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We present a statistical method to rank observed genes in gene expression time series experiments according to their degree of
regulation in a biological process. The ranking may be used to focus on specific genes or to select meaningful subsets of genes from
which gene regulatory networks can be built. Our approach is based on a state space model that incorporates hidden regulators of
gene expression. Kalman (K) smoothing and maximum (M) likelihood estimation techniques are used to derive optimal estimates
of the model parameters upon which a proposed regulation criterion is based. The statistical power of the proposed algorithm is
investigated, and a real data set is analyzed for the purpose of identifying regulated genes in time dependent gene expression data.
This statistical approach supports the concept that meaningful biological conclusions can be drawn from gene expression time
series experiments by focusing on strong regulation rather than large expression values.
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1. Introduction

Novel gene expression technologies (e.g., microarrays, next-
generation sequencing, etc.) make it possible to study
the simultaneous expression of an ever increasing num-
ber of genes [1, 2]. As these technologies become more
available and affordable, the size and complexity of gene
expression experiments will continue to increase. In time
series studies, for example, microarray-based gene tran-
script measurements have historically been recorded at
several time points over the course of a biological process
(e.g., development, response, etc.). Well-known examples
of microarray time series experiments include studies on
the yeast cell cycle [3], the reaction of mice to acute
corneal trauma [4], the life-cycle of drosophila [5], and
embryonal development of the rat nervous system [6].
In most time series gene expression experiments “treated”
samples are compared to a zero time point “reference” or
“control” sample, and a (log-fold) change or difference is
calculated for each gene at each time point under both
equally spaced or unequally spaced conditions. While in
the past the number of time points under investigation was

usually limited to fewer than ten, the current progression
is toward extensive studies that include well beyond 50
time points [5]. Furthermore, with the rising popularity
of next generation sequencing (e.g., Solexa) as applied to
gene expression studies we anticipate that the size and
nature of gene expression experiments will both con-
tinue to grow and to provide challenging statistical issues
that need to be addressed. Here, we present a statistical
method that ranks genes via their expression as gained
from microarray-based time series experiments and in
accordance with their degree of regulation in a biological
process. Although the statistical approach is presented using
microarray technology, the method is independent of the
technology that presents the data and provides meaningful
biological conclusions that are based on regulation rather
than expression.

To date a variety of statistical methods have been
developed for the analysis of time series microarray data,
and even fewer for next generation sequencing. Clustering
methods have been used extensively to deduce the function
of previously unknown genes by comparing their expression
profile to known genes in the same cluster [7] even though
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it is well known that similar expression profiles do not
necessarily imply the same biological function [8]. Statistical
approaches that describe gene expression as a complex
(noisy) function of internal and external cell stimuli have also
been implemented. These approaches attempt to construct
gene regulatory networks based on Boolean models [9–
11], vector autoregressive models [12], empirical Bayesian
methods [13], or Bayesian networks [14, 15] (e.g., state space
models) and are often thought of as directed graphs, in which
the observed genes and hidden regulators are considered as
nodes and the arrows between nodes as causal (temporal)
relationships. In gene expression (microarray) applications
the advantage of state space models is that they are easily
extendable to the case of unequally spaced time points and
they allow the inclusion of unobservable regulators in the
model. In fact, these hidden regulators may include, but are
not limited to, genes that were not apriori of interest in
the experiment (e.g., transcription factors). A disadvantage
of state space models is their poor identifiability, especially
in high-dimensional data. In fact, in previous attempts to
analyze gene regulation networks with state space models
[16, 17], strong restrictions had to be placed on the model
parameters.

Most of the existing analytic methods for discovery of
gene regulatory networks rely on the preselection of a subset
of genes that are subsequently analyzed. Unfortunately, these
methods are only feasible if the set of genes from which
the network is built is small (i.e., magnitude of hundreds,
not thousands) and is typically justified by the underlying
assumption that not all of an organism’s thousands of
genes are involved in a specific temporal process (e.g.,
the cell cycle). Under such an assumption arbitrary cutoff
values are used to compare a gene’s absolute or relative
maximum expression to a control tissue (zero time point)
to determine whether it should be included or excluded
from further consideration [18]. Although such a criterion
is not biologically meaningful, the impact is significant and
results in a large percentage of the available observations
and information are excluded a priori from any subsequent
analysis [19, 20].

