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hypotheses about the functional significance of ultrastructural 
reorganization of striatal glutamatergic synapses in parkinsonian 
condition.

In contrast to the long term belief that astrocytes were merely 
providing a passive structural support for neurons, evidence 
obtained during the past decade has challenged this view indicat-
ing that astrocytes actively participate in synaptic transmission and 
neural communication (Araque et al., 1999a,b; Hirrlinger et al., 
2004; Schipke and Kettermann, 2004; Haber et al., 2006; Witcher 
et al., 2007; Araque, 2008; Fellin, 2009; Perea et al., 2009; Araque and 
Navarrete, 2010; Paixao and Klein, 2010; Perea and Araque, 2010), 
which led to the concept of tripartite synapses (TS), suggesting 
that astrocytes integrate, process, and exchange information with 
pre- and post-synaptic neuronal synaptic elements (Araque et al., 
1999b). It is well established that astrocytes also undergo dynamic 
structural remodeling in response to physiological or pathological 
changes in synaptic activity in different areas of the CNS, includ-
ing the hippocampus, cortex, cerebellum, and hypothalamus 
(Theodosis and MacVicar, 1996; Ventura and Harris, 1999; Jones 
and Greenough, 2002; Dervan et al., 2004; Slezak et al., 2006; Todd 
et al., 2006; Theodosis et al., 2008; Buard et al., 2010; Reichenbach 
et al., 2010).

IntroductIon
One of the main neuropathological features of Parkinson’s disease 
(PD) is the degeneration of the nigrostriatal dopaminergic path-
way, which induces complex physiological changes within the basal 
ganglia circuitry, including profound alterations in the activity 
of the corticostriatal glutamatergic system (Calabresi et al., 1996, 
2007; Mallet et al., 2006; Wichmann and Delong, 2007). A major 
pathological change described in animal models and PD patients 
is a significant reduction in the density of dendritic spines on 
striatal medium spiny projection neurons (Ingham et al., 1989; 
Stephens et al., 2005; Zaja-Milatovic et al., 2005; Day et al., 2006; 
Deutch et al., 2007; Villalba et al., 2009). Recent evidence from 
our laboratory demonstrates that the ultrastructural features of 
pre- and post-synaptic neuronal elements at the remaining cor-
ticostriatal and thalamostriatal axo-spinous synapses undergo 
complex remodeling consistent with increased synaptic activity 
in the striatum of MPTP-treated parkinsonian monkeys (Villalba 
and Smith, 2010, 2011). Furthermore, new unpublished findings, 
recently gathered from these animals demonstrate that perisyn-
aptic astrocytes at cortical and thalamic axo-spinous synapses 
undergo a significant expansion in parkinsonism. Thus, the goal 
of this review is to integrate these data, and put forward some 
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Astrocytes are also involved in the formation and maintenance 
of glutamatergic synapses (Witcher et al., 2007; Barres, 2008; Buard 
et al., 2010; Pfrieger, 2010). Soluble astrocyte-derived signals such as 
thrombospondins and cholesterol strongly promote both synapse 
formation and function (Allen and Barres, 2005; Barres, 2008), 
indicating that interactions between cell surface molecules and 
the release of various soluble factors by astroglia may be crucially 
important to mediate the turnover and enlargement of spines 
observed with synaptic plasticity. Synaptic astroglia are also critical 
dynamic regulators of the strength and kinetics of synaptic activity. 
Astrocytes, indeed, respond to neural stimulation or neurochemi-
cal changes in the surrounding extracellular space by extending 
and modifying their processes (Cornell-Bell et al., 1990), especially 
around active synapses (Oliet et al., 2001; Hirrlinger et al., 2004).

Astrocytes secrete a number of neurotrophic factors that are 
potent survival factors for various neuronal populations, includ-
ing nigrostriatal dopaminergic neurons of the substantia nigra 
pars compacta (SNc), the main targets of neurodegeneration in 
PD. The glial cell-line-derived neurotrophic factor (GDNF, neur-
turin), brain-derived neurotrophic factor (BDNF), and mesence-
phalic astrocyte-derived neurotrophic factor (MANF) indeed, exert 
strong influences on the growth, development, and neuroprotection 
of midbrain dopaminergic neurons and their axonal projections 
in normal and pathological conditions (Lin et al., 1993; Akerud 
et al., 2001; Cunningham and Su, 2002; Petrova et al., 2003, 2004; 
Capowski et al., 2007; Sandhu et al., 2009). Interestingly, valproate 
and 3-hydroxymorhinan, both of which being protective of mid-
brain dopaminergic neurons against MPP+-induced neurotoxicity, 
upregulate the production of neurotrophic factors by astrocytes 
and reduce reactive microgliosis (Chen et al., 2006).

