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Alternative TSSs are co-regulated in single cells in
the mouse brain
Kasper Karlsson1 , Peter Lönnerberg2 & Sten Linnarsson2,*

Abstract

Alternative transcription start sites (TSSs) have been extensively
studied genome-wide for many cell types and have been shown to
be important during development and to regulate transcript abun-
dance between cell types. Likewise, single-cell gene expression has
been extensively studied for many cell types. However, how single
cells use TSSs has not yet been examined. In particular, it is
unknown whether alternative TSSs are independently expressed,
or whether they are co-activated or even mutually exclusive in
single cells. Here, we use a previously published single-cell RNA-
seq dataset, comprising thousands of cells, to study alternative TSS
usage. We find that alternative TSS usage is a regulated process,
and the correlation between two TSSs expressed in single cells of
the same cell type is surprisingly high. Our findings indicate that
TSSs generally are regulated by common factors rather than being
independently regulated or stochastically expressed.

Keywords alternative TSS usage; neurons; single-cell RNA sequencing;

transcription; UMI

Subject Categories Genome-Scale & Integrative Biology; Transcription

DOI 10.15252/msb.20167374 | Received 7 October 2016 | Revised 10 April

2017 | Accepted 11 April 2017

Mol Syst Biol. (2017) 13: 930

Introduction

Our understanding of TSS usage has increased dramatically over the

last decade since the introduction of deep sequencing technologies.

It is now clear that most genes are transcribed from multiple distinct

TSSs. For example, the FANTOM consortium recently found an

average of four robust TSSs per gene, across more than 800 tissues

and cell lines (Forrest et al, 2014); however, the number of TSS

reported was highly dependent on the filtering method used and

was complicated by CAGE peaks in enhancer regions, coding

regions, and promoter-associated short RNA (de Klerk & t Hoen,

2015). Transcriptome-wide studies using DeepCAGE have found

that the hippocampus has a larger number of active TSSs compared

to other cell types tested and that generally TSS use is highly tissue

specific (de Klerk & t Hoen, 2015). For example, IGF1 and IGF2 are

known to be regulated by multiple TSSs and expressed in various

embryonic and adult tissues (Leroith & Roberts, 1993). In Droso-

phila, alternative TSS generally implements distinct regulatory

programs during development (Batut et al, 2013). Alternative TSS

usage can affect protein diversity by incorporating extended or alter-

native N-terminal polypeptides. One example is NADH-cytochrome

b5 reductase, where usage of alternative TSSs results in two protein

forms, one membrane-bound and one soluble form (Ayoubi, 2005).

However, the majority of alternative TSS do not change the mRNA

coding potential, and thus, for the majority the biological effect

must come from isoform-specific regulation like mRNA abundance,

stability, and localization (Rojas-Duran & Gilbert, 2012). Alternative

TSS can also cause differences in translation efficiencies up to a

100-fold when examined in yeast (Rojas-Duran & Gilbert, 2012).

Transcription start sites are activated by a complex chain of

events initiated by the binding of transcription factors to proximal

sites or distal enhancers. However, the rules by which local or distal

transcription factor (TF) binding causes the activation of specific

local TSSs are not well understood. It is often assumed that TF bind-

ing upstream of a TSS will specifically activate that TSS, but it is

also possible that multiple nearby TSSs could be simultaneously

activated, or indeed that local and distal enhancers could exhibit

preferences for specific TSSs.

Surprisingly, in general, it is not known to what extent alterna-

tive TSSs show cell type-specific expression. In the extreme case, it

is possible that all TSSs respond equally well to regulatory input,

that is, alternative TSSs are regulated by common factors. Alterna-

tively, there may be hitherto unexplored rules that determine a strict

preference for each regulatory sequence to a specific TSS, that is,

TSSs are regulated by specific factors. In the former case, alternative

TSSs would be expected to be always active in the same tissues and

cell types, perhaps in some fixed proportion. In the latter case,

alternative TSSs would be expected to show largely independent

expression.

Due to the stochastic nature of gene expression, alternative TSS

usage may also have functional consequences in single cells, even if

they are not differentially regulated at the population level. Consider

a gene with two TSSs, major and minor, which are both active. If

TSSs compete for binding to regulatory elements, and activation

events lead to bursts of transcription, this would lead to a stochas-

tic, mutually exclusive, anti-correlated expression pattern, similar to
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that observed for random monoallelic expression (Deng et al, 2014).

Alternatively, if TSSs were activated independently, this would lead

to uncorrelated expression in single cells. Yet another possibility is

that both TSSs are simultaneously expressed, or that stochastic TSS

activation occurs on a timescale much shorter than mRNA degrada-

tion, so that even in single cells these effects would be washed out,

and mRNA from alternative TSSs would be correlated and detected

at fixed proportions.