Our proposed approach is called the KM-algorithm, it
does not depend on any a priori analysis to reduce the
dimension of the data, and it is based on Kalman (K)
smoothing [21] and maximum (M) likelihood estimation. It
is a modified EM-algorithm [22], in which the conditional
expectation step (E-step) is replaced by a Kalman smoothing
procedure (K-step) that estimates the hidden regulators. In
the maximization step (M-step) the model parameters are
updated through a gradient ascend procedure that increases
the model likelihood for the given set of observations while
simultaneously assuring validity of the model. The KM-
algorithm is numerically and computationally feasible for
application to gene expression data consisting of thousands
of gene observations. When whole genome investigations
force the number of observations to be extremely large
(tens of thousands of genes), a partitioning method can be
employed to reduce the computational load of the problem.
Essentially, the partitioning method repeatedly splits the
data into smaller subsets upon which the KM-algorithm

operates. The results from the KM-algorithm are then
combined to yield a single result for each gene. Using a
novel criterion that ranks genes according to their degree
of regulation (rather than their maximum expression) gives
rise to a meaningful subset of genes. Since the KM-algorithm
itself is based on a state space model for gene regulation,
it allows the inclusion of hidden regulators. Depending
on whether the hidden regulators are unobserved gene
expression values or transcription factors, they can be used to
model gene-gene and potentially gene-protein interactions
(i.e., a protein, that results from the expression of a gene that
is not on the array, regulates the expression of an observed
gene).

The performance of the KM-algorithm is studied via
simulation using gene expression time course data of
varying size (gene number) and length (number of time
points). While we have based our simulations on microarray
technology, any technology can be assumed/employed. The
ranking result as gained from our approach is evaluated
by the position of the (simulated) regulated genes in the
final list. These simulation studies provide both guidelines
and recommendations for the minimum number of time
point observations that a gene expression experiment should
include in order to achieve a desired degree of statistical sep-
aration (i.e., accuracy) between regulated and unregulated
genes.

2. Methods

2.1. State Space Model for Gene Regulation. A statistical
model for any complex biological process such as gene
regulation must make simplifying assumptions. The choice
of a model is a compromise between flexibility of the model
(being able to explain a large proportion of the observed
variance) and simplicity of the model itself. In this work gene
regulation is modeled through a discrete time state space
model with hidden regulators and Gaussian error terms:

Zt = GYt + εt ,

Yt = FYt−1 + δt.
(1)

The Zt are the n-dimensional vectors of observed gene
expression values at time points t = 1, . . . ,T , and Yt are
the m-dimensional regulators that determine the expression
of some of the observed genes. These regulators (Yt)
do not necessarily have to be gene expression. Here, the
observations are assumed to be equally spaced; however the
theory can be extended to the situation of unequally spaced
observations (discussed later). The error terms εt and δt
are assumed to be mean zero multivariate Gaussian errors
with covariance matrices Σε and Σδ , respectively. These
errors are important since they model the measurement
error and biological variation in the regulators, respectively.
The model assumption that the error terms have mean
zero requires any systematical measurement bias to be
removed prior to analysis. In microarray data analysis this
is usually achieved through preprocessing of the data and
normalization techniques such as print-tip normalization
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or dye-swap normalization. Although measurement errors
on gene expression are assumed to be uncorrelated, thus
Σε is a diagonal matrix, this does not mean, nor imply,
that the observed gene expression values themselves are
uncorrelated. In fact, the observed gene expression values
are modeled as linear combinations of regulators which
are themselves correlated. The system matrix F describes
the temporal development of the regulators, and the gene
regulation matrix G is identifiable only if the dimension m
of the state space is smaller than the number of observed
time points T . Typically, in biological experiments the
number of relevant regulators is small, and therefore this
issue is not anticipated as problematic. Something that is
dealt with later, but worth noting now, is that the gene
regulation matrix G and the system matrix F are not
unique, and any renumbering of the hidden regulators will
most likely lead to different gene regulation and system
matrices. We chose this model because it provides a large
degree of flexibility in the hidden regulators which could be
cell internal or external components. On the other hand,
the simplifying assumptions of time independent regula-
tion matrices G and F and a linear relationship between
regulating elements and gene expressions are biologically
reasonable.