Together, these findings illustrate a myriad of mechanisms by 
which astrocytes could actively participate in the development, 
regulation, protection, and restoration of glutamatergic synapses 
in the CNS. However, although neuron–glia interactions have been 
studied in some detail in specific brain regions, very little is known 
about the substrate and plastic properties of these glio-synaptic 
networks in the striatum, a basal ganglia structure recognized by 
its high degree of long term synaptic plasticity and remodeling of 
glutamatergic synapses in normal and parkinsonian conditions 
(see below). Thus, as part of an ongoing research program aimed at 
characterizing the ultrastructural plasticity of cortical and thalamic 
glutamatergic synapses in the striatum of normal and parkinsonian 
non-human primates, this review will summarize our recent find-
ings on the synaptic remodeling of axo-spinous synapses in MPTP-
treated monkeys (Villalba and Smith, 2010, 2011), and provide 
new evidence that these morphological changes are accompanied 
with a significant growth in the extent of glial coverage of striatal 
glutamatergic synapses in parkinsonian condition.

PlastIcIty of axo-sPInous strIatal glutamatergIc 
synaPses In ParkInsonIsm
dendrItIc sPInes and axon termInals
The anatomical substrate and mechanism by which dopamine (DA) 
regulates striatal glutamatergic activity is complex, activity-depend-
ent and still remains poorly understood (Smith and Bolam, 1990; 
Bamford et al., 2004; Calabresi et al., 2007; Surmeier et al., 2007; 
Ballion et al., 2008; Smith and Villalba, 2008; Tian et al., 2010). 

In these TS, astrocytes serve as a bridge for non-synaptic com-
munication between neurons, thereby contributing to the processing 
and integration of synaptic signaling through the formation of com-
plex neuron–glia networks. The use of 3D reconstruction of synaptic 
complexes at the electron microscopic level has been instrumental in 
revealing the intimate structural relationships and plasticity of astro-
glial processes and neuronal elements at synaptic sites. In the hip-
pocampus and mature neocortex, about half of excitatory axo-spinous 
glutamatergic synapses are covered by astrocytic processes and con-
sidered as TS (Spacek, 1985; Ventura and Harris, 1999; Xu-Friedman 
et al., 2001). In both the sliced and the intact hippocampus, there is 
evidence that the surface area of the post-synaptic densities (PSDs) 
are larger when perisynaptic astroglial processes are present, and 
presumably those synapses are more effective that those without 
glial ensheathment (Witcher et al., 2007). Furthermore, 3D recon-
structions of hippocampal asymmetric axo-spinous synapses have 
shown that up-regulation of synaptic activity induces a pronounced 
increase of the glial coverage of both pre- and post-synaptic structures 
(Lushnikova et al., 2009). Along the same lines, there is a significant 
increase in the surface area of glial processes wrapped around glu-
tamatergic synapses in the visual cortex of rats raised in a complex 
environment (Jones and Greenough, 1996), and in the somatosensory 
cortex of mice subjected to 24 h of whisker stimulation (Genoud 
et al., 2006). Many other studies have confirmed and extended these 
observations that perisynaptic astroglia undergo dynamic reorganiza-
tion correlated with increased synaptic plasticity and neuronal activity 
in different brain regions (Ventura and Harris, 1999; Genoud et al., 
2006; Haber et al., 2006; Todd et al., 2006; Witcher et al., 2007, 2010; 
Lushnikova et al., 2009; Perea et al., 2009; Reichenbach et al., 2010).

functIonal sIgnIfIcance of ts In synaPtIc 
communIcatIon and synaPtogenesIs
As discussed above, the plastic remodeling of glial cells and their 
active participation in synaptic communication have been demon-
strated in different brain regions (Geinisman, 2000; Jourdain et al., 
2002; Matsuzaki et al., 2004; Park et al., 2006; Theodosis et al., 2008; 
Lushnikova et al., 2009; Araque and Navarrete, 2010; Reichenbach 
et al., 2010). Although the functional significance of these ultrastruc-
tural changes remains poorly understood, various mechanisms by 
which astrocytes could regulate synaptic plasticity have been proposed.