Heterogeneity of gene expression has been extensively studied;

however, the study of single-cell isoform variation has only just

started. For example, Velten et al (2015) recently studied single-cell

polyadenylation site usage and found that even in homogenous cell

populations, individual cells differ in their preferences for 3ʹ RNA
isoform choice. Another study examined single-cell splice isoforms

and found that genes having multiple splice isoforms at the popula-

tion level tended to have only one expressed isoform at the single-

cell level (Shalek et al, 2013).

Here, we address these questions using single-cell RNA-seq. We

take advantage of our recently published analysis of mouse cortex

and hippocampus. This extensively validated dataset comprises over

3,000 single-cell transcriptomes, classified into nine major cell types

and 47 subtypes. We used STRT, a single-cell RNA-seq method suit-

able to study TSS usage since it captures and sequences the 5ʹ end
of polyadenylated mRNA transcripts (Islam et al, 2011, 2012). The

inclusion of unique molecular identifiers (UMI) ensured an

increased quantitative accuracy by eliminating most PCR bias and

allowed the absolute counting of mRNA molecules (Kivioja et al,

2012).

Results

Measuring TSS activity in single cells

We selected a set of 2,816 single-cell transcriptomes representing

seven cell types: interneurons, somatosensory cortex pyramidal

neurons, hippocampal pyramidal neurons, oligodendrocytes, astro-

cytes/ependymal cells, microglia, and vascular cells (endothelial

cells, pericytes, and smooth muscle cells). Raw reads were mapped

to the genome, assigned to FANTOM annotated TSSs, and converted

to absolute number of molecules using UMIs (Islam et al, 2014).

Henceforth, a set of reads mapped to a single genomic position, and

with the same UMI, will be referred to as a “molecule” of mRNA. It

should be noted that detected molecules likely represent only about

20% of all expressed molecules (Zeisel et al, 2015).

In order to accurately measure TSS-specific gene expression in

single cells, we first needed to ensure that our protocol indeed pref-

erentially captured 5ʹ ends of transcripts. We took advantage of

ERCC spike-in RNAs present in each single-cell experiment. ERCC

transcripts are 250–2,000 bp synthetic polyadenylated RNAs, at

known concentrations. We found that 75% of all molecules mapped

exactly at the 5ʹ end, whereas the rest were scattered across the rest

of each RNA (Fig 1A).

For endogenous genes, in contrast, most molecules did not map

to the annotated 5ʹ end. In agreement with previous findings (Islam

et al, 2011), we found a single peak at the 5ʹ end and a broad

3ʹ-biased distribution with a preference for the 3ʹ end (Fig 1B). As a

consequence, out of the average of 26,500 detected molecules per

cell, only 3,800 (14%), could be allocated to an annotated FANTOM

TSS (for details, see Table EV1). Of the rest, about half mapped

outside of known protein-coding genes (e.g., to expressed trans-

posons), and the rest mapped to genes but outside the annotated

TSSs (Fig 1C). The TSSs clearly showed an elevated signal, as

expected. However, many molecules mapped all over the gene,

including at low levels in intron regions, and some genes showed

extensive 3ʹ UTR expression (Appendix Fig S1). Nevertheless, these

findings suggest that there was enough signal specifically at the

TSSs for an analysis to be possible.

To determine whether molecules assigned to TSS regions were

specific, we examined a region of � 100 bp around TSSs (here

defined as the center of the FANTOM5 TSS interval). Reassuringly,

we found a distinct, sharp peak at the � 0 position, and 97% of all

molecules mapped within 50 bp of the putative TSS (Fig 1D). It

should be noted that FANTOM TSS intervals are not guaranteed to

be centered on the true TSS, so some of the imprecision can be

attributed to imperfect annotation.

Molecules mapping outside annotated TSSs could represent

degradation products, as (in contrast to CAGE) our methods are not

selective for capped 5ʹ ends. We therefore searched for signs of

translation-associated mRNA decay (Pelechano et al, 2015), which

should lead to a 3-bp repeated pattern aligned with the reading

frame. We found no evidence of such degradation in this data, as

can be seen in Appendix Fig S2A and B. However, a clear pattern

emerged around the start and stop codons. Many molecules (i.e., 5ʹ
ends of transcripts) mapped upstream of the start codon, but not

downstream, probably reflecting the fact that most molecules in this

region represent bona fide 5ʹ ends of transcripts (by definition, the

true TSS cannot be placed after the start codon). In agreement with

this hypothesis, the increase in reads upstream of the TSS closely

reflected the prevalence of annotated transcription start sites. A

similar, but weaker, pattern was observed around the stop codon.

Interestingly, there was an enrichment of mapped reads starting just

upstream of the stop codon, which may reflect pausing of the trans-

lational machinery at this point. Translation-associated mRNA

decay would catch up with the stalled ribosome, leading to a rela-

tive depletion of upstream fragments and enrichment of fragments

downstream of the stop codon.

