposing side of the dimer (Newberry et al., 2007). This
inter-subunit disulfide bond induces a massive conformational
change and rotation of the oxidized OhrR dimer, resulting in
dissociation from the operator region and expression of the OhrA
peroxidase. Conditional disulfide bond formation is a more

robust mechanism than oxidation of a single thiol since it
does not rely on the presence of LMW thiols and thus
prevents irreversible oxidation of the active thiol groups of the
regulatory protein (Soonsanga et al., 2008a).

The 1-Cys and 2-Cys transcriptional factors are common in
bacteria and eukaryotes. These mechanisms are utilized in order
to sense a diverse repertoire of stresses which challenge redox
homeostasis and a functional proteome. The detailed
mechanisms and regulation of such thiol-switch regulators in
bacteria are wonderfully described by Antelmann and Helmann

FIGURE 2 | Examples of various thiol and/or metal switches in bacteria. Different thiol and metal center switches regulate redox homeostasis of bacteria at different
levels, ranging from gene expression to anti-aggregation activity. Different mechanisms of redox-regulation activity are presented.
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(2011), Jakob and Reichmann (2013), Hillion and Antelmann
(2015), Vázquez-Torres (2012), Boronat et al., (2014) and many
others.

One of the main classes of thiol switches in bacteria (and
eukaryotes) are thioredoxin and glutaredoxin enzymes that
restore the redox status of proteins using reduction-oxidation
cycles of their conserved catalytic cysteine residues with the help
of cellular cofactors, such as NADH, NADPH, and Glutathione
(Holmgren et al., 2005; López-Grueso et al., 2019). Numerous
fantastic reviews have been written about the detoxification
properties of thioredoxin and glutaredoxin in bacteria and the
role of their reversible thiol modifications in maintaining redox
homeostasis (Zeller and Klug, 2006; Berndt et al., 2008; Jacquot
and Zaffagnini, 2019).

Redox Regulation by Using Metal Centers
Metalloproteins are central actors in a wide number of biological
processes (Waldron and Robinson, 2009). The chemistry of
metals brings unique properties to enzymes, allowing the
catalysis of redox reactions required for essential pathways
such as respiration, nitrogen fixation, water oxidation and
others (Liu et al., 2014). Redox-mediated metalloproteins
usually contain transition metals (e.g., Fe, Zn, and Cu) that
have multiple oxidation states by their nature and can
therefore sense and regulate protein function. Such
metallocenters can mediate various pathways in cells by using
different redox-regulating mechanisms: (i) by changing the redox
state of the metal center, (ii) by modification of the metallocenter
composition, or (iii) by the loss of the metal center after its
oxidation. Such modifications trigger the activation/inactivation
of the metalloproteins either by conformational changes or by
altering protein-protein interactions.

While many metalloproteins and their cofactors are sensitive
to oxidation and might even release ROS via a Fenton reaction
[e.g., iron-sulfur (Fe-S) clusters], (Imlay, 2006), other proteins use
this sensitivity as a redox switch for their activity. For instance,
the oxygen sensor FNR (fumarate nitrate reductase regulator)
regulates the expression of hundreds of genes involved in
anaerobic metabolism (Kang et al., 2005; Kiley and Beinert,
1998; Mettert and Kiley, 2018) (Figure 2). In the absence of
oxygen, the active form of FNR is a DNA-binding homodimer,
containing one [4Fe-4S] cluster per monomer, bound to four
highly conserved cysteine residues (Lazazzera et al., 1996). In
aerobiosis conditions, the FNR [4Fe-4S] cluster rapidly decays
into [2Fe-2S] with a release of two S and Fe3+ ions as well as a
superoxide ion (O2

−), which is further converted to peroxide and
water (Crack et al., 2007). Longer oxidation generates an inactive,
monomeric apo-FNR form, lacking the [2Fe-2S] cluster
(Lazazzera et al., 1996; Khoroshilova et al., 1997; Reinhart
et al., 2008). Similar to OxyR, FNR has a dual role in the
regulation of genes responding to either oxidative or
nitrosylation stress, by differential modification of the switch
centers. Upon increased levels of nitric oxide (NO), the metal
center is converted into an Fe-NO4 cluster accompanying
oxidation of the catalytical cysteines in the metal cluster,
resulting in monomerization of FNR (Crack et al., 2013).
Despite decades of FMN research, only recently the X-ray

structure of FNR from Aliivibrio fischeri was resolved. This
provided insights into the catalytic mechanism of the [4Fe-4S]
- [2Fe-2S] exchange mediating FNR monomerization, (Volbeda
et al., 2015), with the structural analysis uncovering a cascade of
structural rearrangements induced by oxidation of the metal
cluster. This indirectly leads to a breakage of salt bridges as
well as of the helical interface which maintains the dimer
conformation of inactive FNR during reducing conditions
(Volbeda et al., 2015; Mettert and Kiley, 2018).