Astrocytes secrete neuroactive substances and actively remove syn-
aptically released neurotransmitters from the synaptic cleft, thereby 
play an active role in regulating the spillover of transmitter, most 
particularly glutamate, across synapses or to extrasynaptic recep-
tors (Paixao and Klein, 2010). Two glial EAAT subtypes (GLAST/
EAAT1 and GLT1/EAAT2), distributed on astrocytic membranes in 
the vicinity of excitatory synapses, indeed, prevent accumulation 
of extracellular glutamate, overstimulation of glutamate receptors 
and excitotoxic neuronal death in the CNS (Zhang et al., 2003; 
Fellin and Carmignoto, 2004). There is evidence for dysregulation 
of GLT1 expression and increased level of extracellular glutamate 
in the striatum of MPTP-treated mice (Dervan et al., 2004) and 
6-hydroxydopamine-lesioned rats (Chung, et al., 2008; Massie et al., 
2010; see below). In addition to their transmitter reuptake properties, 
astrocytes may also be a source of different gliotransmitters, such as 
glutamate, ATP, GABA, or d-serine, with different potential neuro-
modulatory roles of synaptic transmission (see Perea et al., 2009).
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The most common targets where dopaminergic and glutamater-
gic striatal afferent systems functionally interact are the dendritic 
spines of striatofugal medium spiny neurons (MSNs; Smith and 
Bolam, 1990). Most, if not all, cortical innervation of MSNs ter-
minates on dendritic spines (Kemp and Powell, 1971; Raju et al., 
2006). Although not as extensive as the corticostriatal system, a sig-
nificant contingent of thalamic glutamatergic afferents also target 
dendritic spines and display close relationships with dopaminergic 
terminals in the striatum (Raju et al., 2006; Moss and Bolam, 2008; 
Smith et al., 2009a,b). In both animal models of parkinsonism 
(Figures 1A,B) and PD patients, MSNs lose as much as 30–50% 
dendritic spines which, in rats, is accompanied with a similar 
decrease in the total number of asymmetric glutamatergic synapses 
(Ingham et al., 1989, 1998; Stephens et al., 2005; Zaja-Milatovic 
et al., 2005; Day et al., 2006; Deutch et al., 2007; Neely et al., 2007; 
Scholz et al., 2008; Schuster et al., 2009; Smith et al., 2009b; Villalba 
et al., 2009; Garcia et al., 2010; Soderstrom et al., 2010). Despite this 
significant spine loss, some in vivo and in vitro electrophysiological 
studies suggested an increased activity of the corticostriatal system 
in parkinsonism (Galarraga et al., 1987; Calabresi et al., 1996; Marti 
et al., 1999), though this issue remains controversial and appears to 
be more complex than originally thought (Day et al., 2006; Mallet 
et al., 2006).

Immunocytochemical studies have demonstrated an increased 
expression of vesicular glutamate transporter 1 (vGluT1) immu-
noreactivity, a specific marker of corticostriatal terminals, in the 
striatum of MPTP-treated parkinsonian monkeys (Raju et al., 2008) 
and postmortem striatal tissue of PD patients (Kashani et al., 2007). 
In addition, the striatum of DA-depleted rats contains a larger den-
sity of perforated asymmetric synapses (Ingham et al., 1998; Meshul 
et al., 1999, 2000), a form of structural remodeling associated with 
increased synaptic efficacy in other brain regions (Greenough 
et al., 1978; Bertoni-Freddari et al., 1993; Harris and Kater, 1994). 
Therefore, the overactivity of corticostriatal glutamatergic system 
described by some authors in rodent models of parkinsonism might 
result from complex structural and neurochemical changes of glu-
tamatergic axo-spinous synapses in  DA-depleted striata.

To further address this issue, we used a 3D electron microscopy 
reconstruction method to perform a rigorous quantitative analysis 
of the ultrastructural features of spines specifically targeted by tha-
lamic or cortical afferents in the sensorimotor striatum of normal 
and MPTP-treated parkinsonian monkeys (Figures 1C1–D2); the 
results of which having been published in several recent reports 
from our laboratory (see Smith et al., 2009b; Villalba and Smith, 
2010, 2011). In summary, the findings presented in these studies 
demonstrate that thalamostriatal and corticostriatal afferents target 
different types of striatal spines, and that both systems undergo 
complex, and partly different, ultrastructural changes indicative of 
an increased strength of glutamatergic transmission in parkinson-
ism (Figures 1E–H). These studies revealed three major ultrastruc-
tural features of cortical and thalamic glutamatergic axo-spinous 
synapses in the primate striatum. First, the dendritic spines targeted 
by vGluT1-containing corticostriatal terminals are significantly 
larger and harbor a more extensive PSD than those innervated by 
vesicular glutamate transporter 2 (vGluT2)-positive thalamostriatal 
boutons. Second, a subset of vGluT2-positive  terminals  displays a 
pattern of multisynaptic connectivity. Third, corticostriatal axo-