To ensure that true TSS and not degradation products were

assessed, molecules were counted both upstream and downstream

of the TSS within a region of similar size, hereafter referred to as a

“reference region”. If the number of molecules in the reference

region on either side of the TSS constituted more than 20% of the

combined TSS and reference region reads, then the TSS was

removed from the analysis. This removed around 20% of the TSSs.

Finally, to assess the reproducibility of the data, we compared

correlations of gene expression profiles calculated from whole-gene

bodies, as in Zeisel et al (2015) or only from the major TSS, both for

combined and single-cell data (Fig 1F–H). As expected, data from

independent pools of randomly selected cells were highly correlated,

and the correlation dropped slightly for single cells. Surprisingly, for

some genes, expression from the major TSS was more highly corre-

lated compared to expression from whole-gene bodies, despite the

fact that major TSSs only contained a fraction of the molecules. As

shown in Appendix Figs S3A–C, the effect was rather common and

depended in a large part on the expression level of the cells. For two

cells with combined high average TSS expression (> 1,000
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molecules), using major TSS counts instead of total gene counts

tended to show higher correlation. This was also true when compar-

ing two genes as shown in Appendix Figs S3D–F. The phenomenon

can be explained if reads mapping to the major TSSs only reflect

new transcription, while reads mapping to the total gene body

reflect a number of processes that are not always correlated, such as

mRNA degradation, PCR strand invasion (Tang et al, 2013), alterna-

tive TSS expression, intronic reads, and cryptic 3ʹ UTR expression.
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Figure 1. Measuring TSS activity in single cells.

A Number of reads deviating from starting position in ERCC control molecules shown as percent of reads mapping exactly to the starting position. The number in red
shows total number of ERCC molecules participating in libraries for CA1 neurons. Note that the scale is broken.

B Read distribution across genes, shown as percent mapped reads (after UMI correction) in 20 length-bins for CA1 neurons (top) and ERCC control RNA (bottom).
C Read distribution for CA1 neurons. A read is only assigned once to one of the four groups.
D CA1 neuron reads mapped to the region � 100 bp from the TSS, defined as the center of CAGE-annotated TSSs.
E Major TSS preference in pooled single cells from CA1 neurons.
F Correlation of major TSS expression in pooled single CA1 neurons.
G Correlation of whole-gene expression in individual single CA1 neurons.
H Correlation of major TSS expression in individual single CA1 neurons.

Data information: (F–H) Pearson correlation values in red.

ª 2017 The Authors Molecular Systems Biology 13: 930 | 2017

Kasper Karlsson et al TSS usage in single mouse brain cells Molecular Systems Biology

3



However, we also noted a few cases where the major promoter was

located outside the Refseq gene annotation leading to artefactual

low correlation when using gene counts. An example of two genes

that show medium correlation (r = 0.49) when counting major TSS

reads and low correlation (r = 0.12) when counting total gene reads

is shown in Appendix Fig S4.

Alternative TSS usage in single cells

Having established the quality of the data, we first asked how often

genes carried more than one active TSS. As shown in Fig 1E for CA1

pyramidal neurons (hereafter called CA1 neurons), around 40% of

all genes showed only or almost only expression from the major

TSS, counting all genes with at least one molecule mapped to a TSS.

For remaining genes, there was a varying degree of co-expression

between major and minor TSS. The same trend held true also for a

more conservative subset of genes with expression higher than 1

molecule per cell (Appendix Fig S5). Thus, expression from two or

more TSSs is common, but many genes show a strong preference

for the major TSS.

Given that two TSSs are active in a cell population, it is natural

to ask whether this could be explained by subpopulations of cells,

or whether both TSSs are typically simultaneously active in single

cells (Fig 2A). To address this, we examined the correlation of

expression from the major and minor TSS between individual cells,

across genes. If alternative TSSs were expressed in distinct subsets

of cells (whether stochastically or by some regulated mechanism),

we would expect them to be anti-correlated. In contrast, if they were

simultaneously expressed in individual cells, they would be uncor-

related or positively correlated, depending on the rate of transcript

degradation.

We found strong positive correlation within all studied cell types

for highly expressed genes (Pearson correlation > 0.5 for most genes

expressing > 4 molecules per TSS per cell in average) and a weak

positive correlation for lowly expressed genes (Pearson correlation

0.1–0.5 for most genes expressing < 4 molecules per TSS per cell in

average). In fact, the correlation between the TSSs increased almost

linearly with expression (Fig 2E and Appendix Fig S6), indicating

that at low levels of expression, noise takes over and reduces the

correlation.