2.2. KM-Algorithm. A modified EM-algorithm is employed
to estimate the parameters of the state space model. The
parameters that are of interest, and that need to be estimated
in the state space model (1), consist of the gene regulation
matrixG, the system matrix F, the covariance matrices of the
biological error Σδ , the measurement error Σε, and the mean
and covariance matrix for the Gaussian distribution of the
initial regulator state Y0 ∼ N(μ,Σ).

The KM-algorithm starts with random initial values
for the model parameters and then alternates between the
Kalman smoothing (KS) estimates of the hidden regula-
tors Y0, . . . ,YT and the (restricted) maximum likelihood
estimates of the model parameters. Kalman smoothing is
an engineering technique that computes the conditional
expectations of the hidden state variables, given the complete
set of observations [21]. Since the model parameters are
fixed, in practice, when the these parameters are not
known, model parameters estimates are used. Computing
KS-estimates of the hidden regulators first requires a forward
pass through the data to compute filtering estimates and
then a backward pass to obtain the smoothing estimates.
Fortunately, both procedures consist mainly of matrix mul-
tiplication and addition and the inversion of one symmetric
n × n and one symmetric m × m matrix, respectively. The
numerical complexity of the Kalman filtering and smoothing
procedure is O(l3), where l is the number of model
parameters.

To update the model parameters, the likelihood function
(L) of the regulator values given the complete set of
observations is maximized

LF,G,Σδ ,Σε ,μ,Σ(Y0, . . . ,YT | Z1, . . . ,ZT) (2)

with respect to the model parameters. Due to numerical
instability in the algorithm with regards to computation of
the covariance matrix Σδ , the value of Σδ that maximizes
the likelihood function is not necessarily positive definite.
Since a positive definite covariance matrix is required in
the subsequent Kalman smoothing step, the algorithm is
amended with a Cholesky square-root decomposition of the
covariance matrix with a subsequent gradient ascent for the
likelihood function [23]. The algorithm is terminated if the
proportional increase in the model log-likelihood falls under
a threshold (e.g., ≤0.05%).

2.3. The Regulation Criterion. Based on the state space
model (1) for gene regulation, we formulate and propose
a criterion that allows the identification of regulated genes
in a particular process of interest. The formulation of the
criterion is independent of the numbering of the hidden
regulators. Therefore, several model estimates resulting from
repeated applications of the KM-algorithm with different
initial values may be averaged which effectively provides a
more powerful gene ranking process.

In the state space model (1) the gene regulation matrix G
has zeroes in the rows that correspond to unregulated genes.
Large positive or negative entries in a gene’s G-row indicate
that the gene is up- or downregulated by the corresponding
regulator. The sum of squared estimated G row entries can
therefore be used in a criterion for gene regulation. Because
genes with greater variation in expression over time also tend
to have larger gene regulation matrix entries, the sum of
squared estimated G row entries ĝi j is standardized by the
temporal variance (Vi) of each gene:

Ri =
∑m

j=1 ĝ
2
i j

Vi
, where Vi = Var

(

Z(i)
t , t = 1, . . . ,T

)

.

(3)

This criterion (3) provides one regulation value Ri for every
gene in the experiment. Followup experiments and real-
time PCR validation to discover regulated genes should be
focused on the genes with the highest regulation criterion.
If the KM-algorithm is implemented repeatedly for the
same set of observations with different initial values, the
resulting regulation criteria are directly comparable and may
be averaged.

2.4. Selection of Model Dimension. Before the generalized
EM-algorithm can be employed for estimation of the model
parameters, the dimension of the state space must be esti-
mated. Conventional model selection methods such as Bayes
Information Criterion (BIC) [24] or Akaike Information
Criterion (AIC) [25] fail in many (microarray) applications,
since the number of observations (genes) and the number of
model parameters to be estimated may be extremely large (in
the thousands).

Since traditional model selection criteria are not well
suited for this particular application, a method that is based
on the autocovariances of the observed gene expression
values is employed [26]. If we let H be the block-Hankel



4 Advances in Bioinformatics

matrix of observation autocovariances ̂Γi estimated from the
gene expression observations Zt, t = 1, . . . ,T , then
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(4)

In this setting p is the maximum biologically relevant time-
lag between a gene and its regulator. That is, a gene or
regulator may influence the expression of another gene at
most p experimental time units in the future. Usually time
series expression (microarray) experiments are designed so
the maximum relevant time-lag is moderate (p = 1, 2, 3).
In the absence of error, the rank of the matrix H equals the
number of states required to characterize the observations Zt
in the state space model (1).