Figure 1 | Morphological and ultrastructural changes in striatal MSNs 
after MPTP treatment. (A,B) Dendrites from Golgi-impregnated MSNs in the 
caudate nucleus of a control (A) and a MPTP-treated (B) monkey showing the 
dramatic spine loss (30–50%) after MPTP treatment. (C1–D2) Three-
dimension (3D)-reconstructed images of glutamatergic axo-spinous synapses 
from a control (C1,C2) and a MPTP-treated (D1,D2) monkeys. The spines are 
partially transparent to better show and compare the complexity and 
distribution of the spine apparatus (SA) between control and MPTP-treated 
monkeys. (e,F) Histograms comparing the morphometric measurements 
(mean ± SEM; spine volume, PSD area, terminal volume) of structural 
elements at corticostriatal (vGluT1-positive) and thalamostriatal (vGluT2-
positive) glutamatergic synapses using the 3D reconstruction method of serial 
ultrathin sections collected from 30 axo-spinous synapses in each group from 
three control and three MPTP-treated animals. The units used for these 
measurements are indicated in the X axis within parentheses. In control 
monkeys (N = 3), the spine volume (Vol. Sp.), the PSD areas, and the size of 
pre-synaptic terminals at corticostriatal synapses are significantly larger than 
those at thalamostriatal synapses [*, t-test, P < 0.001 for Vol. Sp. and PSD; 
P = 0.016 for terminal (e)]. The same is true for MPTP-treated monkeys 
(N = 3), except for the pre-synaptic terminals that do not show any significant 
size differences in this condition (F). (g,H) The spine volumes, the PSD areas 
and the volume of vGluT1- and vGluT2-containing terminals are significantly 
larger in MPTP-treated parkinsonian monkeys than in controls (*, t-test, 
P < 0.001). Scale bar in (B) [valid for (A)]: 5 μm. (see Villalba et al., 2009; Villalba 
and Smith, 2010, 2011 for more detail.)
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cells harbored rich plexuses of fine processes reaching out from the 
soma (Figure 2A), or extended 3–5 primary stems that ramified 
into a large density of fine processes (Figure 2C). At high magni-
fication, some of these processes appeared as thin filopodia- or 
lamellipodia-like structures, which were insinuated between and 
around dendritic spines (Figures 2B,D).

Ultrastructural analysis of striatal perisynaptic glia. The follow-
ing analysis was performed on the same material recently used 
to study striatal axo-spine plasticity in parkinsonian monkeys 
(Villalba and Smith, 2011). Methodological details related to animal 
perfusion, tissue preparation, immunocytochemical procedures, 
and 3D EM reconstruction methods, described extensively in this 
previous study, will not be repeated here. We will rather focus 
our brief methodological description on the procedures used to 
gather new information on perisynaptic astrocytes. In brief, digital 
images of vGluT1- or vGluT2-immunostained tissue sections used 
to reconstruct individual axo-spinous synapses in our previous 
study were re-examined, and those complexes associated with peri-
synaptic astrocytes in single sections were chosen for this analysis. 
Following screening of the 60 vGluT1- and 60 vGluT2-axo-spinous 
complexes analyzed in our previous study (Villalba and Smith, 
2011), about one-third was found to display significant perisyn-
aptic astrocytic association, thus chosen for the present analysis. 
In order to avoid any sampling bias, the observer was blinded to 
the treatment condition.

In single ultrathin sections, perisynaptic astroglial processes were 
recognized by their irregular shapes, and “clear” cytoplasm as conse-
quence of their lack of most intracellular organelles ( pseudocolored 

spinous synapses in the sensorimotor putamen of parkinsonian 
monkeys undergo complex ultrastructural remodeling consistent 
with increased synaptic activity (larger spine volume, larger PSDs, 
increased number of PSD perforations, larger pre-synaptic terminal, 
larger spine apparatus, increased number and decreased volume 
of terminal mitochondria; Villalba and Smith, 2011). Although 
some of these plastic changes also characterize vGluT2-positive 
axo-spinous synapses (larger spine volume, larger PSDs, increased 
number of PSD perforations), others are specific to cortical afferents 
(Figures 1E–H). Together with various electrophysiological studies 
suggesting overactivity of the corticostriatal system in rodent and 
non-human primate models of parkinsonism (Galarraga et al., 1987; 
Marti et al., 1999; Gubellini et al., 2002; Liang et al., 2008), these 
ultrastructural data suggest that striatal MSNs are endowed with a 
high level of synaptic plasticity that allows, at least early in the disease 
process, sensorimotor-related information to be properly transmit-
ted and integrated at the striatal level despite a major reduction in 
the number of corticostriatal synapses (Smith et al., 2009b; Villalba 
et al., 2009; Villalba and Smith, 2010, 2011).