Snap25, which encodes a synaptic vesicle membrane fusion

protein, was highly expressed in most cells and showed a high

major/minor TSS correlation (r = 0.80), but also lowly expressed

genes like Dcn were sometimes highly TSS correlated (r = 0.85

Fig 2B and Appendix Fig S7). Genes with very weakly correlated

major/minor TSSs (r ~0.1) were the exception, for example, Syt1,

and they did not show anti-correlation. These exceptions were prob-

ably the result of low expression. For genes with high ratio of major

to minor TSS, the major TSS was consistently higher expressed in

almost every cell (e.g., Dcn, Snap25, and Son, Appendix Fig S8).

One possible explanation of the finding that alternative TSSs are

positively correlated in single cells is that the correlation would

depend on degradation of the major TSS, resulting in artefactual

reads on the minor TSS. In this case, a higher expressed major TSS

would create more artefactual reads on the minor TSS and hence

create a false correlation. An argument supporting this reasoning is

that most annotated TSSs are less than 100 bp apart. Indeed, the

majority of the TSSs that are expressed at the population level

represented such spatially connected TSSs. 56% of the annotated

TSS in the FANTOM dataset are located in such composite transcrip-

tion initiation regions (Forrest et al, 2014). We argue that the

positive correlation is not due to degradation based on the following

observations: First, TSSs with reads mapping to the reference

region, constituting putative degradation events have been

removed. Reads on valid TSSs were highly specific. Second, if corre-

lation depended on degradation of reads expressed from the major

TSS, then there should be an increase of genes where the major TSS

was upstream of the minor TSS. However, this was not the case,

and there was an almost even distribution between the major TSS

being upstream or downstream of the minor (major TSS upstream

of minor n = 88, downstream of minor n = 109, see Appendix Fig

S9A). Third, if the correlation depended mostly on degradation of

the major TSS, then the case where the major TSS is upstream of

the minor should have a higher correlation. The difference was not

significant (P = 0.11, Student’s t-test, major TSS upstream average

r = 0.46, SD = 0.18, major TSS downstream average r = 0.42,

SD = 0.18, see Appendix Fig S9B). Fourth, TSSs were chosen based

on CAGE peaks, an orthogonal method to single-cell RNA-seq. It is

unlikely that degradation peaks by chance arises at annotated TSS

regions. Fifth, genes with TSSs located far apart showed similar

correlation pattern as proximal TSSs (Fig 2E) and were only slightly

less correlated (Fig 2D).

Another possible explanation to the positive correlation is that

the correlation is an artifact of using read counts, and would

depend on sequencing depth. To verify that this is not the case, the

same analysis was carried out as in Fig 2E using reads per 10 k

(rpk, same as reads per million but multiplied with 10,000 instead

of a million for readability) instead of counts. The number of mole-

cules per gene per cell is strongly influenced by the total number of

molecules per cell (Appendix Fig S10), which strongly influence

noise (example for Snap25, Appendix Fig S11A–D). Therefore, only

highly expressed cells (> 2,000 molecules) were included in the

analysis. For most genes expressing two TSSs, the major and minor

TSSs were still positively correlated after normalization

(Appendix Fig S11E and F). Correlation was slightly lower after

normalization, indicating that some of the correlation indeed could

depend on the choice of using read counts instead of rpk, but we

believe the difference in expression level between cells to be more

influenced by cell size than read depth and therefore prefer to use

read counts.

We next sought to quantify for each gene what percentage of

cells agreed with our hypothesis that the major and minor TSSs

show a fixed ratio. To this end, we used the two-sided binomial test

to search for cells whose proportion of major and minor expression

significantly deviated from the average proportion among all cells.

For most genes, only few CA1 cells deviated from the expected ratio

as can be seen in Fig 2F, and this was true for other cell types as

well (Appendix Fig S12A). On average 1–3% (depending on cell

type) of all cells expressing at least one molecule in any TSS per

gene deviated significantly from the expected TSS ratio. However,

for the gene cystatin C (Cst3), 44% of cells deviated from the

expected ratio (Fig 2F), indicating an unusual bimodal expression

pattern, and this was true for other cell types as well, albeit at vary-

ing degree (Appendix Fig S12B). Notably in vascular endothelial

cells, this pattern could not be discerned, and in oligodendrocytes,

proteolipid protein 1 (Plp1) showed even more cells deviating from
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the expected ratio than Cst3. The bimodal expression pattern of Cst3

will be discussed in more detail below.

One of the more prominent findings in this data set was the

almost complete absence of genes with expression of alternative

promoters. Promoter length varies from promoter to promoter;

however, 1 kb upstream and a few 100 bp downstream from the

TSS is a commonly used measure, for example, in Akan and

Deloukas (2008). We therefore defined two TSSs located more than
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Figure 2. Correlated expression of major and minor TSS in single cells.