In practice the observed gene expression values, Zt, are
subject to both biological and technical measurement errors,
and the rank of H cannot be used directly to choose the
state space dimension m. However, a singular value decom-
position (SVD) of H can be performed, and the number
of singular values of comparably large magnitude is used as
an estimate for the most appropriate state space dimension
m. Specifically, the singular values of the estimated Hankel-
autocovariance matrix are computed and standardized to a
0–1 scale. The number of singular values of magnitude ≥ 0.8
is used as an estimate for the state space dimension. An
arbitrary threshold of 0.80 is chosen based on our experience
that the number of singular values of this magnitude is
representative for the state space dimension. Numerical
computation of singular values is not time extensive but
requires a large amount of available memory (e.g., 1.6 GB
for observations on n = 2000 genes and p = 3). Singular
value decomposition of the Hankel matrix in general has
complexity O((np)3). However, since the matrix has rank
strictly less than T , we only need to compute the T − 1
largest eigenvalues. Efficient SVD algorithms, specifically for
symmetric matrices, can be employed for this task [27].

A further advantage of using a method based on the
autocovariances of the observed gene expressions rather than
conventional model selection procedures is that it does not
require fitting many models of different dimensions. Instead,
the estimated autocovariances of the observed variables are
computed from the observations directly. Since the model
fitting step is computationally much more time extensive
than the singular value decomposition of H , this allows for
a significant reduction in overall computation time.

2.5. Unequally Spaced Observations. In the state space model
(1) the gene observations are assumed to be equally spaced
in time. In most practical experiments, however, the time
steps or intervals between observations are not equal. Let
Δt be largest common factor of the intervals between
measurements. Specifically, every time step can be expressed

as an integer multiple of Δt such that the state space model
in (1) is modified:

Ztk = GYtk + εtk ,

Ytk = F jkYtk−1 + δtk ,
k = 1, . . . ,T , (5)

where jk = (tk − tk−1)/Δt is an integer for k = 1, . . . ,T .
For unequally spaced observations, the KS estimates of the
hidden regulators can be obtained in an similar manner to
the equidistant time point case, where the system matrix F
is replaced with the appropriate F jk in both the filtering and
smoothing recursion. However, the covariance matrix τjkΣδ
of the error terms δtk will depend on the spacing jk between
observations. Icaza and Jones [28] show how to apply the
Kalman filtering and smoothing procedure to the case of
multivariate observations that are unequally spaced in time.
The terms in the conditional likelihood function that depend
on the system matrix F will no longer be quadratic in F
(as is the case in model (1)). They can be represented as
a polynomial expression in F. The solution to the matrix
equation

∂

∂F
LF,G,Σδ ,Σε ,μ,Σ(Y0, . . . ,TT | Z1, . . . ,ZT) = 0 (6)

may not exist in closed form but can be obtained numerically
for instance through a gradient ascent.

2.6. Partitioning Method for Large Data Sets. Many gene
expression (time series) data sets have tens of thou-
sands of observations. For example, the Arabidopsis ATH1
Affymetrix microarray represents more than 24000 genes.
Since the numerical expense of estimating the parameters of
a state space model increases quadratically in the number
of observed genes, parameter estimation for the complete
set of (genes) observations quickly becomes computationally
challenging. To address this challenge without restricting
the gene space, or limiting the KM-algorithm, one can
randomly partition the data into several smaller subsets of
approximately equal size. The KM-algorithm can then be
implemented, with different initial starting values, repeatedly
for each subset. When sufficient computing capacity is
available, these calculations can be carried out in parallel.
The regulation criterion results for genes from all subsets
are collected, and the procedure is repeated with a different
random partitioning of the data. The results from the KM-
algorithm are then combined via averaging to yield a single
result for each gene. Biologically, splitting the observed data
into subsets has no ill effect if all regulators are unobserved
components, such as protein levels. However, if some of the
regulators are observed gene expression values themselves,
then splitting the data set may potentially ignore any gene-
gene interactions. Therefore, the random partitioning is
repeated with different subsets, to accommodate possible
gene-gene interactions.

3. Results

3.1. Simulated Data. Data of different sizes (gene numbers
n = 500, 1000, 2000) and lengths (time points T =
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Figure 1: Averaged regulation criterion for five applications of the
KM-algorithm as applied to simulated data with n = 1000 genes at
T = 100 time points. Regulated genes are plotted as red stars and
unregulated genes as black dots.