PerIsynaPtIc astrocytes
In light of data summarized above (Smith et al., 2009b; Villalba 
et al., 2009; Villalba and Smith, 2010, 2011) combined with find-
ings from the hippocampus and other brain regions suggesting 
tight associations between the growth of perisynaptic astrocytic 
ensheathment and ultrastructural changes in axo-spinous synap-
tic elements (see above), we have used 3D electron microscopic 
reconstruction methods to characterize and compare the extent of 
astrocytic association with cortical (vGluT1-positive) and thalamic 
(vGluT2-positive) glutamatergic excitatory axo-spinous synapses 
in the striatum of normal versus MPTP-treated parkinsonian mon-
keys. The data obtained in this new analysis are summarized below.

Light and electron microscopic analyzes of perisynaptic astrocytes in 
control and MPTP-treated monkeys
To address this issue, we first used Golgi impregnation and light 
microscopy (LM) analysis to examine gross relationships between 
astrocytic processes and dendritic spines on the surface of MSNs 
in control and MPTP-treated parkinsonian monkeys (Figure 2). 
Then, to perform a deeper analysis of the morphological interac-
tions between axo-spinous synapses and perisynaptic astrocytes, we 
used electron microscopy (EM) 3D reconstruction to quantify and 
compare the extent of relationships between astrocytic processes 
and axo-spinous synapses in control and parkinsonian monkeys 
(Figures 3–6).

LM analysis of astrocytes–dendritic spines relationships. After 
Golgi impregnation of striatal sections from the post-commissural 
putamen in three normal and three MPTP-treated parkinsonian 
monkeys (Vibratome, 60 μm-thickness; for details on animals 
and Golgi impregnation see Villalba et al., 2009), we found well 
impregnated astrocytes intermingled with the spiny dendritic 
trees of MSNs in both control (Figures 2A,B) and MPTP-treated 
(Figures 2C,D) animals. The most striking feature of the morphol-
ogy of protoplasmic astrocytes was the enormous complexity and 
irregularity of processes arborization, with abundant ramifications 
often described as bushy or spongiform (Figures 2A,C). These glial 

Figure 2 | Light micrographs of silver-impregnated protoplasmic 
astrocytes in the striatum of control (A,B) and MPTP-treated (C,D) monkeys. 
(A,C) Protoplasmic astrocytes with numerous fine processes reaching out from 
the soma (A) or from the 3–5 main stems (B), each of which being highly 
ramified to generate numerous leaflet-like processes. (B,D) High magnification 
images of a mushroom-shaped spine in a control (B) and a MPTP-treated (D) 
animal that showed a larger extention of astrocyte-like processes juxtaposition 
with dendritic spines after MPTP treatment (arrows). These micrographs (B,D) 
have been color inverted using Adobe Photoshop, version 7.0. Abbreviations: Ast, 
astrocytes; Den, dendrite; sp, dendritic spine. Scale bars: 5 μm.
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identity and quantify their extent in relation to the pre- and post-
synaptic neuronal elements at axo-spinous asymmetric synapses. 
Briefly, serially digitized electron micrographs of the eight TS that 
involved vGluT1- or vGluT2-IR terminals in control and MPTP-
treated monkeys were converted to TIFF format, imported into 
Reconstruct, calibrated, and aligned (see Villalba and Smith, 2011 for 
details). Finally, the individual contours of the astroglial processes 
were manually traced in each serial electron micrograph using 
the Reconstruct software. The program calculated the dimensions 
(surface area and volume) of the perisynaptic astrocytic processes 
and generated a 3D representation based on the serial sectioning 
information.