A Illustration of two models for TSS expression in single cells versus their common effect on the population expression.
B Examples of TSS expression in single CA1 neuron cells. Plots show the number of mRNA molecules detected from the major and minor TSSs in single cells. Each dot is

a single cell. Pearson correlation values are indicated in red. Four examples are shown, representing high and low expression, and high and low correlation.
C Distribution of correlation values showing effect of TSS distance. Histogram based on 197 genes with an expression of at least 0.3 molecules per cell per TSS for CA1

neurons. Genes were divided based on major/minor TSS distance (“TSS”, 186 genes with < 1 kb inter-TSS distance; “Promoters”, 11 genes with > 1 kb TSS distance).
D Average correlation between major/minor TSS as a function of TSS distance. Colors represent TSSs and promoters as in (C). The error bars show standard deviation

and the numbers in brackets show participating genes.
E Scatterplot showing total expression (horizontal axis) and major/minor TSS correlation coefficient (vertical). Each dot is a gene. Colors represent genes with “TSS” and

“Promoter” TSSs as in (D). Four example genes from (B) are marked in the plot. Linear regression lines are shown with P-values of the fit.
F Percentage of cells that significantly deviates from expected major to minor TSS ratio as a function of cell gene expression. Percentage of deviating cells were

calculated using the binomial test. Each dot represents a gene.
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1 kb apart as putative alternative promoters and examined the

correlation of alternative TSS expression as a function of the

distance between TSSs. We found that promoters were significantly

less correlated than TSSs located in close proximity with a small

margin (P = 0.041, Student’s t-test; promoters n = 11, average

r = 0.33, SD = 0.16; TSS n = 186, average r = 0.44 and SD = 0.18;

Fig 2D and E), but the absolute difference in correlation was small.

7,369 TSSs had an expression of at least 100 molecules across all

2,816 cells. Of these, 5,872 TSSs passed the criteria that the peak at

the TSS should be specific. 922 genes had expression of at least two

such TSSs and are listed in Table EV2 for CA1 cells. Of these, a

modest number (197) of TSS pairs expressed more than an average

0.5 molecules per cell per TSS, and only six were potential alterna-

tive promoters (Cox16, Nrxn1, Meg3, Fis1, Grm5, and

2610017I09Rik). Alternative TSSs for Cox16 and 2610017I09Rik

overlapped other genes and can therefore not with certainty be said

to constitute true alternative TSSs.

All genes with potential alternative promoter usage were

expressed from different exons. This was also true for two genes

with alternative TSSs located within 1 kb (Snca and Caly), perhaps

indicating alternative promoters. Of the coding genes, the majority

(Nrxn1, Grm5, Snca, and Caly) are involved in neuronal signaling

and the two other (Cox16 and Fis1) are active in the mitochondria.

Only Nrxn1, Cox16, and Fis1 codes for different protein products.

Four genes with TSS expressed from different exons are shown in

Fig 3A–C.

The FANTOM data contain another class of CAGE peaks, located

in genes and often in the 3ʹ UTR which are not annotated as TSSs

(see Appendix Fig S1). Interestingly, we found that the correlations

between alternative TSSs where one TSS was located in the 3ʹ UTR
was much lower than when TSSs were located in the 5ʹ end. In these

cases, correlation also did not increase with gene expression

(Appendix Fig S13). This indicates that a different mechanism of

regulation controls the appearance of cryptic 3ʹ UTR CAGE peaks.

For this reason, like FANTOM, we have not included these CAGE

peaks as true TSSs. Thus, our data recapitulate the surprising

finding done by CAGE sequencing that low aggregates of molecules

map to internal exons and sometimes rather large aggregates of

molecules map to the 3ʹ UTR (Carninci et al, 2006).

An interesting observation is that genes commonly were

expressed in distinct peaks from multiple genomic nucleotide posi-

tions within an annotated TSS in single cells, which was the case

with, for example, Snap25, Stmn3, and Calm1 (Appendix Figs S1

and S14). However, more often reads were scattered across the TSS

region and rarely a single peak from a single nucleotide position

was seen.

To verify our finding that multiple TSSs are expressed in single

cells, we used a previously published dataset where six single oligo-

dendrocyte cells were sequenced for full-length mRNA using PacBio

long read technology. Due to the low sequencing depth of PacBio

sequencing, not all oligodendrocyte alternative TSS could be veri-

fied. A handful of genes with alternative TSS are shown in

Appendix Fig S15A–C, and for clarity, genes with long distance

between the TSSs were chosen.

Considering the bursty nature of gene expression, the rather low

efficiency of single-cell RNA-seq, and the low TSS mapping, we

assumed that either there would be no correlation between the TSSs

or that they would be anti-correlated due to the bursts. In contrast,

we found a high correlation at the single-cell level even at rather

low levels of average TSS expression. In conclusion, minor TSSs

were generally expressed at a fixed fraction of the major TSS,

regardless of the inter-TSS distance, suggesting that they respond to

common distal regulatory signals. Few genes exhibited a different

expression pattern, and the most prominent of those were Cst3.