20, 40, 100) are simulated. For comparability, in each case
m = 10 regulators are simulated with the same system matrix
F. The regulators are autoregressive processes (AR(p)) of
maximum order p = 3. They are allowed to differ in their
autocorrelation and temporal variance to reflect a range of
different biological applications. In each data set, twenty
genes are simulated as regulated. Effectively, the G-row
entries corresponding to these genes contain nonzero entries.
The temporal variances of the unregulated genes (diagonal
entries of Σε) are chosen to cover the range of temporal
variances of the regulated genes.

3.2. Evaluating the Ranking of Genes. For simulated data
where some of the genes are simulated or known as regulated,
performance of the KM-algorithm is evaluated by ranking
the genes. A perfect ranking result is one in which the
regulation criterion values of the regulated genes surpass
those of all unregulated genes. Due to both technical and
biological variation in the observations this is rarely the
case, and therefore an objective measure that describes the
“goodness of ranking” of the KM-results is required. The
goodness of ranking (GR) measure used here is based on the
average ranking positions of the regulated genes. It assigns a
value of one to a perfect ranking and a value of zero to the
average random ranking of regulated and unregulated genes.
Note that negative GR-measure values are possible and will
occur if the regulated genes are listed at the bottom of the
ranking list.

3.3. Simulation Example. The KM-algorithm is applied to a
simulated data set with n = 1000 genes, twenty of which
are regulated. All genes are observed at T = 100 equally
spaced time points. Applications of the KM-algorithm are

based on five different sets of initial starting values. Each time
the regulation criterion is computed, the five values for a gene
are averaged.

In Figure 1 the calculated regulation criterion values are
plotted against the temporal variances (Vi) of the genes.
Historically, the temporal variances are typically used as an
indicator for selection of genes in microarray time series
analysis [7]. As expected, the ranking result is not perfect,
and some unregulated genes have larger regulation criterion
values than regulated genes. In fact, the GR-measure for
the ranking outcome in this simulated example is 0.7565.
However, when compared to the traditional method for
selecting genes based on the temporal variances, selection
of genes using a high regulation criterion values rather
than a high temporal variation yields a considerably larger
percentage of genes correctly identified as regulated in the
chosen subset. Recall that twenty of the simulated 1000
genes in this example are regulated, and the remaining 980
simulated genes are unregulated. Table 1 summarizes the
percentages of correctly identified genes when selecting the
top 1%, 5%, 10%, or 20% of genes as regulated according to
temporal variance or the proposed regulation criterion.

3.4. Power Study. A major advantage of the regulation
criterion that is applied here is that it is independent of the
order of the unobservable regulators. Hence, the results from
two or more applications of the KM-algorithm on the same
data set with different initial starting values may be averaged
to yield higher power in detecting regulated genes.

Figure 2 demonstrates that a balance can be achieved
between increased power and increased computation
expense. The KM-algorithm is applied 1000 times each to
three different simulated data sets with observations on n =
1000 genes at T = 20, 40, and 100 time point observa-
tions, respectively. For each data set the 1000 regulation
criterion results are grouped into subsets of size k (k =
1, . . . , 10) and averaged. For the averaged regulation criterion
results, the GR-measure of ranking quality is computed. The
average GR-measure values together with their respective
standard errors are reported in Figure 2. Clearly, averaging
more implementations of the KM-algorithm improves the
quality of the final ranking result. However, while the
improvement is drastic for smaller values of k, a large
number of implementations may not be worth the added
computational expense. As can be seen, a good tradeoff
between improvement in gene ranking and computation
time appear to be values around k = 5 implementations of
the KM-algorithm.

Figure 2 also clearly illustrates that including more time
points in the design of an experiment vastly improves the
gene ranking results. In the case of T = 20 time points, the
GR-measure values are only slightly better than those that
would be achieved by a random ranking of all the observed
genes (GR = 0). However, for T = 40 time points, the results
are drastically better. A perfect gene ranking (GR = 1) cannot
be expected even for very long time series, due to both the
technical error in the observations and biological variation
in the regulators. Based on these simulations, a minimum
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Table 1: Percentages of correctly classified genes in the simulation whose results are depicted in Figure 1.