The analysis of these 3D reconstructions allowed us to obtain 
a detailed knowledge of the relationships between axo-spinous 
complexes and their perisynaptic astrocytic processes. In both 
TS formed by vGluT1- or vGluT2-immunoreactive axon ter-
minals (Figures 4, 5C–F), highly branched astrocytic processes 
wrapped themselves around the synapses and formed a non-
uniform basket-like structure surrounding the pre- and post-
synaptic components of synaptic complexes (Figures 4, 5C–F). 
Some structural differences were noticed when we compared the 
extent of perisynaptic glial ensheathment of axo-spinous synapses 
between control and MPTP-treated monkeys. In control animals, 
the axo-spinous complexes showed numerous astrocyte-free areas 
(Figures 4A–C), whereas in MPTP-treated monkeys, the extent of 
perisynaptic glia was significantly increased, and the appositions 
between the axo-spinous complex and the astroglial processes 
were much tighter and continuous forming an extensive barrier 
around the synaptic complexes (Figures 4A′–C′, 5C–F). These 
differences between the normal and MPTP condition were seen 
for both vGluT1- and vGluT2-positive glutamatergic synapses 
(Figures 4 and 5C–F).

in blue in Figures 3A,B and 5B). Qualitative comparisons of TS 
between control and MPTP-treated animals in single ultrathin sec-
tions revealed that perisynaptic astrocytes exhibit an interdigitated 
finger-like morphology in control animals (Figure 3A), while there 
is an expansion of astrocytic processes to cover a larger extent of 
the perimeter of axo-spinous complexes after MPTP treatment 
(Figures 3B, 5A,B).

Three-dimensional reconstructions of striatal tripartite synapses. 
Through the analysis and digital collection of material gathered 
from serial ultrathin sections (20–30 sections per grid), individual 
TS involving vGluT1- or vGluT2-immunoreactive (IR) terminals 
in control and MPTP-treated monkeys were reconstructed in 3D 
using the Reconstruct software application (available at: synapses.
clm.utexas.edu). A total of eight vGluT1- and vGluT2-positive TS 
in normal and MPTP-treated states were chosen for this analysis 
based on the presence of significant perisynaptic astrocytic pro-
cesses in close apposition with the axo-spinous complexes. To 
reconstruct perisynaptic astrocytes, thin astroglial processes were 
traced through serial sections into larger structures to confirm their 

Figure 3 | electron micrographs of a vgluT1-immunoreactive tripartite 
synapse (TS) in the striatum of a control (A) and a MPTP-treated (B) 
monkey. Perisynaptic astrocytic processes (Ast) are pseudocolored in blue in 
(A,B). These single EM images highlight differences in the extension of the 
astrocyte wrapping of an axo-spinous synapse between control (A) and MPTP 
(B) treated animals. Pictures were digitally acquired and imported in TIFF 
format to Adobe Photoshop (version 7.0; Adobe System, San Jose, CA, USA). 
Abbreviations: Ast, astrocyte; T, axon terminal; Sp, dendritic spine. Scale bar in 
(B) [valid for (A)]: 1 μm.

Figure 4 | Three-dimensional reconstruction of tripartite synapses (TS) 
formed by a vgluT1-immunoreactive terminal in the striatum of a control 
(A–C) and a MPTP-treated (A′–C′) monkey. (A–C) In the TS of control 
animals, the perimeters of the axon-spinous interfaces were only partially 
surrounded by astroglial processes. (A′–C′) TS vGluT1-containing synapses in 
MPTP-treated animals displayed a large increase in astroglial processes 
ensheathment. Abbreviations: Ast, astrocyte; PSD, post-synaptic density; Sp, 
dendritic spine; T, axon terminal.
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vGluT2-positive) was performed between normal and MPTP-
treated monkeys (Figure 6; eight TS per group). The statistical 
analysis (t-test; SigmaPlot; version 11.0) showed that the surface 
of perisynaptic glia associated with vGluT1- and vGluT2-immu-
noreactive terminals was significantly larger in MPTP-treated than 
in control monkeys (*, t-test, P = 0.017 for vGluT1, and P = 0.006 
for vGluT2; Figure 6A). In order to rule out the possibility that this 
increase in astrocytic surface area was merely due to an increase in 
the size of the axo-spinous complexes in parkinsonian animals, we 
calculated the ratio of the volume of the perisynaptic glia over the 
total volume of the spine and the corresponding axon terminal in 
each of the 32 TS analyzed (Figure 6B), and found that this ratio 
was significantly larger for vGluT1- and vGluT2-positive TS in 
MPTP-treated monkeys than in controls (P = 0.012), without any 
significant difference between the two different populations of ter-
minals (*, t-test, P = 0.049 for vGluT1 and P = 0.028 for vGluT2).