Bimodal expression pattern of cystatin C (Cst3)

Cst3 encodes cystatin C (Cst C), which is a member of the cystatin

superfamily and its most abundant and potent inhibitor of the

cysteine cathepsins. Since Cst C can be secreted, it confers cysteine

protease regulation both intra- and extracellularly. Cst C has been

implicated in a number of conditions including apoptosis, antigen

presentation, atherosclerosis and pathogen invasion, and the level

of Cst3 mRNA can be influenced by different stimuli like inflamma-

tory cytokines, pathogens, growth factors, hormones and oxidative

stress (Xu et al, 2015).

For CA1 neurons, cells with more than five expressed Cst3 TSS

molecules (in total 251 cells) could be clearly divided into two

groups: One group had a high major TSS expression (> 2:1 ratio

major/minor, here referred to as Cst3 major high) from the group

with a low major TSS expression (≤ 2:1 ratio major/minor, here

referred to as Cst3 major low), and this separation was consistent in

other cell types as well (Appendix Fig S16A). Interestingly, by this

separation, the vast majority of astrocytes were labeled as Cst3 major

high, and the vast majority of interneurons were labeled Cst3 major

low. Transcription factors with binding sites close to the Cst3 gene

include Myog, Spi1, Ebf1, Foxo1, Stat5a:Stat5b, AR, and AP1. Of

those transcription factors, only androgen receptor (AR) and activa-

tor protein 1 (AP1), which is a transcription factor that is composed

of several proteins from the Jun, Fos, ATF, and JDP families, were

expressed at a level higher than 0.5 molecules per cell in cells

expressing Cst3, and of those, only Fos was significantly differen-

tially expressed between Cst3 major high and Cst3 major low cells

with a fold change > 2 (3.8 molecules in average for Cst3 major high

compared to 1.9 for Cst3 major low, P = 0.02 Welch’s t-test), which

indicates that AP1, which is a transcription factor that regulates gene

expression in response to stress, growth factors and cytokines, may

be responsible for the high expression of Cst3 major TSS in some

cells. However, the significance of the differential expression was

removed after Bonferroni correction for multiple testing.

For CA1 neurons, 7,907 genes were expressed at more than 0.5

molecules per cell among Cst3 major high and major low cells. Of

those, 493 genes were significantly differentially expressed in Cst3

major high (P < 0.05, Welch’s t-test with Bonferroni correction) and

127 higher expressed in Cst3 major low. Gene Ontology terms asso-

ciated with regulation of cell proliferation and developmental

processes, receptor, and transmembrane receptor activities and with

extracellular space and plasma region were significantly enriched

(Table EV3) among these genes. Single-cell expression of Cst3 for

CA1 neurons is shown in Appendix Fig S16B.

Discussion

We have examined the use of alternative TSSs in single cells, using

a large dataset comprising thousands of cells and found that
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alternative TSSs were almost always co-expressed in single cells.

Furthermore, in highly expressed genes, alternative TSSs were

expressed in a correlative manner, and the level of correlation was

highly dependent on expression level indicating that the correlation

in lowly expressed genes was reduced due to noise and would

potentially increase with higher mRNA capture efficiency. mRNA
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Figure 3. TSS pairs expressed from different exons.

A Scatterplot showing total expression (horizontal axis) and major/minor TSS correlation coefficient (vertical). Each dot is a gene. Colors represent genes with “TSS” and
“Promoter” TSSs.

B Examples of TSS expression in single CA1 neuron cells. Plots show the number of mRNA molecules detected from the major and minor TSSs in single cells. Each dot is
a single cell. Pearson correlation values are indicated in red.

C Promoter expression of genes with TSS pairs expressed from different exons using the UCSC genome browser. Expression is shown as bars where the y-axis for single
cells has a limit of five molecules and for all cells combined has a limit of 500 molecules. Major and minor TSSs are marked in red, while other CAGE peaks associated
with a gene are marked in black.
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degradation is likely contributing, but not substantially, to the high

correlation in expression between alternative TSS.

These findings would seem to contradict previous reports on the

highly stochastic and bursty nature of gene expression in mammalian

cells (Raj et al, 2006; Raj & van Oudenaarden, 2008). However, first of

all, these previous studies did not measure TSS-specific gene expres-

sion, and indeed, we found that often whole-gene expression was

noisier than TSS-specific expression, especially for highly expressed

genes (Fig 1G and H, and Appendix Fig S3). Second, we have exam-

ined the entire transcriptome, whereas imaging-based studies have

been limited to studying specific selected genes, which may or may

not have been typical of the average gene. Third, it should be noted

that we have here measured steady-state levels, not new transcription,

and thus, the rate of mRNA degradation will influence our measure-

ments. If the degradation rate is low, any fluctuations in transcrip-

tional rate will tend to be erased by time averaging. Finally, there are

many other possible sources of variation in observed total gene

expression, such as the total number of mRNA molecules per cell

(which varies substantially), and technical differences such as dif-

ferences in sequencing depth or mRNA recovery. Indeed, the expres-

sion level of individual genes is dependent on total mRNA expression

level in a cell (Appendix Fig S10). These other factors would not be

expected to differ for alternative TSSs of the same gene.