Metal’s oxidation might lead to modification of residues
found in the metal’s vicinity. PerR from B. subtilis is an
excellent example of a protein utilizing this reactivity for
functional activation (Pinochet-Barros and Helmann, 2018).
PerR is a repressor known to belong to the Fur family of
proteins (ferric-uptake repressor). Under physiological growth
conditions, PerR is a dimer containing two metal-binding sites,
Zn2+ and Fe2+ per monomer (Traore et al., 2006; Ma et al.,
2011). Upon exposure to low concentrations of H2O2, PerR
induces expression of genes involved in the detoxification of
peroxide and related damage (Helmann et al., 2003). Through
a mechanism called metal-catalyzed oxidation (MCO), H2O2

reacts with the bound Fe2+, leading to the oxidation of one of
the two histidines involved in coordinating with the iron atoms
(Lee and Helmann, 2006). Histidine oxidation induces PerR
conformational changes, which triggers its release from DNA
(Ahn and Baker, 2016) (Figure 2). In contrast to other
peroxide-sensing transcription factors described above,
PerR’s regulatory mechanism is not cysteine but histidine-
dependent. Interestingly, the Fe2+ binding site can also bind
Mn2+, depending on the relative amount of both metals in the
growth media. At a high concentration of Mn2+, the PerR
regulon is tightly repressed even in the presence of peroxide,
highlighting the importance of the MCO mechanism and its
high dependence on the presence of iron in the media
(Fuangthong et al., 2002).

Metal centers in biological systems can oscillate between a
reduced and oxidized form, where such redox changes frequently
allow electron transfer to occur. In some cases, however, these
redox status modifications change the protein function and may
be considered as an additional redox-regulation mechanism. The
regulator SoxR, for example, has been well-described to stimulate
the transcription of SoxS exclusively in presence of redox-cycling
compounds (Gaudu and Weiss, 1996; Imlay, 2015; Outten and
Theil, 2009). SoxR is a dimer where each monomer contains a
[2Fe-2S] cluster (Hidalgo et al., 1995). In its reduced form [2Fe-
2S]+, SoxR binds DNA without inducing SoxS transcription,
whereas in its oxidized form [2Fe-2S] 2+, SoxR induces SoxS
expression (Ding et al.,1996; Gaudu et al., 1997) (Figure 2).
Oxidation of SoxR leads to slight conformational changes,
resulting in a distortion of the bound DNA and modify RNA
polymerase transcription (Kobayashi et al., 2011).

Another recently discovered protein, a copper-binding
regulator CorE from Myxococcus xanthus, is also regulated via
a redox mechanism (Gómez-Santos et al., 2011; Muñoz-Dorado
et al., 2012). Indeed, oxidized copper (Cu2+)-CorE binds to DNA
whereas Cu+-bound CorE does not (Gómez-Santos et al., 2011)
(Figure 2).
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Hsp33 – An Example for Utilizing
Redox-Regulated Protein Plasticity to
Maintain Proteome Functionality During
Oxidative Stress Conditions
Around 20 years ago, the Hsp33 chaperone was discovered as a
first line of defense chaperone protecting bacterial proteins
against aggregation during oxidative stress in E. coli
(Hoffmann et al., 2004). Since then, additional homologues of
Hsp33 were identified and characterized in other bacterial species
as well as in unicellular algae (Segal and Shapira, 2015) and
pathogens (Trypanosoma and Leishmania) (Aramin et al., 2020).
This highlights Hsp33 as a promising new drug target against
bacterial and Trypanosoma pathogens.