conclusIon and future PersPectIves
Although there is compelling evidence that astrocytes are integral 
elements of glutamatergic synaptic complexes, and contribute 
actively to the regulation and processing of synaptic neural com-
munication, their exact functional role and preponderance of these 
effects in specific CNS regions remain poorly understood. Findings 
discussed in this review highlight the significant level of structural 
plasticity cortical and thalamic glutamatergic axo-spinous synapses 
are endowed with in the primate striatum, and the ultrastructural 
compensatory changes that affect remaining glutamatergic synapses 
in the dopamine-denervated striatum of parkinsonian animals. 
These results, together with various electrophysiological studies 
suggesting overactivity of the corticostriatal system in rodent and 
non-human primate models of parkinsonism (Galarraga et al., 1987; 
Marti et al., 1999; Gubellini et al., 2002; Liang et al., 2008), illustrate 
the complex level of synaptic plasticity that governs striatal gluta-
matergic transmission under normal and parkinsonian conditions.

To further substantiate these observations, a comparative quan-
titative assessment of the total surface area of astrocytic processes 
in direct contact with the 32 reconstructed vGluT1- or vGluT2-
immunoreactive axo-spinous complexes (16 vGluT1-positive; 16 

Figure 6 | Quantitative analysis of the perisynaptic glia from tripartite 
synapses (TS) in control and MPTP-treated animals (mean ± SeM). (A) 
Histograms comparing the surface area of perisynaptic glia associated with 
vGluT1- and vGluT2-immunopositive axo-spinous synapses in control (N = 3) and 
MPTP-treated (N = 3) monkeys. The surface of the perisynaptic glia was 
significantly larger (*, t-test, P = 0.017 for vGluT1 and P = 0.006 for vGluT2) in 
MPTP-parkinsonian monkeys than in control. (B) Histograms comparing the ratio 

of the volume of the perisynaptic glia over the total volume of the spine and the 
axon terminals in TS formed by vGluT1- or vGluT2-immunoreactive terminals. 
This ratio was significantly larger in MPTP than in control condition (*, t-test, 
P = 0.049 for vGluT1 and P = 0.028 for vGluT2). No significant difference was 
found between TS formed by vGluT1- or vGluT2-immunoreactive terminals. Total 
number of reconstructed spines = 32, 8 per group. Statistics were performed by 
using SigmaPlot (version 11.0).

Figure 5 | electron micrographs and three-dimensional (3D)-
reconstruction of a tripartite synapse (TS) formed by a vgluT2-
immunoreactive terminal in the striatum of a MPTP-treated monkey. 
(A,B) Electron micrographs of a vGluT2-immunoreactive TS. Note that in (B) 
the perisynaptic astrocyte was pseudocolored to help identify the glial 
processes. (C–F) 3D-reconstruction of the TS demonstrating the tight 
interactions between the astroglial processes and the axo-spinous vGluT2-
positive complex. Abbreviations: Ast, astrocyte; PSD, post-synaptic density; 
Sp, dendritic spine; T, axon terminal. Scale bar in (A) [valid for (B)]: 1 μm.

Villalba and Smith Neuroglial plasticity at striatal synapses

Frontiers in Systems Neuroscience www.frontiersin.org August 2011 | Volume 5 | Article 68 | 6

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org/Systems_Neuroscience/archive


Barres, B. A. (2008). The mystery and 
magic of glia: a perspective on their 
roles in health and disease. Neuron 
60, 430–440.

Bertoni-Freddari, C., Fattoretti, P., Casoli, 
T., Spagna, C., Meier-Ruge, W., and 
Ulrich, J. (1993). Compensatory 
enlargement of synaptic size in aging 
and senile dementia. Boll. Soc. Ital. 
Biol. Sper. 69, 57–63.

Buard, I., Steinmetz, C. C., Claudepierre, 
T., and Pfrieger, F. W. (2010). Glial 
cells promote dendrite formation 
and the reception of synaptic input 

Ballion, B., Mallet, N., Bezard, E., 
Lanciego, J. L., and Gonon, F. 
(2008). Intratelencephalic corti-
costriatal neurons equally excite 
striatonigral and striatopallidal 
neurons and their discharge activity 
is selectively reduced in experimen-
tal parkinsonism. Eur. J. Neurosci. 
27, 2313–2321.

Bamford, N. S., Robinson, S., Palmiter, R. 
D., Joyce, J. A., Moore, C., and Meshul, 
C. K. (2004). Dopamine modulates 
release from corticostriatal terminals. 
J. Neurosci. 24, 9541–9552.