There are at least two possible explanations for the high correla-

tion between alternative TSSs: Either gene expression is not as

bursty as previously believed (relative to the degradation rate), or

both TSSs participate in each burst of transcription. Our finding that

TSSs located far apart were less correlated lends some support to

the latter explanation, although the effect was small.

Very few genes were exceptions to the rule that there is a set

ratio between the expression of major and minor TSS. The

most prominent of these genes was Cst3 which codes for the gene

cystatin C, an inhibitor of cysteine proteases. mRNA of Cst3 showed

a bimodal expression pattern where the major and minor TSS were

expressed to a similar degree in some cells, while in other cells, the

major TSS was highly selectively expressed. Genes that were highly

expressed in the latter cells were associated with GO terms for

receptor activity, extracellular space, and the plasma membrane,

possibly indicating response to a stress signal. The immediate-early

transcription factor Fos was associated with selective major TSS

expression of Cst3, is a well-known stress response factor, and is

regulated by neuronal activity in the brain.

For highly expressed genes, the correlation between two different

genes was higher when using only reads mapping to the major TSS

as compared to using reads mapping to the full gene body

(Appendix Fig S3). This is probably due to the fact that reads

mapping to the major TSS only reflect gene expression, while reads

mapping to the gene reflect many processes that may not always be

correlated, including mRNA degradation, alternative TSS expres-

sion, PCR strand invasion, intronic reads, and cryptic 3ʹ expression.
This may have implications for clustering of single cells into cell

types since many clustering methods rely on correlation between

genes.

Surprisingly, few genes expressed alternative promoters (defined

as TSS located more than 1 kb apart), and only three coded for dif-

ferent protein products. One explanation for this may be that there

are few occasions where it would be beneficial for a gene to express

transcripts from multiple promoters within a cell type. The presence

and levels of TFs vary across tissues and developmental time, and

since it is known that specific TFs associate more strongly with

certain promoters it is reasonable to believe that this can influence

the promoter preference for specific genes (Rach et al, 2009). Simi-

larly alternative promoters are known to be expressed across tissues

and developmental stages and can, for example, ensure that house-

keeping genes keep a similar expression level given a different regu-

latory landscape, or they can tune the level of expression between

different cell types (Ayoubi, 2005). However, the need for a single

cell type to express multiple TSS isoforms of a gene may be limited.

In summary, we found a surprising degree of co-expression of

alternative TSSs in single cells. These findings provide strong

constraints on models of transcriptional regulation.

Materials and Methods

Data collection

This study uses previously published data (Zeisel et al, 2015, Gene

Expression Omnibus www.ncbi.nlm.nih.gov/geo under accession

code GSE60361) from 2,816 single cells from the mouse somato-

sensory cortex and hippocampal CA1 region of genetically outbred

(CD-1) mice. Raw reads were remapped to mm10 using Bowtie I,

allowing for three mismatches, and annotated to TSSs as explained

below. Reads were converted into mRNA molecule counts using

UMIs, as previously explained (Kivioja et al, 2012). The UMI

sequence is 6 bp long, and reads with the same UMI sequence were

collapsed and UMIs with only one read were removed. Number of

molecules per cell can be found in Table EV4.

Full-length single oligodendrocyte mRNA sequencing data were

taken from previously published data (Karlsson & Linnarsson, 2017,

Gene Expression Omnibus www.ncbi.nlm.nih.gov/geo under acces-

sion code GSE76026).

This link: http://genome-euro.ucsc.edu/cgi-bin/hgTracks?hgS_do

OtherUser=submit&hgS_otherUserName=Kasper&hgS_otherUser

SessionName=mm10_public_promoters_CA1neurons provides access

to a UCSC track showing promoter expression of 20 single cells as

well as the combined expression for all CA1 neurons.

This link: http://genome-euro.ucsc.edu/cgi-bin/hgTracks?hgS_do

OtherUser=submit&hgS_otherUserName=Kasper&hgS_otherUser

SessionName=mm10_public_promoters_CA1_Oligos provides access

to a UCSC track showing promoter expression of 10 single CA1

neuron cells, 10 single oligodendrocyte cells as well as the combined

expression for all CA1 neurons and all oligodendrocytes.

Analysis

Input data

Transcription start site regions were defined based on an early

access program from the FANTOM 5 project and may therefore dif-

fer slightly from the published FANTOM 5 mouse TSS database

(Forrest et al, 2014). All CAGE tags used are shown in Table EV5.