Hsp33 is one of the crucial ATP-independent holdases (or
holding chaperones), which is activated under conditions that
lead to protein misfolding and accumulation of toxic aggregates,
such as oxidative unfolding. Hsp33 “senses” the presence of
oxidants or chlorine species (e.g., HOCl) through a highly
reactive Zn center, comprising of four completely conserved
cysteines forming CXCX and CXXC motifs harboring one
Zn2+ ion in the inactive, reduced form (Ilbert et al., 2006;
Aramin et al., 2020). Oxidation triggers Zn release, formation
of two disulfide bonds and rapid unfolding of almost half of the
protein, which exposes hydrophobic regions involved in the anti-
aggregation activity of Hsp33 (Rimon et al., 2017). Oxidation per
se of the Zn center is not sufficient for converting Hsp33 into a
potent holdase, and requires additional unfolding conditions
(e.g., mild heat or the acidity of HOCl). Upon return to
normal conditions, reduction of the Zn center leads to
refolding of Hsp33 (Ilbert et al., 2007; Cremers et al., 2010;
Rimon et al., 2017), destabilization of the bound client protein
and transfer to the foldase chaperone system, DnaK/J
(Reichmann et al., 2012a) (Figure 2). This working cycle of
Hsp33 provides a unique mechanism of a thiol switch protein
which uses a redox-dependent metal center and a disorder-to-
order transition for its function. Thus, the Hsp33 protein family
preserves not only reversible catalytical centers, but reversible
structural plasticity underlying the Hsp33 function as well.

Integrative Methodology Assists in
Identifying Redox Switch Proteins and
Future Directions
Technological progress over the last few years has drastically
advanced the discovery of new redox switches and allowed the
community to deepen the understanding of the complex redox-
regulating mechanisms that are vital in defining the fate of
bacteria. Due to their diversity and elusive nature, research of
redox switches requires a multidisciplinary toolbox of techniques
combining biochemistry, redox chemistry, structural and cell
biology.

The majority of technological efforts and breakthroughs have
been invested in uncovering thiol-redox switches and the related
pathways. This is due to the importance and high conservation of
cysteines, which usually have a crucial role in protein structure
and function. Moreover, redox chemistry has provided existing

tools to investigate thiol-redox reactions that could be adopted to
biological systems. Therefore, it is not surprising that many of the
redox-switch proteins that were discovered in recent years are
thiol-switch proteins. These have been studied by different
approaches, ranging from single cysteine substitution (usually
to serine), in vivo and in vitro thiol trapping analyses, to system-
wide redox proteomics (Rudyk and Eaton, 2014; Allan et al., 2016;
Botello-Morte et al., 2016; van der Reest et al., 2018).

During the last decade, several studies showed that antibiotic
treatment alters redox homeostasis and leads to the accumulation
of ROS in bacteria, which might be an additional cause for cell
death (Kohanski et al., 2007; Van Acker et al., 2016). While the
mechanism is not clear, recent studies took an advantage of the
ROS-antibiotics relationship to utilize ROS as an antibacterial
treatment. For example, Antelman’s lab showed that
antimicrobial treatment by AGXX results in ROS intracellular
production, which targets multi-drug resistant pathogens (Van
Loi et al., 2018; Linzner et al., 2021). This study raises many
questions regarding the potential role of indirect ROS
accumulation and associated thiol-switch proteins in cells
challenged by antibiotics and the multi-drug resistance
processes. This intriguing correlation should be further
investigated.

To date, redox biologists have an array of innovative tools to
differentially label reduced and oxidized cysteine residues in vivo
or in vitro, in order to detect changes in the redox status of either
single or multiple proteins in a biological sample (Rudyk and
Eaton, 2014). This includes a collection of diverse alkylating
reagents (e.g., maleimide, iodoacetate, and their derivatives)
which specifically react with the thiol groups of cysteine
residues, which can then be used to quantify the total change
in reduced thiols in cells, detect changes in a specific cysteine thiol
of protein of interest, or in the entire proteome (Rudyk and Eaton,
2014; Winther and Thorpe, 2014; Alcock et al., 2018).
Conjugation of alkylating reagents with biotin molecules has
opened up a new opportunity to investigate the interactomes
of potential thiol-switch proteins in vivo and to define the redox-
dependent dynamics of these interactions. A combination of
genetics, thiol trapping, and structural biology approaches
have enabled definition of the redox-dependent mechanism of
essential thiol switches, such as Hsp33, OxyR, and many others,
providing a deeper knowledge on both the protein and system
levels (Choi et al., 2001; Ilbert et al., 2007).