Temporal variance Regulation criterion

Top Regulated Unregulated Regulated Unregulated

1% (0/10) 0% (970/990) 98.0% (10/10) 100% (980/990) 99.0%

5% (2/50) 4.0% (932/950) 98.1% (19/50) 38% (949/950) 99.9%

10% (7/100) 7% (887/900) 98.6% (19/100) 19% (899/900) 99.9%

20% (7/200) 3.5% (787/800) 98.4% (20/200) 10% (800/800) 100%
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Figure 2: Average goodness of ranking (GR) measure (with
standard error) for averaging k (k = 1, . . . , 10) regulation results
obtained through repeated application of the KM-algorithm with
different initial starting values.

length of T = 40 time point observations is recommended
for most microarray or expression time series experiments.

3.5. Selection of Model Dimension. A common difficulty in
many complex statistical models is selecting the appropriate
model dimension. Because of the vast number of genes,
microarray applications are especially challenging when
selecting an appropriate model. The model selection method
presented earlier is based on the autocovariances of the
(gene) observations. For nine simulated data sets of different
sizes and lengths the block Hankel matrix of estimated
autocovariances is computed for maximum biological time
lag p = 1. A singular value decomposition is performed,
and the number of singular values which exceed 80% of
the largest singular value is used as an estimate for the
model dimension. The standardized singular values for the
nine data sets are plotted in Figure 3. The true model
dimension for each simulated data set is m = 10 (i.e.,
there are 10 regulators of gene expression). The estimated
values (Figure 3; vertical dotted lines) as gained from model
selection range from 4 to 18.
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Figure 3: Standardized singular values of the block Hankel matrix
of autocorrelations for maximum biological time lag p = 1.

Because the maximum biological relevant time lag p is
chosen by the experimenter, it is important to assess how
different choices of p influence the model selection process.
Figure 4 demonstrates the influence that a misspecification
of the maximum relevant time lag p has on both the selected
model dimension and the gene ranking result as measured
by GR. For all nine simulated data sets the true dimension
m = 10 is compared to those selected by the autocovariance
based model selection method with time lags p = 1, 2, and
3, respectively. The true maximum time lag for the simulated
data is in fact p = 3 as the regulators are AR(p) processes of
maximal degree 3.

As seen in Figure 4 the gene ranking results are strongly
influenced by the length of the observed time series.
Observations at more time points yield improved ranking
results. The size of the data set (number of simultaneously
observed genes) also influences the results. Since the number
of regulated genes in each data set is constant, larger numbers
of observed genes give rise to weaker ranking results as
the average list position of the regulated genes tends to be
smaller.
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Figure 4: For nine simulated data sets of different size n and length T , model selection is performed with different maximum biological
time lags p = 1, 2, 3. The results of the model selection process are noted on the x-axis of each data set (left bar represents true model
dimension m = 10, right three bars represent p = 1, 2, 3 in that order). At the true model dimension m = 10 and the selected dimensions
the KM-algorithm is applied five times and regulation results averaged. The “goodness of rank” (GR) measure of the resulting gene ranking
is shown.

A more detailed discussion of the effects of misspecifi-
cation of the maximum relevant time lag p on the selected
model dimension and subsequent ranking of genes by the
KM-algorithm can be found in [29].

3.6. Partitioning Method. For larger microarray experiments
with thousands of genes the proposed partitioning method
is demonstrated. The KM-algorithm is implemented five
times for each data set that consists of n = 2000 genes
that are observed at T = 20, 40, and 100 time points,
respectively. The ranking results are averaged, and a final
gene ranking is obtained for each data set. To compare
the KM-algorithm implementation on a whole data set
with a partitioned data set, the same three data sets are
then analyzed using the partitioning method. Specifically,
each data set is partitioned randomly into four smaller
subsets of 500 genes. Model selection is performed for each
subset separately, and the KM-algorithm is implemented

(at the selected model dimension) three times each with
different initial starting values. The three resulting regulation
criterion values for each gene are averaged. To capture gene-
gene interactions, the random partitioning and subsequent
analysis is repeated to yield a total of five mean regulation
criterion estimates for each gene. These results are averaged
again, to obtain one final regulation result for each of the
n = 2000 genes in the data set.