Araque, A., and Navarrete, M. (2010). 
Glial cells in neuronal network func-
tion. Philos. Trans. R. Soc. Lond. B Biol. 
Sci. 365, 2375–2381.

Araque, A., Parpura, V., Sanzgiri, R. P., 
and Haydon, P. G. (1999a). Tripartite 
synapses: glia, the unacknowl-
edged partner. Trends Neurosci. 22, 
208–215.

Araque, A., Sanzgiri, R. P., Parpura, V., 
and Haydon, P. G. (1999b). Astrocyte-
induced modulation of synaptic trans-
mission. Can. J. Physiol. Pharmacol. 77, 
699–706.

references
Akerud, P., Canals, J. M., Snyder, E. Y., and 

Arenas, E. (2001). Neuroprotection 
through delivery of glial cell line-derived 
neurotrophic factor by neural stem cells 
in a mouse model of Parkinson’s disease. 
J. Neurosci. 21, 8108–8118.

Allen, N. J., and Barres, B. A. (2005). 
Signaling between glia and neurons: 
focus on synaptic plasticity. Curr. 
Opin. Neurobiol. 15, 542–548.

Araque, A. (2008). Astrocytes process 
synaptic information. Neuron Glia 
Biol. 4, 3–10.

synaptic astrocytes between normal and MPTP-treated parkin-
sonian monkeys are warranted. As discussed in the introduction, 
perisynaptic astrocytes could regulate synaptic transmission by 
transmitter uptake or release of glutamate and other transmitter-
related neurochemicals. Thus, our findings might underlie a pos-
sible change in bi-directional  communication between astrocytes 
and synaptic neuronal elements opening up the possibility for 
a functional glia–neuronal regulatory loop that could modulate 
plasticity and efficacy of individual striatal glutamatergic synapses.

In conclusion, the present results add to the growing evi-
dence from other brain regions that both glial and neuronal 
elements of axo-spinous glutamatergic synapses in the primate 
striatum are endowed with a high level of structural and, most 
likely, functional plasticity. However, many unanswered ques-
tions remain that must be addressed to better understand the 
functional role of plastic changes in synaptic glia–neuronal com-
munication in the striatal pathophysiology of parkinsonism. 
For instance, the prevalence of TS axo-spinous glutamatergic 
synapses in the striatum in normal and pathological conditions 
is unknown. Based on data from the hippocampus (Ventura and 
Harris, 1999; Witcher et al., 2007, 2010), it appears that such a 
synaptic arrangement is not homogeneous across all excitatory 
synapses, thereby suggesting that glial influences upon striatal 
glutamatergic transmission may vary significantly from one syn-
apse to another. This variability in the extent of perisynaptic glia 
may also make some glutamatergic synapses much more leaky 
and prone to spill over glutamate in the extracellular medium, 
thereby activating extrasynaptic receptors, and increase over-
all striatal activity. Together with our limited understanding 
of the mechanisms by which astrocytes respond to changes in 
neuronal activity and extracellular transmitter homeostasis, 
these issues must be thoroughly investigated if one hopes to 
take advantage of glia–neuronal communication knowledge to 
better understand the pathophysiology of striatal processing 
in parkinsonism, and develop new PD therapeutics that could 
alter these mechanisms to regulate basal ganglia functions and 
alleviate disease symptoms.

acknowledgments
The authors thank the Yerkes Center Animal Resources Division for 
help with the care of MPTP-treated monkeys, and Jean-Francois 
Pare for his technical assistance with serial electron microscopy sec-
tions. This work was supported by the NIH grant R01 NS 037948 
and by the NCRR Yerkes Primate Center base grant RR00165.

The increased corticostriatal functions described in MPTP-
treated monkeys (Cao et al., 2010) could be the result of a com-
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1990; Meshul et al., 1999; Jonkers et al., 2002; Walker et al., 2009), 
although these remain controversial (Corsi et al., 2003; Galeffi et al., 
2003; Robelet et al., 2004). In addition, the recent in vitro and in vivo 
data indicating that striatal spine pruning of MSNs in response to 
dopamine denervation is significantly attenuated by cortical lesions 
(Neely et al., 2007; Garcia et al., 2010), suggest that these plastic reg-
ulatory changes may indirectly contribute to the loss of some striatal 
spines in PD through increased release and spillover of extracellular 
glutamate from overactive glutamatergic synapses. Interestingly, the 
genetic deletion of cerebellin 1 (cbln1), a gene virtually expressed 
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of their association with glutamatergic corticostriatal and thala-
mostriatal axo-spinous synapses in parkinsonian monkeys. These 
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