CAGE tags were curated, and tags without association to a gene

were discarded. CAGE tags were also moved from mm9 to mm10

using liftOver from UCSC. In the cases where two TSS regions

overlapped, the longer TSS region was shortened so there would be

no overlap and the minimum distance between two TSSs was 1 bp.
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The distance between TSSs was calculated as the distance between

the edges of the TSSs, not the distance between the centers of the

TSSs. Molecules were allocated to TSSs using a custom program.

For each single cell, cDNA molecules with their 5ʹ end within the

curated CAGE-defined FANTOM 5 TSSs were counted.

For each gene, the major TSS was defined as the TSS that had

the greatest number of mapped mRNA molecules (UMIs) across the

entire dataset (i.e., counting all cell types). The minor TSS was

defined as the TSS that had the second-largest number of molecules.

Because of this definition, the major TSS need not be the highest

expressed TSS in individual cells or cell types.

The major and minor TSSs of each gene were considered to be

proximal TSS if the distance between the TSSs was < 1 kb; all other

TSS pairs were considered as promoter pairs.

To limit the interference of degradation on the analysis, mapped

reads were calculated in a region of equal size as the TSS next to the

annotated TSS both upstream and downstream (here called a reference

region). If another TSS was located in the area where the reference

region should be, then the reference region was moved outside of that

TSS. If a reference region (either upstream or downstream) contained

more than 20% of the combined reads from the TSS and reference

region, then that particular TSS was removed from the analysis.

Normalization to rpk was done for each cell as follows: mole-

cules per TSS/total expressed TSS molecules × 10,000.

RefSeq genes used for annotation in Fig 1B and G were down-

loaded from the UCSC table browser (21-09-2015), and only the first

isoform by the order of the file of each gene was kept.

We used a slightly modified database to map ERCC reads, and

the modifications are shown in Table EV6. The reason for this is

that we previously have observed that for many ERCC reads, the

5ʹ end is slightly upstream of the ERCC reference sequences. In

Fig 1A, for each ERCC, the median of all mapped reads was used as

the starting position and the percentage of reads deviating from the

starting position is shown.

Transcription factor binding sites were extracted from the UCSC

genome browser based on the ORegAnno database, as well as from

a previously published paper (Huh et al, 1995).

Statistical methods

To calculate the difference in correlation between genes with

alternative TSS and genes with alternative promoters, the non-para-

metrical a two-sided Mann–Whitney U-test was used, implemented

by the R function wilcox.test since the number of genes with alter-

native promoters was too few to ensure normal distribution

(n = 11), but had a similar variance. To calculate the difference in

correlation between the upstream and downstream location of the

major TSSs (compare with Appendix Fig S7), a two-sided Student’s

t-test was used, implemented with the R function t.test, since the

data were normally distributed. The line and associated P-value for

Fig 2E and Appendix Figs S6, S7, and S9 was calculated with the lm

method in R. Correlations were calculated using Pearson correlation

and implemented in python using the stats.linregress function in

scipy or the cor function in R.

To calculate how many cells that significantly deviated from

expected major to minor TSS ratio, the binomial test was performed

for each gene across all cells and implemented with the python

function scipy.stats.binom_test, using number of reads of the major

TSS, the total number of TSS reads, and the percentage of major

TSS reads across all cells in a cell type as the probability of success

and without correction for multiple testing.

To calculate significant alternative TSS usage between cell types,

the minor fraction (molecules on minor TSS divided by the sum of

molecules on both TSSs) for each gene and cell was first calculated.

Cells with no expression in either major or minor TSS were removed

and genes expressed in fewer than 20% of cells in any of the two

cell types were removed to keep only genes with at least modest

expression in the two cell types. Since the data were not normally

distributed, a two-sided non-parametrical Mann–Whitney test was

applied, implemented in python using the function stats.mannwhit-

neyu in scipy, with Bonferroni correction on the minor fraction for

each gene on the two cell types. The data could not assume equal

variance of cell expression between cell types for each gene;

however, the combined sample sizes were large (n ≥ 75) for all

genes with a statistical significant differential usage of minor frac-

tion. The number of cells was more than 800 for some genes and

cell types, so small differences in minor fraction could be deter-

mined as statistically significant. Therefore, we additionally required

a difference of at least 0.3 in minor fraction to find genes with

potential biological significance.

All examples from a single cell type were taken from CA1

neurons since they had a high number of molecules per cell in aver-

age and constituted a large fraction of the total dataset with 876

single cells. Comparisons between cell types were performed

between CA1 neurons and oligodendrocytes, unless otherwise

stated, because there were many oligodendrocyte cells, and they are

a clearly distinct cell type from neurons.

Expanded View for this article is available online.
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