Table 2 compares the GR measure of ranking for the
results from analyzing the large data set as a whole with those
obtained by utilizing the partitioning method. Specifically
for shorter time series, the ranking results obtained by the
partitioning method surpass those obtained by analyzing the
entire data set. This can be explained by the fact that the
partitioning method effectively uses 15 applications of the
KM-algorithm, compared to five applications when the data
set is considered in total (i.e., not partitioned). The increased
power that is achieved through more applications of the
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Table 2: The “goodness of rank” (GR) measure results for gene
ranking obtained by applying the KM-algorithm to the complete
and partitioned data sets with n = 2000 genes and T time point
observations.

T 20 40 100

Complete data set 0.0421 0.1543 0.6434

Partitioning method 0.2012 0.2982 0.5349

KM-algorithm is offset by potentially unobserved gene-gene
interactions in the partitions.

3.7. Yeast Cell Cycle Data. The partitioning method is
applied to data generated by a well-studied yeast cell cycle
experiment [3]. Since these data are so well studied by many
investigators using many approaches, direct comparisons
can be made between the methods and results. The yeast
experiment cells from a CDC15 temperature sensitive yeast
mutant were harvested every ten minutes under growth
conditions at 19 equally spaced time points. At each time
point 6308 distinct genes were evaluated using spotted cDNA
microarrays. In the original experiment and analysis, Fourier
transformation and the correlation of gene temporal profiles
with those of known regulating genes were used to classify
799 genes as regulated in a cell cycle dependent manner.

The KM-algorithm in combination with the partitioning
method is applied to the original Spellman log2 transformed
yeast expression ratios. The 6308 genes are randomly par-
titioned into nine subsets of 630 and one subset of 638,
respectively. Model selection via singular value decompo-
sition of the autocovariance matrix is performed for each
subset. Subsequently, the KM-algorithm is implemented
three times for each subset at the selected model dimension
with different initial values. Finally, the regulation criterion
results are averaged over both repeated applications of the
algorithm and repeated partitions.

Figure 5 shows the calculated regulation criterion values
plotted against the maximum absolute expression of each
gene. In the original Fourier transformation-based analysis
[3] genes with both small and large absolute expression
were identified as cell cycle regulated. The implementation
of the KM-algorithm using the same data identified the
top three genes as cell cycle regulated. These same genes
were also recognized by Spellman et al. as cell cycle regu-
lated. However, the genes with the next highest regulation
criterion values (i.e., YDR274C, YOL031C, YGL039W, and
YDR206W) were not identified as cell cycle regulated in
the original Spellman et al. results. Interestingly, in later
yeast experiments YOL031C was found to be involved in
processes during cotranslational membrane targeting [30],
and YGL039W and YDR206W were found to be involved
in telomeric maintenance [31, 32]. To our knowledge the
molecular function of YDR274C remains unknown.

4. Conclusions

An efficient approach to ranking genes according to their
degree of regulation in the observed biological process
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Figure 5: Regulation criterion values obtained by applying the
partitioning method to Spellman’s CDC15 yeast data plotted against
the maximum absolute expression value of each gene. Genes that
have been found to be cell cycle regulated by Spellman are plotted as
red dots. Four genes that received high regulation criterion values,
yet were not found to be cell cycle regulated by the original Spellman
analysis, are labeled.

is presented using the novel KM-algorithm. While the
KM algorithm is implemented on gene expression data
in a microarray setting, it is technology independent. The
ranking that results from a KM analysis can be used to
select genes for individual study or to fit regulatory networks
with existing methods that rely on the preselection of a
smaller subset of genes. The selection of genes according to
regulation, rather than absolute expression or variation over
time, is biologically more meaningful and has great potential
to aid in the discovery of regulatory pathways and networks.

The major benefit of using a state space model in the
proposed KM-algorithm is the inclusion of hidden regula-
tors. This feature is especially important when the focus is
on constructing regulatory networks, since it provides an
opportunity to discover additional regulating genes that may
not be in the current network. It is expected that the applica-
tion of the KM-algorithm to situations where the regulators
of gene expression are both known and unknown is fairly
broad (e.g., transcription factors, DNA methylation, and cell
external stimuli). Furthermore, since the model provides a
convenient way to integrate the technical variation, that is an
integral part of any technology, separately from the biological
variation in the observed organisms, there is huge potential
for novel discoveries.