One of the breakthroughs in redox biology was the
development of redox proteomics workflows (Zaccarin et al.,
2014; Gu and Robinson, 2016; Duan et al., 2017). Since ∼10% of
residues are cysteines, one of the main challenges in redox
proteomics is the ability to capture and isolate thiol proteomes
while minimizing non-specific oxidation induced during sample
preparation and by the mass spectrometer itself. Leichert and
Jakob, among others, have established a highly efficient
proteomic workflow, named OxICAT. This workflow uses
differential labeling by biotinylated, isotope-coded light and
heavy affinity tags with an iodoacetamide reactive group
(ICAT). Quantification of the redox profile of cysteines is
based on a ratio approach, which allows for overcoming
potential artifacts that follow protein abundance, as well as
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proteins lost during the sample preparation steps. The OxICAT
method has not only uncovered novel, potential thiol switch
proteins across the proteome, but remarkably has established a
mechanistic link between reversible oxidation and aging in
eukaryotic cells, pointing toward pathways and kinetics of
thiol oxidation during age or following different growth
conditions. In bacteria, OxICAT and other redox proteomics
techniques identified redox-regulated metabolic pathways
associated with phagocytosis (Leichert et al., 2008), as well as
a bacterial redox-regulated response toward antibacterial
treatment (Reiter et al., 2020). Moreover, the same platform
was adopted to uncover a cross-reactivity of cysteine thiols to
different oxidants and modifications, such as nitrosylation
(Leichert and Jakob, 2006), chlorination (Chen et al., 2016),
mycothiolation (Hillion et al., 2017), and sulfhydration
(Zivanovic et al., 2019), defining the plasticity and versatility
of the thiol-switch proteins in bacteria.

While redox proteomics can point to a potential key redox
player, a detailed biochemical and biophysical analysis should be
done to investigate the reaction mechanism. As previously
mentioned, high-resolution structural methods [e.g., NMR
(nuclear magnetic resonance) and X-Ray crystallography] were
able to define the exact redox cascade mechanism in
metalloproteins and define catalysis at the atomic level. This is
challenging in the case of redox switch proteins, which require
structural plasticity or oligomerization (e.g., Hsp33) for their
activity, which complicate the obtention of an atomic structure
using NMR or X-Ray. In this case, structural mass spectrometry
(native MS and Hydrogen-deuterium-exchange, HDX-MS) takes
on its undebated role. HDX-MS analysis of Hsp33’s working cycle
has enabled mapping of redox-dependent conformational
changes on both the chaperone and its substrate, mediating
substrate binding and release (Reichmann, 2012b; Fassler
et al., 2018).

Furthermore, research on redox-regulating metalloproteins
sits in the junction between structural biology and chemistry.
During the last decade, biophysical approaches such as UV-
Visible, EPR (electron paramagnetic resonance), NMR or
X-ray absorption spectroscopy have pushed the metal-
switch field forward, providing high resolution mechanisms
of enzymes and transcriptional factors. However, to date,
metal-switch proteins have been mainly described in vitro
on purified systems. The recent development of in cell-
NMR and in cell-EPR will give a better picture of in vivo
metal-switch reactions. In addition, finding new family

members might be possible with the development of
metallomics approaches combined with spectroscopy or
other tools, to find redox-regulated metal centers.

However, despite the many fascinating breakthroughs that
have been made over the past several years, we need to develop a
new repertoire of methodologies addressing non-thiol regulation.
Recently, a few technologies were established to investigate
methionine and tyrosine oxidation, however, more should be
done in this field. The development of these methodologies will
open a door to uncover new types of switch proteins, employing
other regulatory sites and chemistry.

Another aspect that should be addressed in the redox-switch
protein research is the multi-functionality of this class of proteins.
It is clear that many redox-regulated proteins cannot be simply
defined by loss-gain of function under oxidation-reduction
conditions. Many of the redox-regulated proteins have more
than one biological function and specificity to different
radicals. One of the next challenges in the field is to
understand the evolutionary path of redox switch proteins,
their multiple functionality, and their reactivity.
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