It is not surprising that complex statistical models are
required to represent both the complexity and dependence
structure of gene regulatory networks. Parameter estimation
for complex models with different sources of variation,
and simultaneous gene observations on a large number of



Advances in Bioinformatics 9

variables, is one of our greatest challenges. In particular, the
estimation of parameters in a Bayesian network, such as a
state space model, is an np hard problem [33]. Therefore,
it is essential that data reduction occurs in a biologically
meaningful way that is aimed at retaining as much relevant
information about the network as possible.

The KM-algorithm, which ranks genes based upon their
degree of regulation, is easy to implement, and the calcula-
tions are feasible even for very large microarray data sets.
Simulations show that the quality of gene ranking for time
series of medium length (T > 40) is good and improves as the
number of time point observations increases. It is anticipated
that new technologies which are less expensive and include
flexible design (e.g., CombiMatrix; [2]) will give rise to
experiments with increased time point observations. The
affect of using a larger number of time point observations in
these experiments will allow for more reliable identification
of regulated genes. In addition, continued improvements in
computing technology will make it possible to apply the KM-
algorithm to larger data sets in order to identify regulated
genes. Finally, the novel model selection method that is
applied as part of the KM-algorithm is applicable in many
other fields where a large number of both observations and
model parameters provide challenges.

Gene regulatory networks are only one example of a more
general biological pathway. Other applications include the
study of an organism’s metabolome or proteome over time
[34]. Analogous to gene expression applications, the KM-
algorithm is general enough to be applied to any “omic” time
series study, gained from any technology, whose purpose it is
to identify regulated variables.

Acknowledgment

This work is partially funded by the NSF Plant Genome
Grant 0501712-DBI to RWD.

References

[1] J. K. Peeters and P. J. Van der Spek, “Growing applications and
advancements in microarray technology and analysis tools,”
Cell Biochemistry and Biophysics, vol. 43, no. 1, pp. 149–166,
2005.

[2] A. L. Ghindilis, M. W. Smith, K. R. Schwarzkopf, et al., “Com-
biMatrix oligonucleotide arrays: genotyping and gene expres-
sion assays employing electrochemical detection,” Biosensors
and Bioelectronics, vol. 22, no. 9-10, pp. 1853–1860, 2007.

[3] P. T. Spellman, G. Sherlock, M. Q. Zhang, et al., “Com-
prehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization,”
Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273–3297,
1998.

[4] Y. Fang, D. Choi, R. P. Searles, and W. D. Mathers, “A
time course microarray study of gene expression in the
mouse lacrimal gland after acute corneal trauma,” Investigative
Ophthalmology & Visual Science, vol. 46, no. 2, pp. 461–469,
2005.

[5] M. N. Arbeitman, E. E. M. Furlong, F. Imam, et al., “Gene
expression during the life cycle of Drosophila melanogaster,”
Science, vol. 297, no. 5590, pp. 2270–2275, 2002.

[6] X. Wen, S. Fuhrman, G. S. Michaels, et al., “Large-scale
temporal gene expression mapping of central nervous system
development,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 95, no. 1, pp. 334–339,
1998.

[7] R. Jenner, P. Kellam, X. Liu, et al., “A framework for modelling
short, high-dimensional multivariate time series: preliminary
results in virus gene expression data analysis,” in Proceedings
of the 4th International Conference on Intelligent Data Analysis,
Springer, 2001.

[8] I. Yanai, J. O. Korbel, S. Boue, S. K. McWeeney, P. Bork, and
M. J. Lercher, “Similar gene expression profiles do not imply
similar tissue functions,” Trends in Genetics, vol. 22, no. 3, pp.
132–138, 2006.

[9] T. Mestl, E. Plahte, and S. W. Omholt, “A mathematical
framework for describing and analysing gene regulatory
networks,” Journal of Theoretical Biology, vol. 176, no. 2, pp.
291–300, 1995.

[10] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang,
“Probabilistic Boolean networks: a rule-based uncertainty
model for gene regulatory networks,” Bioinformatics, vol. 18,
no. 2, pp. 261–274, 2002.

[11] P. J. Woolf and Y. Wang, “A fuzzy logic approach to analyzing
gene expression data,” Physiological Genomics, vol. 3, no. 1, pp.
9–15, 2000.

[12] A. Fujita, J. R. Sato, H. M. Garay-Malpartida, et al., “Modeling
gene expression regulatory networks with the sparse vector
autoregressive model,” BMC Systems Biology, vol. 1, article 39,
2007.
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